Twinning

rherbst@shelx.uni-ac.gwdg.de
http://shelx.uni-ac.gwdg.de/~rherbst/twin.html
“Twins are regular aggregates consisting of individual crystals of the same species joined together in some definite mutual orientation.”

Simple example for a two-dimensional twin:

Twin Law: \[
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\]

fractional contribution \(k_1 \) for twin domain 1: 5/9
fractional contribution \(k_2 \) for twin domain 2: 4/9
Four Kinds of Twins (I)

1. Twinning by *merohedry*
 Twin operator: symmetry operator of the crystal system but not of the point group of the crystal
 1.1. racemic twin
 1.2. twin operator: not of the Laue group of the crystal
Reciprocal Space Plot \(l = 0 \)
Reciprocal Space Plot \(l = 0 \)
Reciprocal Space Plot $l = 0$
1. Twinning by **merohedry**
 Twin operator: symmetry operator of the crystal system but not of the point group of the crystal
 1.1. racemic twin
 1.2. twin operator: not of the Laue group of the crystal
 - only in tetragonal, trigonal, hexagonal and cubic space groups
 - exact overlap of the reciprocal lattices
 - often low value for $<|E^2-1|>$
 - Laue group and space group determination may be difficult
 - structure solution may be difficult

2. Twinning by **pseudo-merohedry**
 Twin operator: belongs to a higher crystal system than the structure
 - Metric symmetry higher than Laue symmetry
3. Twinning by *reticular merohedry*
 e.g. obverse/reverse twinning in case of a rhombohedral crystal
Reciprocal Space Plot \(l = 1 \)
Reciprocal Space Plot $l = 1$
Reciprocal Space Plot $l = 1$
4. Non-merohedral twins
 Twin operator: arbitrary operator, often rotation of 180°
Reciprocal Space Plot $k = 2$
Reciprocal Space Plot $k = 2$
Reciprocal Space Plot $k = 2$
Four Kinds of Twins (II)

3. Twinning by *reticular merohedry*
 - e.g. obverse/reverse twinning in case of a rhombohedral crystal
 - detection of the lattice centring may be difficult
 - structure solution not as difficult as for merohedral twins.

4. **Non-merohedral twins**
 - Twin operator: arbitrary operator, often rotation of 180°
 - no exact overlap of the reciprocal lattices
 - cell determination problems
 - cell refinement problems
 - some reflections sharp, others split
 - data integration complicated (requires more than one orientation matrix)
 - structure solution not as difficult as for merohedral twins
low value for $<|E^2-1|>$ (expected 0.968 centrosym and 0.736 non-centrosym)

- R_{int} low for the true Laue group and low/medium for the apparent Laue group.

- Todd Yeates Twinning Server:

 http://www.doe-mbi.ucla.edu/Services/Twinning

 $J_1 = (1-\alpha)I_1 + \alpha I_2 \quad J_2 = (1-\alpha)I_2 + \alpha I_1$

 $H = (J_1 - J_2)/(J_1 + J_2)$

 non-centrosymmetric structures:

 $\alpha = \frac{1}{2}(1 - 2<|H|>) \quad \text{and} \quad \alpha = \frac{1}{2}[1 - (3<\text{H}^2>)^\frac{1}{2}]$
Tests for Twinning: Perfect Twins

- low value for $\langle |E^2-1| \rangle$ (expected 0.968 centrosym and 0.736 non-centrosym)

- Todd Yeates twinning server: $\langle I^2 \rangle / \langle I \rangle^2$

 (acentric data: 2 for untwinned data, 1.5 for twinned data)

- $L \equiv \frac{I(h_1) - I(h_2)}{I(h_1) + I(h_2)}$

 h_1 and h_2 proximally located in reciprocal space

 $\langle |L| \rangle \quad \langle L^2 \rangle$

 Acentric, untwinned \hspace{1cm} 1/2 \hspace{1cm} 1/3

 Centric, untwinned \hspace{1cm} 2/\pi \hspace{1cm} 1/2

 Acentric, perfectly twinned \hspace{1cm} 3/8 \hspace{1cm} 1/5

Structure Solution

- Detwinning

\[J_1 = (1-\alpha) I_1 + \alpha I_2 \quad J_2 = (1-\alpha) I_2 + \alpha I_1 \]

\[I_1 = \frac{(1-\alpha)J_1 - \alpha J_2}{1-2\alpha} \quad I_2 = \frac{(1-\alpha)J_2 - \alpha J_1}{1-2\alpha} \]

- SHELXD can use the twin law and the fractional contribution

- Molecular Replacement

- MIR

- MAD/ SAD:
Twin Refinement in SHELXL-97

Method of Pratt, Coyle and Ibers:

\[
(F_c^2)^* = \text{osf}^2 \sum_{m=1}^{n} k_m F_{cm}^2
\]

\[
1 = \sum_{m=1}^{n} k_m
\]

\[
k_1 = 1 - \sum_{m=2}^{n} k_m
\]

(n-1) of the fractional contributions can be refined.

TWIN r11 r12 r13 r21 r22 r23 r31 r32 r33 n
BASF k2 k3 ... kn

or

MERG 0
BASF k2 k3 ... kn
HKL F 5

trigonal or hexagonal P with $a = 46.090$, $c = 31.020$ Å.
Space Group Determination

SPACE GROUP DETERMINATION

Crystal system H and Lattice type P selected

Mean $|E^*E-1| = 0.643$ [expected .968 centrosym and .736 non-centrosym]

Systematic absence exceptions:

<table>
<thead>
<tr>
<th></th>
<th>$6_1/6_5$</th>
<th>$6_2=3_1$</th>
<th>6_3</th>
<th>-c-</th>
<th>--c</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>23</td>
<td>20</td>
<td>13</td>
<td>865</td>
<td>499</td>
</tr>
<tr>
<td>$N</td>
<td>>3\sigma$</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>692</td>
</tr>
<tr>
<td>$<</td>
<td>l>$</td>
<td>2.3</td>
<td>0.2</td>
<td>3.9</td>
<td>41.5</td>
</tr>
<tr>
<td>$<</td>
<td>l</td>
<td>/\sigma>$</td>
<td>2.5</td>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Opt.</td>
<td>Space Group</td>
<td>CSD</td>
<td>R(int)</td>
<td>N(eq)</td>
<td>Syst. Abs.</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>[A]</td>
<td>P3(1)</td>
<td>68</td>
<td>0.000</td>
<td>0</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[B]</td>
<td>P3(2)</td>
<td>68</td>
<td>0.000</td>
<td>0</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[C]</td>
<td>P3(1)21</td>
<td>82</td>
<td>0.195</td>
<td>15855</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[D]</td>
<td>P3(2)21</td>
<td>82</td>
<td>0.195</td>
<td>15855</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[E]</td>
<td>P3(1)12</td>
<td>2</td>
<td>0.443</td>
<td>16211</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[F]</td>
<td>P3(2)12</td>
<td>2</td>
<td>0.443</td>
<td>16211</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[G]</td>
<td>P6(2)</td>
<td>6</td>
<td>0.442</td>
<td>16285</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[H]</td>
<td>P6(4)</td>
<td>6</td>
<td>0.442</td>
<td>16285</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[I]</td>
<td>P6(1)</td>
<td>62</td>
<td>0.442</td>
<td>16285</td>
<td>3.6 / 14.9</td>
</tr>
<tr>
<td>[J]</td>
<td>P6(5)</td>
<td>62</td>
<td>0.442</td>
<td>16285</td>
<td>3.6 / 14.9</td>
</tr>
<tr>
<td>[K]</td>
<td>P6(2)22</td>
<td>9</td>
<td>0.450</td>
<td>24181</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[L]</td>
<td>P6(4)22</td>
<td>9</td>
<td>0.450</td>
<td>24181</td>
<td>0.9 / 2.5</td>
</tr>
<tr>
<td>[M]</td>
<td>P6(1)22</td>
<td>20</td>
<td>0.450</td>
<td>24181</td>
<td>3.6 / 14.9</td>
</tr>
<tr>
<td>[N]</td>
<td>P6(5)22</td>
<td>20</td>
<td>0.450</td>
<td>24181</td>
<td>3.6 / 14.9</td>
</tr>
</tbody>
</table>
Resolution: 1.06 Å ➔ Ab initio direct methods

SHELXD

- Ignoring twinning
- detwinned data
- \texttt{TWIN 0 1 0 1 0 0 0 0 -1} and \texttt{BASF 0.2}
6 Mersacidin Molecules
9 MeOH, 58 H₂O

Data 33449
Restraints 10784
Parameters 7438
R1 [I>2σ(I)] 0.1335
wR2 (all data) 0.3338
BASF 0.244

from J. Kärcher, PhD Thesis, 2000
Twinning by Pseudo-Merohedry

Structure of aniline

cell: 21.645 5.833 8.319 90 101.12 90
space group: P2₁/c

R₁ = 0.071 for 1505 F₀ > 4(F₀)
wR₂ = 0.198 for all 1790 data

Analysis of variance for reflections employed in refinement
K = Mean[F₀²] / Mean[Fᶜ²] for group
Fᶜ/Fᶜ(max) 0.000 0.009 0.017 0.026 0.036 0.047
Number in group 197 164 178 188 173 ...
GooF 1.663 1.428 1.579 1.611 1.174 ...
K 6.815 1.807 1.486 1.246 1.096 ...
s.u. (C - C): 0.004 - 0.005
Residual density maximum: 0.26 e/Å³
Opt. A: FOM = 0.040° orthorhombic C
\[R(\text{int}) = 0.300 \] [5707]
Cell: 8.319 42.477 5.833 90.00 90.00 90.04
V: 2061.20
Matrix: 0.00 0.00 1.00 2.00 0.00 1.00 0.00 1.00 0.00

Opt. B: FOM = 0.000° monoclinic P
\[R(\text{int}) = 0.110 \] [4798]
Cell: 8.319 5.833 21.639 90.00 101.04 90.00
V: 1030.60
Matrix: 0.00 0.00 1.00 0.00 1.00 0.00 -1.00 0.00 -1.00

Mean |E*E-1| = 0.922
[expected .968 centrosym and .736 non-centrosym]
ROTAX - Output

180.0 degree rotation about 1. 0. 0. reciprocal lattice direction:
[1.000 0.000 1.004]
[0.000 -1.000 0.000]
[0.000 0.000 -1.000]
Figure of merit = 0.34 **********

180.0 degree rotation about 0. 1. 0. direct lattice direction:
[-1.000 0.000 0.000]
[0.000 1.000 0.000]
[0.000 0.000 -1.000]
Figure of merit = 0.00 **********

180.0 degree rotation about 0. 0. 1. direct lattice direction:
[-1.000 0.000 -1.004]
[0.000 -1.000 0.000]
[0.000 0.000 1.000]
Figure of merit = 0.34 **********
Comparison of the results:

<table>
<thead>
<tr>
<th></th>
<th>without TWIN</th>
<th>with TWIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 (F > 4σ(F))</td>
<td>0.071</td>
<td>0.047</td>
</tr>
<tr>
<td>wR2 (all data)</td>
<td>0.198</td>
<td>0.123</td>
</tr>
<tr>
<td>K2</td>
<td>-</td>
<td>0.0734(1)</td>
</tr>
<tr>
<td>Res. electron density</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>s.u.(C - C)</td>
<td>0.004 - 0.005</td>
<td>0.003</td>
</tr>
<tr>
<td>K (weakest reflections)</td>
<td>6.815</td>
<td>0.956</td>
</tr>
</tbody>
</table>
Twinning by Reticular Merohedry

Structure of K[Au(CN)₂]
cell: 7.240 7.240 26.445 90 90 120, space group R 3̅

A. Rosenzweig, D. T. Cromer,
\[\text{K[Au(CN)\textsubscript{2}]} \]

\[R_1 = 0.074 \text{ for } 640 \text{ } F_\text{o} > 4\sigma(F_\text{o}), \quad wR_2 = 0.170 \text{ for all 648 data} \]

\[R_1 = 0.027 \text{ for } 640 \text{ } F_\text{o} > 4\sigma(F_\text{o}), \quad wR_2 = 0.076 \text{ for all 648 data} \]

Residual density: 1.18/-1.48 e/\text{A}^3
Warning Signs

Systematic Absences Violations:

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>(F_o^2)</th>
<th>(F_c^2)</th>
<th>(\Delta(F^2)/\sigma)</th>
<th>(F_c/F_{c_{\text{max}}})</th>
<th>Res. (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1907.04</td>
<td>407.73</td>
<td>11.79</td>
<td>0.026</td>
<td>2.09</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>6</td>
<td>7075.12</td>
<td>11145.69</td>
<td>6.78</td>
<td>0.137</td>
<td>2.80</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1275.08</td>
<td>818.27</td>
<td>3.69</td>
<td>0.037</td>
<td>2.80</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>27026.22</td>
<td>32870.20</td>
<td>3.53</td>
<td>0.235</td>
<td>3.60</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>47884.52</td>
<td>56252.36</td>
<td>2.98</td>
<td>0.307</td>
<td>3.35</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>12</td>
<td>7698.09</td>
<td>9417.93</td>
<td>2.98</td>
<td>0.126</td>
<td>1.88</td>
</tr>
<tr>
<td>-5</td>
<td>4</td>
<td>6</td>
<td>642.68</td>
<td>966.24</td>
<td>2.77</td>
<td>0.040</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Most Disagreeable Reflections

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>(F_o^2)</th>
<th>(F_c^2)</th>
<th>(\Delta(F^2)/\sigma)</th>
<th>(F_c/F_{c_{\text{max}}})</th>
<th>Res. (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8.08</td>
<td>2.00</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>507.42</td>
<td>32.65</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>610.89</td>
<td>37.97</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>517.12</td>
<td>34.48</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>540.26</td>
<td>33.43</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>512.14</td>
<td>35.24</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>557.75</td>
<td>34.37</td>
<td>observed but should be systematically absent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reciprocal Space Plot $l = 0$
Reciprocal Space Plot $l = 2$
Refinement as Twin (I)

Merging Results

<table>
<thead>
<tr>
<th>MERG</th>
<th>BASF</th>
<th>HKLF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>5</td>
</tr>
</tbody>
</table>

Comparison of Original and New hkl-Files

Original hkl-file

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F²</th>
<th>(\sigma(F²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1413.81</td>
<td>33.69</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>542.01</td>
<td>12.15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.06</td>
<td>0.84</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>829.75</td>
<td>25.72</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
<td>176.19</td>
<td>7.47</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>-4.17</td>
<td>2.11</td>
</tr>
<tr>
<td>-7</td>
<td>4</td>
<td>3</td>
<td>1.60</td>
<td>1.62</td>
</tr>
<tr>
<td>-5</td>
<td>4</td>
<td>3</td>
<td>1287.24</td>
<td>31.66</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
<td>3</td>
<td>3234.82</td>
<td>71.41</td>
</tr>
</tbody>
</table>

New hkl-file

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F²</th>
<th>(\sigma(F²))</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1413.81</td>
<td>33.69</td>
<td>1</td>
</tr>
<tr>
<td>-4</td>
<td>5</td>
<td>-3</td>
<td>1287.24</td>
<td>31.66</td>
<td>-2</td>
</tr>
<tr>
<td>-5</td>
<td>4</td>
<td>3</td>
<td>1287.24</td>
<td>31.66</td>
<td>1</td>
</tr>
<tr>
<td>-4</td>
<td>2</td>
<td>-3</td>
<td>3234.82</td>
<td>71.41</td>
<td>-2</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
<td>3</td>
<td>3234.82</td>
<td>71.41</td>
<td>1</td>
</tr>
</tbody>
</table>
R1 = 0.0178 for 640 $F_o > 4 \sigma(F_o)$
wR2 = 0.0430 for 648 data
K2 = 0.290(4)

Residual density maximum = 1.03 e/\AA^3

Bovine Insulin

51 amino acids in the asymmetric unit
<table>
<thead>
<tr>
<th>Cell for domain 1:</th>
<th>78.040</th>
<th>77.986</th>
<th>78.024</th>
<th>89.99</th>
<th>89.94</th>
<th>90.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure of merit:</td>
<td>0.560</td>
<td>0.516</td>
<td>0.552</td>
<td>0.626</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation matrix:</td>
<td>0.00713157</td>
<td>0.00347148</td>
<td>0.01005931</td>
<td>-0.01039335</td>
<td>-0.00035888</td>
<td>0.00749939</td>
</tr>
<tr>
<td></td>
<td>0.00230569</td>
<td>-0.01233875</td>
<td>0.00261444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4072 reflections within 0.250 of an integer index assigned to domain 1,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell for domain 2:</th>
<th>78.040</th>
<th>77.986</th>
<th>78.024</th>
<th>89.99</th>
<th>89.94</th>
<th>90.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure of merit:</td>
<td>0.910</td>
<td>0.914</td>
<td>0.936</td>
<td>0.945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation matrix:</td>
<td>0.00745656</td>
<td>0.000032791</td>
<td>0.01040996</td>
<td>0.00017398</td>
<td>-0.01281862</td>
<td>0.00027851</td>
</tr>
<tr>
<td></td>
<td>0.01041953</td>
<td>-0.00001700</td>
<td>-0.00747135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotated from first domain by 89.2 degrees about reciprocal axis 0.928 0.207 1.000 and real axis 0.927 0.208 1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twin law to convert hkl from first to this domain (SHELXL TWIN matrix):</td>
<td>0.459</td>
<td>-0.625</td>
<td>0.631</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.824</td>
<td>0.036</td>
<td>-0.565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.330</td>
<td>0.780</td>
<td>0.532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3564 reflections within 0.250 of an integer index assigned to domain 2, 2751 of them exclusively; 184 reflections not yet assigned to a domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Processing and Solution

• integrated using both orientation matrices

• each component scaled separately using non-overlapped reflections

• Detwinned HKLF4 format file for structure solution and refinement

• HKLF5 for final refinement

 Resolution to 1.60 Å

 Cubic symmetry (space group I2\textsubscript{1}3): high redundancy

 6 sulfur atoms easily found by S-SAD, excellent experimental map
Refinement Statistics

R1 (Fo > 4\sigma (Fo)) \hspace{1cm} 0.1050
wR2 (all data) \hspace{1cm} 0.2856
R1 (after merging for Fourier) \hspace{1cm} 0.1175
BASF (Twinning Fraction) \hspace{1cm} 0.427
Solvent Content (%) \hspace{1cm} 58
Mean B value (Å²) Main Chain Atoms \hspace{1cm} 18.64
Mean B value (Å²) Side Chain Atoms and Solvent \hspace{1cm} 29.94
Number of Protein Atoms \hspace{1cm} 389
Number of Solvent Atoms \hspace{1cm} 51
Warning Signs for Merohedral Twinning

- Metric symmetry higher than Laue symmetry
- R_{int} for the higher symmetry Laue group only slightly higher than for the lower symmetry one
- Different R_{int} values for the higher symmetry Laue group for different crystals of the same compound
- Mean value for $|E^2 - 1| \ll 0.736$
- Apparent trigonal or hexagonal space group
- Systematic absences not consistent with any known space group
- No structure solution
- Patterson function physically impossible (for heavy atom structures)
- High R-Values
Warning Signs for Non-merohedral Twinning

- An unusually long axis
- Problems with cell refinement
- Some reflections sharp, others split
- $K = \text{mean}(F_o^2)/\text{mean}(F_c^2)$ is systematically high for reflections with low intensity
- For all of the most disagreeable reflections $F_o >> F_c$.
- Strange residual density, which could not be resolved as solvent or disorder.

Acknowledgements

Heinz Gornitzka, University of Toulouse
Richard Staples, Harvard University
Madhumati Sevvana, University of Erlangen

George Sheldrick, University of Göttingen