Sorption Kinetics of Hydrophobic Organic Compounds to Natural Sediments and Soils

Shlan-chee Wu and Philip M. Gschwend*

Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Introduction

Sorption on sediment and soil particles plays a major role in controlling the fate of organic pollutants in aquatic environments. Partitioning models, in which equilibrium between dissolved and sorbed species is assumed, are often adequate to describe transport phenomena, particularly when solid–solution contact times are relatively long (days to months). Examples where equilibrium descriptions appear appropriate include organic compound exchange between slowly settling suspended solids in lakes and rivers and to and from aquifer soils and groundwater percolating at common flow velocities.

However, there is evidence that in some situations sorption/desorption transfers are sufficiently slow to invalidate the use of equilibrium models. Several investigators evaluating the transport of organic compounds through leached soil columns have found both asymmetric distributions of chemical concentrations vs. depth and nonsigmoid or tailing breakthrough curves (1–4). These observations are best explained by recognizing that the sorptive exchange "reactions" or mass transfers are slow with respect to advective flow of the pore fluids. Investigations of the release of organic pollutants from contaminated sediments also provide evidence for sorptive exchange limiting transport. For example, transfer of phthalates and polychlorinated biphenyls from natural sediments, especially those deposited as fecal pellet aggregates, to and from aquifer soils and groundwater percolating at common flow velocities may result in significant error in prediction of fate in the aforementioned situations. In order to develop an accurate description of hydrophobic compound transport in aquatic environments where physical-mixing processes expose solids to solutions on time scales similar to or shorter than those of sorption transfers, we must understand the factors controlling sorption kinetics.

Many models have been developed to simulate sorption kinetics. Among them the one-box model is the simplest method in which the sorption rate is a first-order function of concentration difference between the sorbent (viewed as a completely mixed box) and the solution, and is quantified by a single rate constant, $k_1$ (Figure 1) (10, 11). This mathematical formulation implies that sorptive exchange is limited by only one of many conceivably important processes including binding by single class of sorbing site or mass transfer across a boundary. However, the one-box model does not fit experimental data well. Sorption kinetics data always show a rapid initial uptake followed by a slow approach to equilibrium (2, 12, 13; this paper). The improved modeling approach typically utilized involves subdividing the sorbent into two compartments. This conceptualization corresponds to physical situations in which there are two classes of sorbing sites, two chemical reactions in series, or a sorbent with an exterior part (easily accessible) and an inner part (exchanging slowly) (Figure 1). Unfortunately, this type of model retains three independent fitting parameters (i.e., $k_1$, the exchange rate from the solution to the first box; $k_2$, the exchange rate from the first box to the second box; $K_1$, the fraction of total sorbing capacity in the first box) that cannot be easily evaluated or estimated for new combinations of chemicals and solids. Numerous other mass transfer approaches (e.g., those reviewed in ref 14) similarly suffer in having no fundamental basis on which to predict the values of the model parameters.

Therefore, the objective of this work was to develop and experimentally verify a model of sorption kinetics which is based on known physical and chemical processes (i.e., molecular diffusion and phase partitioning) and the commonly available parameters used to describe them.

Physically Based Model for Sorption Kinetics

As a point of departure, we assume that the sediment and soil particles of most concern for hydrophobic organic compound sorption are aggregates of fine mineral grains and natural organic matter. The aggregate nature of natural sorbents as they exist in the environment, including suspended solids (15, 16), sediments (17), and soils (18–20), is well documented. Therefore, following the previous suggestion of Leenheer and Ahlrichs (13) we hypothesize that the kinetics of solution–solid exchange should be described as a radial diffusive penetration of organic pollutants into these porous natural particles. That is, sorbate molecules diffuse through the pore fluids held in the interstices of natural silt aggregates, and their penetration is "retarded" by microscale partitioning of the compounds between essentially mobile (i.e., dissolved in intraparticle pore fluids) and immobile (i.e., in/on intra-
where $K_p$ is the equilibrium partition coefficient (mol/g/(mol/cm$^3$)). The isotherm relationship can be used to restate the intraparticle diffusion kinetics in $S$ only:

$$S(r) = (1 - n)pK_pC'(r) + nC'(r) = [(1 - n)pK_p + n]C'(r)$$

$$\frac{\partial S(r)}{\partial t} = D_{eff}n\left[\frac{\partial^2 S(r)}{\partial r^2} + \frac{2}{r} \frac{\partial S(r)}{\partial r}\right]$$

where $D_{eff}$ is the effective intraparticle diffusivity (cm$^2$/s). When $K_p$ is large (true for hydrophobic compounds), the effective diffusivity, $D_{eff}$, is simply

$$D_{eff} = \frac{D_{mn}}{(1 - n)pK_p}$$

One last consideration is that this model of radial diffusive penetration assumes (1) the entire surface area is available for mass flux and (2) the path length of diffusive transfer is half the particle diameter. Clearly the $D_{eff}$ appropriate for natural silts must include a correction factor, $f(n,t)$, which is a function of intraaggregate porosity and tortuosity $(t)$, that is

$$\frac{\partial S(r)}{\partial t} = D_{eff}f(n,t)\left[\frac{\partial^2 S(r)}{\partial r^2} + \frac{2}{r} \frac{\partial S(r)}{\partial r}\right]$$

where

$$D_{eff} = D_{eff}'f(n,t)$$

This model of sorption kinetics is quite flexible and physically reasonable. The compound properties (diffusivity in solution and hydrophobicity) and those of the natural sorbents (e.g., organic content, particle size, and porosity) can be used in the model to predict a priori sorption kinetics for each chemical and/or site of interest.

**Experimental Section**

**Materials.** Four chlorobenzene congeners (1,4-dichlorobenzene, 1,2,4-trichlorobenzene, 1,3,4-tetrachlorobenzene, pentachlorobenzene) were purchased from Foxboro/AnaLab Co. (North Haven, CT) and used as received. Milli-Q water (Millipore, Bedford, MA) was used for aqueous preparations.

Three natural sediments and soils were used in our experiments. Sediments taken from river beds were air-dried, sieved through a No. 20 standard sieve (opening = 0.84 mm), and stored at room temperature. Air-dried soil samples provided to us by Dr. S. Karickhoff of the Environmental Research Laboratory, U.S. EPA (Athens, GA), were previously treated similarly. Soil and sediment suspensions used in the kinetics experiments were prepared by adding about 50 mL of water to air-dried sediments or soils 2 days in advance. The suspensions were shaken by hand several times during this 2-day period to facilitate wetting and establishment of a natural aggregation condition.

Some properties of the sediments are listed in Table I. Wet particle sizes were determined by sieving 2 L of sediment suspension prepared 2 days previously and containing 2–3 g of dry sediments through standard sieves (openings: 840, 177, and 88 pm) and Nitex net (openings: 53 and 28 pm). The amount of the smallest size fraction was determined by measuring the total solid mass left in the suspension after the last sieving. The dry solid densities were estimated with the specific gravity bottle method.
Table I. Properties of Sediments and Soils

<table>
<thead>
<tr>
<th>sample name</th>
<th>source</th>
<th>combustible* loss (550 °C, 25 min), %</th>
<th>dry density, g/cm³</th>
<th>wet particle size distribution fraction by weight at diameter, μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles River sediments</td>
<td>Charles River, MA</td>
<td>17.0</td>
<td>2.35</td>
<td>&gt;840</td>
</tr>
<tr>
<td>contaminated Charles River sediments prepared in our lab</td>
<td>17.7</td>
<td>ND</td>
<td>0.04</td>
<td>177-47</td>
</tr>
<tr>
<td>Iowa soils</td>
<td>EPA (EPA-10)</td>
<td>6.5*</td>
<td>2.6</td>
<td>177-88</td>
</tr>
<tr>
<td>North River sediments</td>
<td>North River, MA</td>
<td>8.8</td>
<td>2.51</td>
<td>88-53</td>
</tr>
<tr>
<td>contaminated North River sediments prepared in our lab</td>
<td>8.4</td>
<td>ND</td>
<td>0.02</td>
<td>53-28</td>
</tr>
</tbody>
</table>

*aCombustible loss includes organic matter and possibly chemically bound water. The organic carbon content (f(C)) will be slightly less than half of combustible loss (20). *The organic carbon content of Iowa soils is 2.1% (Dr. Karrikkhoff). *ND = not determined.

Figure 2. Apparatus for sorption-desorption kinetics experiments.


The experimental procedure for sorption and desorption kinetics. At the beginning of a sorption kinetics experiment only water and clean air were in the experimental system. The responses of the reaction system and the reference system were recorded. In order to dissolve the test compound into the water and avoid inclusion of microscopic crystals in the solution, a small crystal of the compound which had been weighed on a Cahn 25 micro-balance (Cahn Instruments, Inc., Cerritos, CA) was placed within a bolus of glass wool or carefully melted and recrystallized onto the glass wall of a removable section of tubing of the stripper in the gas path before the bubbler. By recirculation of the air through the stripper, the crystal sublimed and the compound was transferred to the aqueous solution within 2 days if the amount put in was smaller than the amount necessary to saturate the solution. If the solution became saturated, the remaining crystalline compound was removed, and the concentration in the solution was lowered to 50% of the saturated concentration by stripping with clean air and monitoring the gas phase with the PID.

The sorption experiment was initiated by pouring about 50 mL of sediment or soil suspension into the side mouth of the reaction vessel. Tests showed that opening the side mouth for several seconds did not result in significant loss of compound from the system. The activity of the compound in the solution was monitored continuously during the first hour and was measured intermittently afterward. Typically, there was no measurable change of activity after 1 or 2 days. Therefore, the experiments lasted 2 or 3 days, and the last measured activity was assumed to be the equilibrium activity at infinite time. Desorption experiments were similar to sorption experiments except that contaminated sediments were poured into clean water in the reactor.

Since the size of the particle aggregates was expected to be a critical factor in controlling sorptive exchange, we examined the particle size distributions of Charles River sediments under continuous bubbling and stirring for different time periods. The results show that the particle size distribution shifted significantly to smaller sizes with combined bubbling and stirring (Figure 3). Therefore, sorption rates would be continuously increased throughout the experiment by shortening the diffusion path and increasing particle surface area. This phenomenon was observed in our early experiments (i.e., experiments 1 and 4-6) in which the suspensions were bubbled throughout the experimental periods and the time to reach sorption equilibrium was relatively long. Consequently, we modified our subsequent experimental procedure so that continuous bubbling was used only for the first hour, and then limited to brief periods necessary to monitor the sorption progress at longer times. This procedure lowered the energy input...
The boundary condition at the particle surface is the only parameter necessary to quantify the process for the given conditions. The boundary condition at the particle surface is given by the expression of local equilibrium:

\[ S(r = R) = (1 - n) \rho_p K_p C \]  

where \( C \) is the dissolved concentration in bulk solution. \( C \) is not necessarily a constant. In our experimental conditions (i.e., a well-mixed closed system) \( C \) can be related to \( S \) by a mass conservation equation:

\[ \frac{V}{V_s} C + S = \frac{V}{V_s} C_0 + S_0 \]  

where \( V \) and \( V_s \) are the total volume of solution and particles, respectively. \( S_0 \) is the average initial sorbed concentration over all particles. The averaged concentration at any time, \( \bar{S} \), is given by

\[ \bar{S} = \sum \left[ \frac{3}{4\pi R^3} \int_0^R 4\pi r^2 S(r) \, dr \right] \]  

Analytical solutions are available for this intraparticle diffusion description of sorption kinetics in which all the particles are assumed to be the same size and the exterior solution volume, \( V \), is well-mixed (28). Analytical solutions, however, are only valid for simple boundary conditions and for a mix of particles having a very narrow size distribution (i.e., the particle sorption behavior can be represented by a single average diameter if the size distribution spans only about 1 order of magnitude (30)). In aquatic environments, the particle sizes of sediments and soils in their natural aggregated state span several orders of magnitude, and open systems in which bulk dissolved concentration varies with time are very common. Therefore, a numerical method was developed in which particles were divided into several size classes and the bulk dissolved concentration was allowed to vary. Individual particles in each size class were divided into a certain number of equal-interval concentric hollow spheres. Derivatives in the governing equation were replaced by finite difference expressions. An explicit Euler method was used for integration in each time step. The element size in each particle class was chosen so that the numerical solution converged to the corresponding analytical solution within 1 min of simulated experimental time which is the lower limit of the time of interest. The details of the numerical method are described further in ref 31.

The best-fit value of \( D_{eff} \) was obtained by adjusting the \( D_{eff} \) in the model so that the data points at the most rapidly changing section around the midpoint of equilibration, \( t_{1/2} \) (i.e., when \( (C - C_{equilibrium})/(C_0 - C_{equilibrium}) = 0.5 \), fell on the predicted curve. This method gives the best results because the predicted curve is very sensitive to the selected \( D_{eff} \) at \( t_{1/2} \), and the effects of experimental errors at the very beginning and near the end of an experiment where errors are largest can be avoided.

When the time scale of sorption is close to the time scale of the apparatus response (\( 1/n \) (4 min \(^{-1}\)) \( ) \) there will be significant error in the fit values of \( D_{eff} \) because what we measured was the true sorption kinetics response superimposed on an apparatus response. By assuming that the apparatus response to changes in solution activity of sorbates can be described with a first-order rate expression and a response rate constant of 4 min \(^{-1}\), we can estimate the extent to which the observed \( D_{eff} \) differs from a "true" value. Our worst cases (i.e., shortest time to exchange) involved dichlorobenzene sorption on Charles River (\( t_{1/2} = 0.3 \) min; therefore, \( D_{glob} = 1.48D_{eff,true} \) and trichlorobenzene on the same sediments (\( t_{1/2} = 1.6 \) min; therefore, \( D_{glob} = 1.16D_{eff,true} \). Apparatus response errors are insignificant (<1%) for our other experimental results.

### Results and Discussion

The experimental conditions and results are summarized in Table 2 and are shown in the following figures. The ratio of \( C - C_e \) to \( C_0 - C_e \) is plotted in most figures to magnify the concentration change in solution. Two experiments (Figure 4) that were performed with the same compound and sediments and similar initial conditions show the reproducibility of this experimental protocol.

**Evidence for Intraparticle Diffusion.** The results show several very interesting features of sorption consistent with the intraparticle diffusion model. First, large particles show a slower sorption approach to equilibrium than otherwise similar smaller particles when we use the same sorbate (Figure 5). When these same sediments are disaggregated (i.e., by sonication) before sorption experiments, they demonstrate an even faster uptake rate. Clearly by reducing the diffusive path length into the interior of the particles and by increasing the exposed sorbent surface area, we can greatly increase sorption rates.

Second, compounds with greater hydrophobicity (i.e., higher \( K_{ow} \)) have slower uptake rates into the same sedi-
Table II. Experimental and Model Simulation Results

| expt no. | Figure | sorbate | $C_0$, $\mu$M | $C_s/C_0$ | solid conc, $\rho$, mg/L | particle size, $\mu$m | temp, $^\circ$C | $K_p$, cm$^2$/g | $D_{app}$, cm$^2$/s |
|----------|--------|---------|----------------|----------|-------------------------|-------------------|---------|------------|----------------|-------------------|
| 1        | 5      | P       | 2.0            | 0.48     | CR                      | 235               | mixed   | 23         | 4690           | $<3.8 \times 10^{-11}$ |
| 2        | 10a    | TR      | 13.7           | 0.29     | CR                      | 9350              | mixed   | 24         | 265            | $3.8 \times 10^{-10}$ |
| 3        | 10a    | D       | 4.4            | 0.39     | CR                      | 17900             | mixed   | 22         | 87             | $1.0 \times 10^{-9}$  |
| 4        | 5      | TE      | 1.4            | 0.46     | CR                      | 988               | mixed   | 24         | 1220           | $<2.0 \times 10^{-10}$ |
| 5        | 4      | TE      | 3.2            | 0.39     | CR                      | 1030              | 96       | 23         | 1520           | $<2.5 \times 10^{-10}$ |
| 6        | 4      | TE      | 3.7            | 0.62     | CR                      | 445               | 232      | 28         | 1330           | $<3.8 \times 10^{-10}$ |
| 7        | 6      | TE      | 2.6            | 0.68     | CR                      | 1060              | mixed   | 55         | 684            | $4.2 \times 10^{-10}$  |
| 8        | 6      | TE      | 2.3            | 0.44     | CR                      | 1240              | mixed   | 40         | 1020           | $<4.2 \times 10^{-10}$ |
| 9        | 10b    | TE      | 2.8            | 0.63     | IS                      | 10200             | mixed   | 22         | 58             | $1.0 \times 10^{-9}$  |
| 10       | 10b    | P       | 1.6            | 0.5      | IS                      | 4250              | mixed   | 25         | 239            | $2.5 \times 10^{-10}$  |
| 11       | 10c    | TE      | 2.5            | 0.54     | NR                      | 2050              | mixed   | 23         | 418            | $5.0 \times 10^{-11}$  |
| 12       | 10c    | P       | 0.4            | 0.45     | NR                      | 770               | mixed   | 26         | 1560           | $8.5 \times 10^{-12}$  |
| 13       | 10d    | TE      | 0.0            |          | CR                      | 2270              | mixed   | 27         | 1220           | $8.5 \times 10^{-11}$  |
| 14       | 10d    | TE      | 0.0            |          | NR                      | 2390              | mixed   | 24         | 418            | $1.3 \times 10^{-10}$  |

*P, pentachlorobenzene; TE, 1,2,3,4-tetrachlorobenzene; TR, 1,2,4-trichlorobenzene; D, 1,4-dichlorobenzene. *CR, Charles River sediments; IS, Iowa soils; NR, North River sediments. $K_p$'s of sorption cases were calculated from the observed dissolved concentration at the end of the kinetics experiments. $K_p$'s of desorption cases were taken as the same as the $K_p$'s of corresponding sorption cases. $d$The $D_{app}$'s in these model simulation results are upper limits because of an artificially higher uptake rate caused by bubbling-derived particle breakage. $e$From model fits of kinetics data.

Figure 4. Experimental results of two similar treatments showing reproducibility of the experimental protocol for sorption kinetics.

Figure 5. Sorption kinetics experimental results for tetrachlorobenzene on Charles River sediments with two different particle sizes and the same sediments disaggregated by sonication.

Figure 6. Comparison of sorption kinetics experimental results for four chlorobenzene congeners exhibiting a range of hydrophobicities ($K_{ow}$ from ref 32) on Charles River sediments.

Figure 7. Comparison of sorption kinetics experimental results for tetrachlorobenzene on Charles River sediments at three different temperatures.
Diffusivities do not vary greatly among these four compounds. Therefore, the effects of hydrophobicity dominate the variation of sorption rate for the different compounds.

Finally, over a temperature range of 30 °C, there is no large change in sorption rates (Figure 7). The temperature could potentially affect the sorption rate in two ways in terms of intraparticle diffusion. First, diffusivities in solution and pore water vary directly with temperature. However, a temperature change of 30 °C corresponds to only about a 10% range in molecular diffusivities (33), and we do not believe our observations are sufficiently precise to show this. Second, temperature can change the partition coefficients and consequently change the effective diffusivities which determine the sorption rates. The sorption partition coefficient of tetrachlorobenzene to Charles River sediments is indeed smaller at 55 °C ($K_w = 0.68 \times 10^6$ cm$^3$/g) than at 40 °C ($K_w = 1.0 \times 10^6$ cm$^3$/g) and at 24 °C ($K_w = 1.2 \times 10^6$ cm$^3$/g) (Table II). This relationship between the partition coefficients and the temperature corresponds to an exothermic heat of about −3.5 kcal/mol (derived from the Gibbs–Helmholtz equation; see ref 34).

Given the observed temperature effect on $K_p$, we predict from eq 6 the effective diffusivity to vary by a factor of 2 in these experiments. As shown in Table II and as will be discussed, the effective diffusivities needed for model simulations to fit the data for this range of temperatures varied by about this magnitude.

The desorption experiments further confirmed that the reversible processes of intraparticle diffusion and phase partitioning (29, 35) may be used to quantify solid-to-solution exchange kinetics. As can be seen in Figure 8, the desorption process has a similar time scale as the sorption process for the same combination of sediments and sorbate, although desorption is slightly faster because of the smaller averaged particle size for contaminated North River sediments used in the desorption experiment. Both sorption and desorption processes were completed in about 2 days in this case, which strongly supports the argument that the sorption process is reversible.

Comparison of Models. We have fit our experimental data with our retarded/radial diffusion model and the two other box models. The one-box model simply fails to fit the data well (Figure 9). The data shows a more rapid uptake at the beginning followed by a slow approach to equilibrium. The two-box model can be adjusted more closely to the data (Figure 9). However, this is not surprising since there are three fitting parameters involved (the two rate constants, $k_1$ and $k_2$, and the fraction of the total sorption capacity in the rapid-exchange compartment, $X_r$). In addition, the primary disadvantage of the two-box model is the difficulty of relating these three parameters to known properties of sediments. For example, for two experiments with the same compound (tetrachlorobenzene) and the same sediments (Charles River sediments), however, with different mean aggregate sizes (96 and 232 μm), we obtain two totally different sets of parameters (1) $k_1 = 5.8 \times 10^{-6}$ min$^{-1}$, $k_2 = 2.8 \times 10^{-6}$ min$^{-1}$, and $X_r = 0.44$; (2) $k_1 = 8.7 \times 10^{-6}$ min$^{-1}$, $k_2 = 3.2 \times 10^{-6}$ min$^{-1}$, and $X_r = 0.67$ by minimizing the fitting residual. This indicates that we have to experimentally estimate these parameters for each type of sediment, which is impractical for modeling natural water systems. Consequently, these models limit our understanding of the processes governing sorption kinetics and require recalibration for every new situation in which they are applied.

On the contrary, since the particle diameters can be measured, the retarded/radial diffusion model can be fit to the polychlorobenzene uptake data adjusting only one parameter (the effective intraparticle diffusivity). This model fits our results very well (Figure 10a–d). In addition, this model not only extends our understanding of the sorption kinetics but also offers us the opportunity to estimate the effective diffusivity a priori on the basis of correlations with chemical and sediment properties.

Effective Diffusivity, $D_{eff}$. Table II summarizes the values of the fitting parameter, $D_{eff}$. According to the previous discussion, the effective diffusivity should be inversely related to the partition coefficient, $K_p$, for strongly hydrophobic compounds if pore fluid diffusion dominates. Figure 11 shows the relationship of $D_{eff}$ vs. $K_p$ for various combinations of sorbates and solvents used. The inverse relationship for these parameters is obvious and consistent with our intraparticle diffusion model. Since the partition coefficient can be estimated from the octanol–water partition coefficient of the compound and the organic carbon content of sediments within a reasonable range (36), the molecular diffusivity can be predicted by the Stokes–Einstein equation (33), and we can measure the particle size distribution and dry solid density, $\rho_s$, the only factors that we have to know to independently estimate $D_{eff}$ are the porosity and pore geometry factors, $f(n,t)$.

Ullman and Aller (37) related the pore geometry factor to porosity in sediment beds, i.e.

$$f(n,t) = n^i \tag{11}$$

where the exponent, $i$, is between 1 and 2. If we treat intraparticle diffusion similarly and arbitrarily take $i$ to be 1, the effective diffusivity takes the form:

$$D_{eff} = \frac{D_{m,n}n^2}{K_p(1-n)\rho_s} \tag{12}$$
The porosity, \( n \), becomes the only fitting parameter.

We can evaluate what the intraparticle porosities would have to be to yield the observed \( D_{\text{eff}} \). The results of this evaluation (Table III) show that, for three different types of sediments, the fitting porosity varies by about a factor of 2 (i.e., 0.07–0.17) and is very closely reproduced for any one sediment studied with different sorbates. In light of our physical picture of sorptive exchange, we would predict that the same intraparticle porosity fraction should apply for desorption as for sorption. Indeed, the fitting porosities, \( n \), for desorption of tetrachlorobenzene from Charles River and North River sediments are similar to the values obtained from corresponding uptake experiments. Connolly (38) used a comparable approach to study the sorption of kepone on Range Point sediments (salt marsh, Santa Rosa Sound, FL). He obtained a \( D_{\text{eff}} \) of \( 3.7 \times 10^{-12} \text{ cm}^2/\text{s} \) and \( K_p \) of 9100 cm³/g. Consequently, we can calculate the value of \( n \) to be 0.11, which falls within the range of \( n \) from our experiments. If we choose \( n = 0.13 \) as a typical intraparticle porosity for the sorbing silts of our experiments, all of the observed sorption rates can be fit with reasonable accuracy.

We know of no data appropriate to judge these intraaggregate porosity estimates, yet they appear reason-

---

**Figure 10.** Experimental and model-fitting results for experiments (a) 2 and 3, (b) 9 and 10, (c) 11 and 12, and (d) 13 and 14. Lines are fitting results by retarded/radial diffusion model.

**Figure 11.** Model fit \( D_{\text{eff}} \) vs \( K_p \). Squares are data from Charles River sediments, circles are from Iowa soils, and triangles are from North River sediments. Diamonds are data of kepone sorption on Range Point sediments by Connolly (38). Solid symbols represent desorption results from corresponding sorbents. Arrows indicate experiments in which continuous bubbling caused disaggregation and therefore yielded upper limit estimates of \( D_{\text{eff}} \).

**Table III. Intraaggregate Porosities Which Yield Observed \( D_{\text{eff}} \) for \( i = 1 \) (Equation 12)**

<table>
<thead>
<tr>
<th>sediments</th>
<th>compounds</th>
<th>fitting porosity, ( n )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>P</td>
<td>(0.32)</td>
</tr>
<tr>
<td>CR</td>
<td>TR</td>
<td>0.17</td>
</tr>
<tr>
<td>CR</td>
<td>D</td>
<td>0.17</td>
</tr>
<tr>
<td>CR</td>
<td>TE</td>
<td>(0.26)</td>
</tr>
<tr>
<td>CR</td>
<td>TE (96 ( \mu )m)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>IS</td>
<td>TE</td>
<td>0.15</td>
</tr>
<tr>
<td>IS</td>
<td>P</td>
<td>0.15</td>
</tr>
<tr>
<td>NR</td>
<td>TR</td>
<td>0.09</td>
</tr>
<tr>
<td>NR</td>
<td>P</td>
<td>0.07</td>
</tr>
<tr>
<td>range point &amp; kepone</td>
<td>0.11</td>
<td>av 0.13 ± 0.04</td>
</tr>
</tbody>
</table>

*Same notation as in Table II. bData from ref 38. cThese values were not used in averaging due to changing particle size distributions during experiments.*

---

Figure 12. Model prediction compared with desorption experimental results by Karickhoff and Morris (7). The environmental parameters are \( i = 1, n = 0.13, \rho_s = 2.5 \text{ g/cm}^3, \) and varying diameter. Experimental data were obtained from desorption of hexachlorobenzene from intact pellets (squares), suspended pellets (crosses), crushed pellets (triangles), and parent sediments (circles).

The model predictions agree with the experimental data, indicating that the radial diffusion model simulations (Figure 12) can quite well by adjusting only the averaged particle size in size distribution, taking \( n \) to be 0.13, we can fit their data quite well by adjusting only the averaged particle size in a retarded/radial diffusion model simulations (Figure 12). This analysis indicates that if we know the pellet sizes, our model can fit the shape of their experimental results. In addition, the corresponding "simulation sizes" for intact pellets, suspended pellets, crushed pellets, and parent sediments are 800, 400, 250, and 200 \( \mu \text{m} \), respectively, which appear appropriate for fecal pellets, pellet debris, and silty natural particles.

Applications and Limitations. From the above model analysis it is clear that the radial diffusion sorption kinetics model can be applied to a variety of environmental situations by adjusting the \( D_{\text{eff}} \) according to easily measured or estimated environmental parameters. Therefore, once it is incorporated in the fate models it will certainly improve our capability to predict the rates of organic pollutants and the related human exposures. In addition, the approximate time scale of sorption and desorption can be easily predicted from analytical solutions to the radial diffusion governing equations if the particle size distribution is sufficiently narrow that we can choose a reasonable particle size (e.g., method by Rao and others). However, for silty particles of relatively large mean diameter of 200 \( \mu \text{m} \) and \( f_{\text{ec}} \) of 3% of the sediment, we would expect hexachlorobenzene to show a desorption time scale of 90% release in about 20 days. Longer sorption time scales will be expected for even more hydrophobic compounds. For instance, polychlorinated biphenyls with octanol–water partition coefficients, \( K_{\text{ow}} \), of \( 10^{4} \)–\( 10^{6} \) (39) will show time scales of 90% release up to 280 days from particles with a diameter of 50 \( \mu \text{m} \) and a few percent organic carbon content. Some additional factors which may also result in this extended sorption time scale include (1) a steric effect in which a large sorbate molecule experiences diminished mobility as some intraparticle pore spaces are too small to pass through, (2) formation of large aggregates and therefore long diffusion path lengths in situations of high sediment concentration, and (3) special pore geometry in some natural particles (e.g., space between expandible clay layers and debris of tissue of dead organisms with very compact structure). More research is needed to shed light on the "highly retarded" sorption process especially based on more understanding on the characteristics of natural particles.

Conclusions

We have used experimental and model simulation approaches to investigate the kinetics of sorption of organic pollutants on natural sediments. Efforts were made to identify the important factors controlling sorption kinetics and to model the process using measurable system parameters based on known physical and chemical processes. Our evidence supports the theory that the sorption kinetics is controlled by intraparticle diffusion for natural aggregated sediments and soils. The results demonstrate that the bigger aggregates have lower uptake rates, that compounds with higher values of \( K_{\text{ow}} \) show slower sorption, that there is a factor of 2 effect on sorption kinetics due to variations in \( K_p \) in a temperature range of \( 30 ^\circ \text{C} \) (i.e., \( 25-55 ^\circ \text{C} \)), and that desorption rates are consistent with a reversible diffusive exchange mechanism. Model simulation analysis indicates that the radial diffusion model is the best among the three tested models because it fits the data as well as the two-box model and much better than the one-box model, and it has only one fitting parameter, the intraparticle diffusivity, rather than three fitting parameters as the two-box model has. The observed effective diffusivity is a function of chemical and particle properties (i.e., \( D_{\text{eff}} = D_{\text{m eff}} / K_p (1 - n_{\text{ec}}) \)). An empirical choice of \( n = 0.13 \) could fit all our experimental results and other reported research results with reasonable accuracy. Consequently, this model not only extends our understanding of the sorption kinetics but also enables us to estimate the effective diffusivity a priori on the basis of correlations with chemical and sediment properties.

Acknowledgments

We gratefully acknowledge the guidance and support of Robert Ambrose and Sam Karickhoff during this research program. Additionally, we thank Bruce Brownwell, David Hombak, and Rene Schrenzenbach for their numerous thoughtful suggestions on the manuscript.

Registry No. P, 608-83-5; TE, 634-66-2; TR, 120-82-1; D, 106-46-7.

Literature Cited

Safe Handling of Chemical Toxicants and Control of Interferences in Human Tissue Analysis for Dioxins and Furans

Louis R. Alexander, Donald G. Patterson,* Gary L. Myers, and James S. Holler

Division of Environmental Laboratory Sciences, Center for Environmental Health, Centers for Disease Control, U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30333

Received for review August 29, 1985. Accepted January 21, 1986. This work was supported by U.S. EPA Contract CR 810472-01-0.

1 The development of a comprehensive analytical program in ultratrace analyses of toxic substances requires a facility specifically devoted to synthesis activities and for making analytical standards. The development of adequate operational procedures for such a facility is described. Environmental monitoring is a key activity in protecting the laboratory worker and the analytical integrity of ongoing studies. A wipe test procedure is described that provides the information needed to pinpoint sources of contamination. Examples of operational problems and remedial actions are described for the development of a parts per trillion dioxin analytical method.

Introduction

During the last 2 years, the Division of Environmental Laboratory Sciences, formerly the Clinical Chemistry Division, Center for Environmental Health, Centers for Disease Control (CDC), has been developing the capability for accurately and precisely measuring 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and the other TCDD isomers in human tissue samples while at the same time synthesizing dioxins and furans for use as analytical standards (1). Any laboratory conducting work with dioxins should have (1) facilities designed to safely handle such hazardous materials and (2) adequate safety guidelines (2). To facilitate the safe handling of these dioxins, CDC has established a Chemical Toxicant Laboratory (CTL) facility (see Figure 1) that permits work on limited quantities of these compounds. Briefly, some of the features of this laboratory include the following: an isolated laboratory quadrant; limited access; separate dressing room facilities; shower/toilet facilities; a seamless vinyl floor; a pass-through compartment; view windows; stainless steel