
lead articles

J. Appl. Cryst. (2008). 41, 491–522 doi:10.1107/S0021889808007279 491

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 24 January 2008

Accepted 17 March 2008

# 2008 International Union of Crystallography

Printed in Singapore – all rights reserved

Structure refinement: some background theory and
practical strategies

David Watkin

Chemical Crystallography Laboratory, University of Oxford, UK. Correspondence e-mail:

david.watkin@chem.ox.ac.uk

Most modern small-molecule refinement programs are based on similar

algorithms. Details of these methods are scattered through the literature,

sometimes in books that are no longer in print and usually in mathematical

detail that makes them unattractive to nonprogrammers. This paper aims to

discuss these well established algorithms in nonmathematical language, with the

intention of enabling crystallographers to use their favourite programs

effectively.

1. Introduction

Refinement is a general term that refers to almost all the

operations needed to develop a trial model into one that best

represents the observed data. Just as there is not a well defined

mathematical technique for extracting valid phases from the

observed intensities, so also there is no single well defined path

from the trial model to the completed structure – if there were,

it would have been programmed long ago. There are, however,

some well trodden trails to guide a structure analyst, together

with a growing number of validation tools. Refinement is a

step-wise procedure, with increasingly subtle features being

introduced in order to develop the model. Physical and

chemical validation is a key feature of every stage of a

refinement. In very difficult cases it is rare that mathematics

alone will lead to an acceptable structure. In these cases

knowledge of the chemistry or physical properties of the

material may help to resolve uncertainties. Difficulties in

programming ‘scientific experience’ have prevented the

development of fully automatic structure analysis systems,

though modern programs are beginning to bring ‘do-it-your-

self’ structure analyses into the hands of nonspecialists. This

paper provides an overview of some of the extensive literature

on refinement techniques with the aim of helping the analyst

to understand how modern programs work. It contains no

recipes that will work in every case, though the general

strategy is to develop a trial model stepwise into an acceptable

representation of the crystalline physical specimen.

The trial model consists of parameters describing the mean

positions of the atoms in the unit cell (the atomic coordinates),

the amplitudes of the average displacements from these

positions (the atomic displacement parameters, ADPs) and

other parameters related to the sample itself or the experi-

mental technique [the overall scale factor, extinction coeffi-

cient, the Flack (1983) parameter, twin fractions etc.].

Approximate atomic coordinates are usually obtained from

Fourier syntheses or sometimes, in the case of inorganic

structures, by analogy with a related material.

The ADP can represent thermal agitation of an atom

(hence the older term temperature factor) or the locus of

atoms in slightly different positions in different unit cells

(static disorder) or, most generally, a mixture of these two

effects. Thermal agitation (dynamic disorder) can sometimes

be distinguished from static disorder by performing structure

determinations at two different temperatures. Thermal

vibrations reduce as the temperature drops. The simplest ADP

model consists of isotropic displacements from the mean

position (Uiso). A more complex model, generally used for all

non-H atoms in a modern structure determination, is a

displacement ellipsoid. This is a symmetric 3� 3 tensor, which

means that it contains six independent terms, and is generally

represented by Uaniso, with individual terms represented by Uij.

The interpretation of a two-dimensional tensor is shown in

Fig. 1.

Since the ellipsoid represents a volume in which the atom

could be found, this volume must be positive. An anisotropic

ADP corresponding to an ellipsoid with a zero or negative

volume is said to be nonpositive definite, and most programs

will warn the user if this situation occurs. Either initial values

for the ADPs can be estimated (based on experience) or an

average value can be found from the Wilson plot (Giacovazzo

et al., 2002).

The Wilson plot (Fig. 2) is a graph of the log of the

normalized observed intensities averaged over a short reso-

lution interval log[hIi/
P

(scattering factor)2] against [sin(�)/

�]2. If the electron density were distributed uniformly

throughout the cell, the resulting plot would be a straight line

whose gradient gives the overall isotropic atomic displacement

parameter. The electron density is not distributed uniformly

(otherwise it would not be a structure), so the observed plot

generally shows ripples corresponding to recurrent inter-

atomic distances. A mean gradient can still be computed.

Wilson plots showing a positive slope (giving a negative ADP)

indicate that there is something very unusual about the data.

For heavily absorbing materials, a positive slope could imply

that a multi-scan ‘absorption correction’ has accounted for



variations in the shape of the crystal but not for the absorption

of the residual sphere, with a diameter about equal to the

mean size of the crystal. For very weakly diffracting materials,

the curve may show an upturn at high angles, where the

diffractometer was mainly measuring noise.

A class of materials exist in which the molecules in adjacent

unit cells differ slightly from each other in a systematic,

incremental, way. Such materials are called modulated struc-

tures. They are characterized by a diffraction pattern

consisting of a reciprocal lattice of strong reflections corre-

sponding to the basic unit cell, with weaker reflections falling

as satellites of the strong ones. If the pattern of small changes

in a series of adjacent cells is itself repeated [so that the

(n + 1)th cell is the same as the first, the (n + 2)th is the same as

the second etc.], the modulation is said to be commensurate. If

the pattern of the modulation never gets back in step with the

main lattice, the modulation is called incommensurate. If an

analyst fails to notice the satellite reflections and only works

with the strong, principal, lattice, the resulting structure is the

average of the n adjacent cells forming the modulation. If the

incremental differences are in the positions of some of the

atoms (e.g. a small rotation of a group in one cell compared

with the position of the group in the previous cell) then the

average structure will appear to be disordered, with large

ADPs. For many analytical purposes this average structure is

quite adequate. However, if the structure is to be described as

fully as possible, the weak satellite reflections must also be

measured. Since they do not fall on the same reciprocal lattice

as the main reflections, they cannot be indexed in a conven-

tional way with three indices h, k, l. One or more additional

indices are required, corresponding to a four- or higher-

dimensional space, and hence a four- or higher-dimensional

space group. Software is becoming available to index area-

detector images from these kinds of materials, and programs

such JANA2000 (Petricek et al., 2000) can carry out refine-

ments in this high-dimensionality space.

2. Fourier refinement

The reciprocal lattice is determined from the setting angles of

a serial diffractometer or from the setting angles and image

coordinates on area-detector machines. The locations of

diffracted rays in the reciprocal lattice enable one to calculate

the size and shape of the crystallographic unit cell and perhaps

obtain a strong indication of the crystal class (or system). The

positions of the diffracted intensities tell us nothing about the

distribution of the atoms inside the cell.

The intensities of the diffracted beams tell us about the

electron distribution in the cell, and the diffraction phenom-

enon is summarized in equation (1):

Fhkl ¼
RRR

V�xyz exp 2�i hxþ kyþ lzð Þ½ � @x @y @z; ð1Þ

where �xyz is the electron density at the point (x, y, z). Note

that the integration is over the total volume, V, of the unit cell

so that the whole structure contributes to each diffracted

beam. It is not possible to say that the intensity at a particular

reciprocal lattice point is a result of a particular atomic

feature. Note also the exp(2�i) term. This indicates that the

diffracted wave has both magnitude and phase. In data

collection, normally only the intensity I can be measured, and

the structure factor (F) is obtained from the transformations

F 2 = (Lp)�1I and F = (F 2)1/2, where L and p are the Lorentz

and polarization corrections.

When both the amplitude and the phase are known, the

reverse transformation enables us to compute the electron

density at any point:

�xyz ¼ V�1
P P P

Fhkl

�� �� exp �2�i hxþ kyþ lzþ �hklð Þ
� �

:

ð2Þ

Note here that the triple summation is over the whole of the

reciprocal lattice – we cannot use just a part of the diffraction

data to compute the electron density at some chosen point in

the cell. Note also the modulus sign (jj) around F, which

means that F is a phaseless quantity. In the rest of this paper, F
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Figure 2
Wilson plot. The abscissa is log[hI i/

P
(scattering factor)2], where the

average is taken over all data in a small resolution range and the
scattering factors are computed at the mean resolution of the range. The
ordinate is [sin(�)/�]2. The slope of the graph gives the overall isotropic
atomic displacement parameter. The ripples are due to recurrent
interatomic vectors in the material.

Figure 1
Anisotropic ADP. U11 and U22 are the intercepts on the a* and b* axes;
U12 is related to the inclination of the ellipsoid with respect to the unit
cell.



will be used to represent an unphased structure amplitude and

F� one that is phased. The best value of F to use in maps is

rather different from that to be used in least squares (x3.4). It

certainly should never be negative, since in this calculation this

corresponds to a phase change of 180�. Nor should it simply be

the unsigned square root of F 2, because this introduces bias.

Sivia (1996) gives a Bayesian method for estimating the ‘best’

positive value for weak reflections to use in Fourier syntheses.

This value should not be used in least-squares refinement.

The phase of the diffracted beam occurs as � in the expo-

nential. In general, the phases cannot easily be measured [but

see Pringle & Shen (2003) and http://staff.chess.cornell.edu/

~shen/Research.html#phase_problem for interesting devel-

opments], and we generally depend upon direct methods to

find us some approximate values. A newly emerging method

for solving the phase problem is charge-flipping (see x2.1).

Less commonly these days, trial atomic positions can be

extracted from a Patterson map and used to compute starting

phases. Using these phases and E values or the observed

amplitudes, we compute an E or electron density map. This is

examined and the regions of high density are generally

interpreted as atom sites. It is important to remember that the

contoured electron density map is the closest representation

we have to the continuous electron density in the crystal and is

the best place to start searching for explanations if a para-

metric refinement fails to converge as expected.

This basic model can be the starting point for a number of

refinement strategies.

2.1. Map modification

The actual values at every point in the computed electron

density map can be modified so that they conform more

closely with our knowledge of density distributions. Hoppe et

al. (1970) suggest some possible modifications:

(1) Reduction of the enhanced maxima at known atomic

sites.

(2) Enhancement of the reduced maxima at new atomic

sites.

(3) Further reduction of the reduced maxima at wrongly

placed atomic sites.

(4) Reduction of background and elimination of negative

regions.

If the modifications are essentially valid, numerical inte-

gration of the modified map using equation (1) should yield

improved phases, which can be reused with the original

observed amplitudes to give an improved map. Strategies

based on this technique continue to be widely used in

macromolecular crystallography and in a much modified form

have recently been reintroduced to small-molecule analyses

under the name of charge-flipping (Oszlányi & Süto��, 2004). In

this procedure, instead of negative regions of the map being

simply set to zero, their sign is reversed (i.e. made positive)

before new phases are computed. This procedure is often able

to recover a complete structure from an initial random set of

phases.

2.2. Map interpretation

This is the key stage in almost all small-molecule structure

determinations. The map produced from the observed

amplitudes and estimated phases is examined, usually by

computer, for local maxima. The interpolated coordinates of

these maxima (frequently called ‘Q peaks’), together with

their density, are tabulated for possible interpretation as

atomic sites. Generally, the software applies space-group

symmetry operators to the coordinates in order to try to bring

the peaks close to each other – to assemble molecular frag-

ments. In the simplest cases, these peaks are displayed as two-

dimensional projections in text files [e.g. in MULTAN87

(Debaerdemaeker et al., 1987) or SHELXS (Sheldrick, 2008)]

or three-dimensional models in suitable graphics programs,

and the crystallographer is invited to assign an atomic type to

each peak or to reject it. Other programs attempt to use the

interpolated density and rules about chemical bonding to

assign atomic types [SIR92 (Altomare et al., 1994) and

MULTAN87].

This list of atomic types and three-dimensional coordinates

is the basis of the structural model and is what is generally

meant when people refer to ‘a crystal structure’. There are a

great wealth of programs available that can plot out these

coordinates to generate diagrams of the structure. The

replacement of the continuous electron density by a list of

discrete points is a leap of faith which fortunately is generally

justified. Electron density maps are usually computed at about
1
4 Å resolution, so that the contours in the final two-dimen-

sional plot shown in Fig. 3 will have been drawn through about

1400 data points. The corresponding 12 atoms can be repre-

sented by 48 coordinates (12 values of x, y, z and Uiso), which

in this case provide a good approximation to the underlying

density.

Structure factors can be computed from the atomic model

using equation (3) as an approximation to equation (1):

F�;hkl ’
Patoms

j

fj exp �8�2s2Uð Þ exp 2�i hxj þ kyj þ lzj

� �� �
: ð3Þ
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Figure 3
9 � 9 Å section of a Fourier map computed in the plane of a molecule of
2-dimethylsulfuranylideneindan-1,3-dione. Contours at 0, 1, 2.5, 5, 10 and
20 electrons Å�1, computed at 1

4 Å intervals. The left-hand figure uses all
data out to 14� in �; the right-hand figure uses all data out to 29� (Mo
radiation).



The triple integration over the continuous electron density has

been replaced by a summation over the atoms in the model. x,

y and z are the atomic coordinates, f is the scattering factor, a

term expressing the interaction of X-rays with electrons, s is

sin(�)/�, and U is the ADP, a smearing function to represent

time- and space-averaged displacements of the atoms from

their equilibrium positions.

Phases computed from this atomic interpretation of the

map can be used with the observed amplitudes to compute an

improved map. This map may reveal new atoms that were

missing from the original map. In addition, the peak inter-

polation of this new map may give atomic coordinates slightly

different from those in the original model. These differences

can be used to compute improved coordinates. For a centro-

symmetric structure, the original model coordinates are simply

replaced by new ones interpolated from the map [c = 1 in

equation (4)]:

xnew ¼ xold þ c xpeak � xold

� �
: ð4Þ

For noncentrosymmetric structures, experience shows that

values of c up to 2 lead to improved coordinates (Cruickshank,

1950).

Automated Fourier refinement, sometimes called Fourier

recycling, is an integral part of direct methods programs and is

generally interspersed with cycles of least-squares coordinate

refinement (see below) and tangent formula phase refinement.

Each of these different techniques has a different sensitivity to

errors in the model, and it is the skilful alternation between

them that accounts for much of the success of modern struc-

ture determination programs.

3. Numerical optimization

The two previous methods cycle between computing phases

and computing electron density maps and are highly successful

in helping to establish the atomic skeleton of a structure. Once

a model has been fully characterized, i.e. all the atom sites

have been approximately located, the parameters describing

these sites can be optimized directly.

The underlying aim of optimization is to propose a model

that best predicts the observations. The X-ray data are clearly

observations, but it is important to remember that other

information, such as expected geometrical parameters

(distances, angles), can also be regarded as observations. For

organic and organometallic materials, we now have good

estimates of these parameters. ‘There is very little that can be

added to the average intramolecular geometrical data

collected by use of the Cambridge Structural Database;

anything at variance with these well established averages is

most probably wrong.’ (Gavezzotti & Flack, 2005.)

A common-sense measure of the goodness of a prediction is

one in which the residual (Yobs � Ycalc) is small. Yobs is the

observation and Ycalc is the corresponding value computed

from the model. If there are lots of observations, an overall

goodness of prediction could be computed by summing the

residuals. If the Yobs values are evenly spread both greater and

lower than Ycalc, the sum should tend to zero. To obtain a

measure of the spread of the residuals, G, we need to remove

their signs before performing the summation. This can be

achieved in two ways:

G ¼
PAll observations

Yobs � Ycalc

�� �� ð5Þ

or

G ¼
PAll observations

Yobs � Ycalcð Þ
2: ð6Þ

These numbers will increase with the number of items

summed, but can be normalized by dividing either by the

number of observations (see x3.5.2) or by the sum of the

observed values to give ‘reliability indices’, R. Applying the

latter to equation (5) gives us

G1 ¼
PAll observations

Yobs � Ycalc

�� ��� PAll observations

Yobs

�� ��; ð7Þ

where |Yobs| is the absolute magnitude of Yobs. If Y in equation

(7) is replaced by the unphased structure magnitude F, we

obtain the conventional crystallographic R factor (sometimes

called R1 and sometimes multiplied by 100 to create a

percentage). Note that Fcalc is always positive; Fobs may be

negative if the original net intensity was negative [see x3.2.2

point (1)]. R1, computed with weak data excluded [typically

rejecting reflections for which I < 2�(I)] is a rough and ready

indication of the ‘quality’ of an analysis.

Dividing equation (6) by the sum of the squares of the

observations and taking the square root gives us

G2 ¼
XAll observations

Yobs � Ycalcð Þ
2

�X
Yobsð Þ

2

" #1=2

: ð8Þ

If Y in equation (8) is replaced by F 2, we obtain the crystal-

lographic R2. Multiplying each term in the summations by a

weighting function (see below) gives wR2. This is generally

computed using all data, is generally much greater than R1

and, although more statistically sound than R1, is less

commonly used as an informal indicator. Since the values of

the weights can be modified by the program or the user, wR2 is

susceptible to massaging.

In general, minimal values of G1 and G2 do not correspond

to the same model – they correspond to different ‘bests’ unless

appropriate weighting functions are used. Similar reliability

indices can be defined for geometric observations, such as

bond lengths, discussed below (x5). In this case Yobs is a value

obtained from the literature or a database, and Ycalc is from

the current model.

3.1. Optimization criteria

The task of optimization procedures is to alter the values of

the parameters in the model to minimize the discrepancies

between Yobs and Ycalc. Possible minimization functions are
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M1 ¼
PAll observations

Yobs � Ycalc

�� ��; ð9Þ

M2 ¼
PAll observations

Yobs � Ycalcð Þ
2; ð10Þ

M3 ¼ � log PðYobs;YcalcÞ: ð11Þ

The least modulus, M1 [equation (9)], has been unpopular for

many years because of the difficulty in minimizing a function

with a discontinuous first derivative, but its use seems to be

gaining favour in other fields (Rousseeuw & Leroy, 2003). It is

reported to be resistant to the influence of outliers in the data.

Outliers (x3.5.3) are observations whose values are so far from

those expected (assuming a usual error distribution) that they

are probably subject to some gross experimental error.

In equation (11), P is the probability of making the obser-

vations Yobs given the current model. This is the maximum

likelihood function, now very popular in macromolecular

crystallography, and can be formulated to take into account

expected errors in the phases of reflections or unusual error

distributions. If the error distribution of the observations is

normal and uncorrelated and the model is fully parameterized,

equation (11) reduces to equation (10). For most small-

molecule structure analyses the data are copious, with errors

approximating to normal, and the models do represent the

actual structure. For this reason, small-molecule programs

minimize a weighted variation of the function M2, the least-

squares solution. It is important to understand that M2 only

tells us what we are going to minimize, not how we are going to

do it. Small-molecule crystallographers generally choose to

find the solution by the use of the normal equations (see x3.6).

Macromolecular crystallographers often choose the conjugate

gradient method (which avoids the computationally costly

expense of forming the normal equations). There is, however,

a much wider range of optimization techniques available, and

we can expect to see these being increasingly used in crys-

tallography in the next few years. Already Monte Carlo and

simulated annealing methods are being used in the early

stages of refinement and the processing of powder data

(Markvardsen et al., 2005) because of their increased range of

convergence and ability to escape from shallow false minima

(false solutions).

3.2. The function to be minimized

So far we have not closely defined Yobs, the X-ray or

neutron observation. An IUCr committee some years ago

failed to come to a unanimous decision as to what constituted

the best definition (Schwarzenbach et al., 1989). The conten-

ders were

Yobs ¼ Iobs; Yobs ¼ Fobs and Yobs ¼ F2
obs:

3.2.1. Yobs = Iobs, the actual observed intensity. The

supposed merit in this definition is that it involves the minimal

tinkering with the data. Because of this, the inverse of terms

like the Lorentz, polarization and absorption corrections have

to be applied to obtain Icalc from Fcalc. Unless these corrections

contain parameters that can be refined along with the struc-

tural parameters, refinement against Iobs is equivalent to

refinement against Fobs
2 . If the model is extended to include

what are usually regarded as data processing parameters then

refinement should be against I. One example of this is the

inclusion of the crystal shape in the main structural refinement

(Blanc et al., 1991) – not to be confused with refining the

crystal shape against the variation of the intensities of

equivalent reflections (Herrendorf, 1993).

3.2.2. Yobs = Fobs. This was the definition most widely used

until the mid 1990s, leading to the minimization function

equation (12), where w is a weight associated with each

observation:

N ¼
PAll observations

w Fobs � Fcalcð Þ
2: ð12Þ

However, it is mathematically unsound for two reasons:

(1) Obtaining Fobs from Iobs involves taking the square root

of the observed value. This is a nonlinear transformation, so

that the error distribution becomes skewed, making it difficult

to assign valid standard uncertainties to small, zero or negative

Fobs values. Note that, when used for computing minimization

functions, the sign of Fobs is the same1 as the sign of Iobs:

Fobs ¼ signðIobsÞ � ðF
2
obsÞ

1=2. The validity of standard uncer-

tainties becomes important if they are used in the computation

of weighting functions, w, for the refinement. Atkinson (1987)

shows that nonlinear transformations of the data may improve

the stability of a refinement and make it less susceptible to the

effect of outliers, at the cost perhaps of compromising the

precision of the model parameters. Edwards (1992) has shown

that maximum likelihood optimization is unaffected by the F 2

to F transformation

(2) The derivative of the residual with respect to the

structural parameters is not continuous if, for some reflection,

Fcalc has to pass through zero in order to reverse its phase:

@ Fobs � Fcalcð Þ
2

@x
¼ �2

X
ðFobs � FcalcÞ

@Fcalc

@x
: ð13Þ

If the observation is relatively intense, this means that a poor

trial structure can become stuck in a ‘false minimum’ (Rollett

et al., 1976). Except for Rollett’s synthetic data, there does not

appear to be any published account of a refinement being

trapped in a false minimum simply because the refinement was

based on F. Some additional justification for refining on F, at

least in the initial stages, is given by Atkinson (1987, ch. 6).

3.2.3. Yobs = Fobs
2 . This is the method [equation (14)]

recommended by Rollett (1988) and is the only definition used

in SHELXL (Sheldrick, 2008). Most other programs give the

user the choice of definition 3.2.2 or 3.2.3.

M ¼
PAll observations

w F2
obs � F2

calc

� �2
: ð14Þ
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1 This is a correct definition because the intensities are ‘ratio’ observations,
that is, have a physically meaningful zero origin to their values.



The rate of change of this minimization function is given in

equation (15). Note the appearance of the phaseless Fcalc on

the right-hand side, which ensures that the derivative is zero

when Fcalc is zero, thus reducing the risk of the refinement

being trapped in false minimum.

@ðF2
obs � F2

calcÞ
2

@x
¼ �4

X
F2

obs � F2
calc

� �
Fcalc

@Fcalc

@x
: ð15Þ

In most practical cases there is little to choose between the

three definitions. One can speculate that the early popularity

of definition (12) was a result of the difficulties with obtaining

reliable estimates of the standard uncertainties (and hence

relative weights) of photographically measured data. Taking

the square root of the observations reduces the dynamic range

of the data, so that the minimization function N [equation

(12)] behaves quite well if all reflections are given the same

weight, usually unit weights.2 By contrast, M is very unstable

with unit weights. Computing w in equation (14) by a suitable

function, (16), gives quasi-unit weights:

w ¼ 1= 4F2
obs

� �
: ð16Þ

This ensures that both M and N converge to the same model

(Cruickshank, 1969), though there is a latent problem as Fobs

tends to zero, which is usually dealt with by using ad-hoc rules

(see x3.5.1). Use of equation (16) to convert M minimization

to N minimization shows that, without proper weighting, M

minimization puts most emphasis on the strong reflections.

3.3. Choice of function to be minimized

The choice of refinement against F 2 or F has generated

more discussions than it probably warrants. In modern work,

the large excess of observations over parameters makes false

minima relatively uncommon, and when they occur they are

usually evident as unexpected structural features (Murphy et

al., 1998). The definition of x3.2.3 (F 2), which minimizes the

squares of squared values, is very susceptible to the influence

of badly underestimated strong observations, for example,

low-order reflections partially occluded by the beam trap.

However, these should be detectable by other methods (e.g. a

plot of Fobs versus Fcalc) and should be eliminated from the

data.

Robust–resistant weighting, which uses �(F 2) to detect

outliers (Prince, 1994a), will mitigate the effect of more

marginal data, though if Fobs
2 is seriously underestimated, it is

very likely that its standard uncertainty will be seriously wrong

as well. Prince has also shown that the standard uncertainties

of the final parameters in an F refinement can be sensitive to

large errors in the weak reflections. Attention to eliminating

evident outliers and applying appropriate weights to the

refinements leads to essentially indistinguishable final para-

meters from the two methods. Kassner et al. (1993), in a

careful study, report ‘we are not aware that anybody has yet

shown that a refinement based on |F | resulted in an incorrect

crystal structure determination because it was based on |F |’.

This is probably still the case. If the two processes lead to

different results, the cause is almost certainly serious unde-

tected errors in the data or totally inappropriate weighting

schemes. Seiler et al. (1984) give a detailed description of the

outcomes with real experimental data, and Harris & Moss

(1992) revisit the issue from the point of view of macro-

molecular crystallography.

3.4. Minimizing the weighted sum of the squares of the
residuals – least squares

The expressions for least squares can be based on F or F 2.

The equations are slightly simplified for F, and so these will be

used in the rest of this chapter. Equivalent expressions for F 2

refinement are given by Cruickshank (1969). The expression

for Fcalc contains exponential and trigonometric terms – that is,

it is a nonlinear function of the model parameters, x and U, as

shown in equation (17):

Fcalc ¼
Xatoms

i

fi expð�2�2s2U2
Þ expð2�ih � xÞ: ð17Þ

One technique for dealing with this expression is to use the

Taylor expansion to linearize the function:

F 0calc ¼ Fcalc þ
XAll parameters

@Fcalc

@xi

�xi þ � � � ; ð18Þ

where xi are the refinable parameters.

F 0calc is the improved calculated structure factor obtained by

applying the shifts �x. Setting F 0calc equal to Fobs, dropping the

higher derivative terms and rearranging gives the observa-

tional equations

Fobs � Fcalc ¼
XAll parameters

@Fcalc

@x
�x; ð19Þ

where the residual Fobs � Fcalc plays the role of the simple

observation in linear least squares and the derivatives play the

roles of the independent parameters. To be able to use this

expression, one must have a starting model in order to

compute the residual and the derivative. If the Taylor

expansion is applied to a linear function, the derivative is a

constant no matter what values are used in the model

(including setting them all to zero) so that correct shifts are

computed directly. For a nonlinear function, the derivatives

only become reliable as the parameters approach their ‘true’

(but initially unknown) values. This means that, for a very

poor starting model, the technique may not converge onto the

‘correct’ solution. Both true and correct are in quotation

marks because we can never know that we really have the true,

correct solution. The normal equations derived from equation

(19) contain only products of first derivatives (see x3.6).

Alternative developments include higher derivatives, though

these do not seem to be used in crystallographic applications.

Press et al. (2002) discuss this issue and justify the exclusion of

higher derivatives.
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2 If the reflection data follow Poisson statistics (�2 = I ), then �2(F ) only
depends upon the Lp correction. See x3.5.1.



3.5. Relative uncertainties in the data, weights and data
filters

In their raw form as given in equations (12) and (14), all

reflections are added into the minimization process with equal

importance if w is set to unity. As already explained, this is not

always appropriate, and different weighting schemes have

been developed for different purposes. In practical work, it is

common to change the weighting scheme at different stages of

an analysis in order to achieve different ends.

3.5.1. Statistical weights. Unit weights and quasi-unit

weights were introduced above. With these weights, the least

squares processes illustrated by equations (12) or (14) will give

the same structure, though in fact this structure will not be the

‘best’. This is because no allowance has been made for the

different uncertainties associated with the observed inten-

sities. To account for this, the functions represented by equa-

tions (9) and (10) must be multiplied by a weight (Hughes,

1941):

w ¼ 1=�2 Yobsð Þ: ð20Þ

To a first approximation, the errors associated with a single

intensity observation follow Poisson statistics, so that if

Inet ¼ Peakcount � Backgroundcount ð21Þ

then

�2 Inetð Þ ¼ Peakcount þ Backgroundcount: ð22Þ

This expression was used to obtain � for early serial diffract-

ometer data, but the extensive mathematical calculations used

in processing image detector data require the use of more

complex, proprietary, expressions. Since F 2 is obtained from I

simply by multiplying by a scalar, there is no difficulty in

obtaining �(F 2) from �(I). It might appear to be possible to

obtain �(F) from �(F 2) using

�2 Fð Þ ¼ �2 F2
� �

=4F2; ð23Þ

but this is clearly inappropriate as F approaches zero, and

other assumptions must be made about the tails of the prob-

ability density distributions. Possible assumptions are that

�2(F) = �2(F 2) if F 2 < �2(F 2) (CRYSTALS; Betteridge et al.,

2003) or �2(F) = [(F 2)2 + �2(F 2)/2]1/2
� F 2 [XRAY; quoted by

Seiler et al. (1984)]. In the early stages of a refinement based

on good data and a well parameterized model, these simple

statistical weights lead to a steady convergence to a reliable

minimum. However, they are not appropriate for the final

stages.

3.5.2. Empirical weights and the goodness of fit. Although

the correct procedure to be used for converting �(F 2) into

�(F) is of some theoretical interest, in practice it turns out not

to be so important. Counting statistics may be the major

contribution to the variance, but there are other, usually

unidentified, sources of error. In addition, the argument of the

minimization is (Yobs � Ycalc)
2, which depends upon the

current model. Since there are likely to be unidentified

shortcomings in the model, a variance needs to be associated

with Ycalc. Rollett (1988) gives an extensive list of sources of

errors in both Fobs and Fcalc.

Weights should be chosen to give reasonable estimates of

the uncertainties in the parameter values and to reduce the

effect, as far as possible, of unidentified, omitted parameters

on those parameters included in the current model. For

example, the weights needed to refine an isotropic model

against a particular data set may be different from the weights

needed for an anisotropic model. The reduced �2, also called

the goodness of fit (GoF, S), gives some insight into potential

problems with a refinement.

�2 ¼
PAll reflections

w Yobs � Ycalcð Þ
2; ð24Þ

S2
¼

PAll reflections

w Yobs � Ycalcð Þ
2=ðn�mÞ: ð25Þ

We can define S�
2 as the GoF obtained by using weights

computed only from the standard uncertainties assigned to the

reflection data, equation (20) (Press et al., 2002).

A low value of S� may indicate an over-pessimistic esti-

mation of the variances of the observations, or that there are

errors in the data or model which are compensating for each

other. A large value of S� (greater than 2 or 3) may mean that

the proposed solution is in fact a false solution or that there is

some additional source of error in the data that has not been

factored into the estimated uncertainties. As pointed out by

Rollett (1988), fiddling with w to obtain a value of S close to

unity is a risky business, and should only be attempted after

the analyst is confident that the model is fundamentally

correct (and in particular fully parameterized and not in a

false minimum) and has assessed the X-ray data for additional

sources of error. At this stage, simply multiplying all w by a

constant to achieve S = 1.0 is nothing more than cosmetic

(Huml, 1980). Rescaling the weights in this way does not affect

the parameter values, so making published values of S (which

are almost invariably close to unity) totally uninformative.

Rescaling the weights does have an effect on the parameter

s.u. values and can be thought of as a normalizing factor to

compensate for deficiencies in the estimation of the errors on

the X-ray observations.

More useful than looking at S itself is an examination of the

change in the value of h�2
i [i.e. h

P
w(Yobs � Ycalc)

2
i] for

groups of reflections selected in some systematic way.

Common groupings are by Yobs, Ycalc, resolution, reflection

index or parity group. If the weights are appropriate (except

for a scale factor) these local averages should have a constant

value. Most programs provide a method for using a low-order

polynomial to modify w to achieve roughly constant local

values of �2, at the same time generally ensuring that S is

approximately unity. The polynomial could be in terms of Yobs,

Ycalc (which is less affected by outliers) or [kYobs + (1� k)Ycalc]

(Wilson, 1976). If the model is fundamentally correct, local

rescaling of the weights in this fashion reduces the effect of

unidentified errors in the model parameters, though there is

always the risk that selecting weights on the basis of the

residual may give false credibility to an incorrect model.

Additional global rescaling to make S close to unity produces
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the best estimates of the parameter uncertainties in the

absence of a detailed analysis of the sources of all the errors.

In the absence of an overall scaling factor, weighting schemes

based on

w ¼ 1= ½�2
ðF2
Þ þ functionðFÞ�

� �
ð26Þ

cannot compensate for pessimistic estimates of the reflection

standard uncertainties if the function of F can only take

positive values. Walker & Stuart (1983) and Parkin (2000)

have used the variation of Fobs and Fcalc as a function of

diffractometer setting angles as a way of locating diffraction-

geometry-dependant errors.

3.5.3. Robust–resistant weights. If all is well with the data, a

large residual (Yobs � Ycalc)
2 means that Ycalc is in error, and

the residual will drive the model parameters towards better

values. However, if there is something wrong with the data and

it is Yobs that is in serious error, the large residual will

adversely affect the model as the refinement tries to move

Ycalc towards the bad observation.

The advent of area-detector diffractometers, which are

generally programmed to measure each independent reflec-

tion many times at different instrumental settings [called high

redundancy, or sometimes high multiplicity of observation

(Müller et al., 2006)], has greatly reduced the incidence of

outliers in the data. Even so, badly measured reflections do

sometimes occur in the final reflection listing. The most

common occurrence is severe underestimation of a reflection

because it is partially occluded by the beam stop or some other

piece of the hardware. When this happens to a strong low-

order reflection, direct methods yield a structure that may

then disappear during either automatic or manual refinement.

A low-order reflection that is underestimated will give rise to a

very small E value. This will normally not be strongly involved

in the phasing or tangent refinement of the data [unless the

reflection was unfortunate enough to have been chosen for use

in calculating a figure of merit involving negative quartets (De

Titta et al., 1975)]. The first E map may show a strong likeness

to the expected structure. However, during refinement a

seriously underestimated strong reflection will lead to a large

(but erroneous) residual, which can cause the refinement to

diverge. Such reflections are generally very obvious in a list of

large residuals and can be eliminated manually. For more

marginal cases, it is useful to employ a modification that will

down-weight outliers to the user’s favoured weighting scheme

in a smoothly progressive way (Nicholson et al., 1982). One

weight modifier (w0), illustrated in Fig. 4, is

w0 ¼ 1� w Yobs � Ycalcð Þ
� �2

=a2
n o2

; ð27Þ

when j½w1=2ðYobs � YcalcÞ�j � a (where a is a user-defined

parameter), otherwise

w0 ¼ 0:

Reflections with a weighted residual much less than a will have

their normal weight, with the modified weight tending to zero

as the residual approaches or exceeds a. The difficulty is to

provide a value for a. One method is to use a = k�(Yobs), but

this suffers from the difficulty that a rogue reflection will

probably have a rogue standard uncertainty. A more reliable

estimate is to use k (a user-defined parameter) times the

local average modulus of the weighted residual,

a ¼ k
Pn
jw1=2ðYobs � YcalcÞj=n (Rollett, 1988).

3.5.4. Weighting as a function of resolution. The semi-

empirical weights just described are appropriate during the

final cycles of refinement of a completed model. At earlier

stages in a refinement, other schemes may be useful for other

purposes, some of which are described below.

Qurashi & Vand (1953) suggested using a weighting scheme

that decreases the influence of high-angle reflections, of the

form

w ¼ 1:0=s3 ð28Þ

[where s = sin(�)/� is the resolution of the reflection], as a

means of increasing the radius of convergence of the least-

squares method. This is quite strongly related to the procedure

in which only low-angle data are used in the initial refine-

ments, and data of increasing resolution are incrementally

added to the refinement as the model improves [and which,

since high-angle data tend to be weak, is not totally unrelated

to the use of an I/�(I) threshold for rejecting data].

Dunitz & Seiler (1973) suggest using a scheme that

increases the influence of the high-angle data:

w ¼ exp c ½sinð�Þ=��2
� �

; ð29Þ

where c is a user-defined variable parameter. Since the influ-

ence of scattering from H atoms is small at high angles, this

weighting scheme reduces the tendency for the heavy-atom

parameters to be adjusted by the least squares in a way that

partially simulates the scattering from H atoms missing from

the model. The resulting atomic parameters are similar to

those obtained from a neutron diffraction experiment. Phases

for the full data set refined in this way have an increased

chance of revealing missing H atoms in a difference Fourier

map.
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Figure 4
Robust–resistant weight modifier. Reflections with large residuals are
down-weighted. In the Nicholson et al. (1982) example, a is set to 6�(Y).
The likelihood of a residual exceeding this value by chance is vanishingly
small, so that a discrepancy of this magnitude leads to a weight of zero.



3.6. Solving the observational equations

The unweighted observational equation (19) for each

reflection can be written

@Fcalc

@x1

�x1 þ
@Fcalc

@x2

�x2 þ � � � þ
@Fcalc

@xm

�xm þ � � � ¼ Fobs � Fcalc;

ð30Þ

where x1, x2 etc. refer to the refinable parameters, and higher-

order terms have been omitted from the expansion. There may

be several hundred parameters and typically up to ten times as

many reflections. It is this massive over-determination of the

parameters by the data that makes X-ray structure analysis so

reliable in the absence of serious systematic errors. Given a

reasonable starting model, the large number of simultaneous

equations can be solved by least squares. Rewriting equation

(30) in matrix form for m parameters and n observations gives

@F1calc

@x1
�

@F1calc

@xm

� � �

� � �

� � �
@Fncalc

@x1
�

@Fncalc

@xm

2
66664

3
77775 �

�x1

�

�

�

�xm

2
66664

3
77775 ¼

F1obs
� F1calc

�

�

�

Fnobs
� Fncalc

2
66664

3
77775: ð31Þ

The large matrix of derivatives is called the ‘design’ matrix,

because in linear least squares the researcher usually has the

opportunity to design an experimental procedure that will

achieve optimal coverage of the observational space. In crys-

tallography, the elements of the design matrix are computed

from the current model.

As explained in x3.5, each equation in (31) must be

weighted by our confidence both in the quality of the obser-

vation and in the model. In many experiments it seems likely

that errors associated with one observation will be correlated

with errors in other observations – this is very likely to be true

of adjacent observations in powder data and is probably true

of the data from a single frame of an area detector. These

correlated weights, if they were known, would be put into a

weight matrix, W:

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � wnn

2
6666664

3
7777775
�

@F1calc

@x1
�

@F1calc

@xm

� � �

� � �

� � �
@Fncalc

@x1
�

@Fncalc

@xm

2
6666664

3
7777775
�

�x1

�

�

�

�xm

2
6666664

3
7777775

¼

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � wnn

2
6666664

3
7777775
�

F1obs
� F1calc

�

�

�

Fnobs
� Fncalc

2
6666664

3
7777775
: ð32Þ

For most routine work only the diagonal elements of W are

used, having values as described in x3.5, though for interesting

developments using correlated errors, see McCusker et al.

(2001).

Equation (32) can be written more succinctly as

W �A � �x ¼W ��F: ð33Þ

If there are more observations than unknowns, the method of

least squares provides values for both the unknowns and their

standard uncertainties. Note that the matrix of derivatives, A,

does not appear anywhere in the minimization functions N or

M. This has the curious implication that the structure obtained

at the minimum is independent of the method used to obtain

A, leaving the crystallographer with a choice of treatments of

A. A solution via the use of the normal equations is

At
�W �A � �x ¼ At

�W ��F ð34Þ

and

�x ¼ ðAt
�W �AÞ�1

�At
�W ��F; ð35Þ

where the superscript t denotes the transpose. The normal

matrix, At
�W�A is symmetric and usually inverted by the

Cholesky method (Rollett, 1964). This is a very robust

method. If the matrix is singular or near-singular, indicating

that a parameter or parameter combination cannot be deter-

mined by the data, the appropriate elements on the diagonal

of the inverse matrix are set to zero (not infinity) so that the

shifts �x of the singular parameters from equation (35) are also

zero, i.e. that parameter is unchanged. The user of the program

must be informed of this action so that the singularity can be

eliminated by changing the model, adding constraints or

adding restraints (see below).

Equation (33) can be solved by other processes, for example

by conjugate gradient methods, but these are not frequently

used in small-molecule refinements. An old but excellent

discussion of possible methods is presented by Sparks (1961),

and a good modern survey of methods for forming and solving

these equations is given by Tronrud (2004), who shows that

different approximations to A lead to differing speeds or radii

of convergence.

3.7. Problems with the normal equations

If the normal matrix is computed from the first derivatives

only, the diagonal is formed from the sum-of-squares and so is

always nonnegative. The off-diagonal terms are the sums-of-

products of terms, generally with differing signs, so that the

totals are usually small. Solution of the equations with this

diagonal-dominated matrix is generally straightforward. The

off-diagonal elements can become larger for a variety of

reasons (which include missed or pseudo-symmetry, or over-

harsh geometric restraints). When this happens, parameters

linked by these large elements are said to be highly correlated,

which may lead to difficulties in solving the equations.

3.7.1. Space-group-related issues. Failure to take proper

account of atoms on special positions, or to fix the origin in

polar directions (see x5.1.8), will lead to a singular normal

matrix (i.e. the determinant is very close to zero, so that the

matrix cannot be inverted safely). Both of these situations are

predictable from knowledge of the space group and the

approximate atomic coordinates and so are now generally

treated automatically by the software.
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3.7.2. Atomic positional disorder. Hughes (1941) showed

that for well resolved atoms the possibility of correlation

between atom parameters is decreased as the distance

between the atoms increases. This means that there is always

correlation between bonded atoms, but it is generally not

excessive. Correlation leading to large off-diagonal terms and

hence instability in the refinement becomes an issue for

structures containing disorder. As a rule of thumb, if the

disordered atoms can be seen as discrete local peaks in a

Fourier map phased by the un-disordered part of the structure,

refinement should proceed smoothly (Fig. 5).

3.7.3. Pseudo-symmetry. Curiously, it is not uncommon for

structures to be found in which there is extra approximate

symmetry in addition to the true space-group symmetry.

Sometimes this pseudo-symmetry is very local, such as a

pseudo-glide plane perpendicular to a non-unique axis in a

monoclinic cell [Fig. 6; Cambridge Structural Database (CSD;

Allen, 2002) refcode SAPVAG; Zimmerman & St Claire,

1989]. This kind of problem rarely causes difficulty with

refinements.

When the pseudo-symmetry affects the whole structure,

such as a pseudo-centre of symmetry in a chirally pure

compound, pseudo-centring due to a heavy atom lying near to

a special position of a higher-symmetry space group or

pseudo-doubling of a cell axis, the effect on the refinement can

be much more serious. Older programs would often complain

that the normal matrix was singular and then abort. Modern

programs, using techniques like the Marquardt modifier

(x5.1.9), tend to execute to completion, but the results are

unreliable (Harlow, 1996).

3.7.4. Very poor starting model. If the initial estimates of

the positional parameters are far from the ‘correct’ positions

(> 0.4 Å), refinement including the ADPs can be very

unstable, leading to massive false shifts in some ADPs or the

overall scale factor. Programs generally detect this situation

and just apply some small fraction of the predicted shift. If the

starting model has errors of the order of 0.7 Å, the trial atom

could be roughly equidistant from a number of potential atom

sites, unless it has fallen into the void, created by van der

Waals repulsions, surrounding molecules.

The centrosymmetric/pseudo-centrosymmetric case is a

trap for the unwary (Marsh & Spek, 2001). There are sets of

space groups that cannot be distinguished from each other by

the systematic absences alone (e.g. P2, Pm, P2/m). It is not

unknown for direct methods of structure solution to fail with

the centrosymmetric space group but then yield a structure if

the space-group symmetry is changed to remove the centre.3

These structures generally appear to refine satisfactorily in the

low-symmetry space group to a low R factor, but close

examination may show unusual geometric features. Bond

lengths and angles deviate more than expected from conven-

tional values, and anisotropic ADPs are exceedingly aniso-

tropic. Closer examination may show that the means of

geometric features related by the pseudo-centre are close to

conventional values, and the averages of ADPs are much less

anisotropic. These are clear signs that the analyst should

investigate translating the structure so that the local centre of

symmetry becomes a true centre, changing the space group

and continuing the refinement. If the molecular geometry

becomes decidedly more conventional after further refine-

ment then this is probably the true space group. Flack &

Bernardinelli (2006) discuss the opposite situation, in which

structures are reported to be in centrosymmetric space groups

when there should be no centre of symmetry. In difficult cases

the role of the weak reflections becomes important (see x3.9).

Fig. 7 (CSD refcode QEQRUZ; Vigante et al., 2000) is an

example in which the space group must be acentric because

the material is chiral, but which has a strong pseudo-centre of

inversion relating two independent molecules in the asym-

metric unit. The refinement does not proceed smoothly, as

revealed by the published bond lengths and angles. The large

deviations from expected values are probably a consequence
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Figure 6
This chiral molecule is in space group P21 but has an exceedingly good
pseudo-glide plane.

Figure 5
Disorder. The right-hand isopropylidene protecting group (containing
O16 and C21) is reasonably well defined. The left-hand moiety refined to
very elongated ADPs. These were replaced by partial atoms corre-
sponding to ring-flipping. It was unclear from the actual electron density
distribution which of these models was really most appropriate (Harding
et al., 2005).

3 This technique may be useful even when there is no ambiguity about the
space group. A structure failing to solve in P21/c or C2/c may solve easily in
P21 or C2. In this case the missing centre should be added to the structure and
the redundant atoms removed.



of high correlation in the normal matrix owing to the pseudo-

centre of symmetry (Table 1).

3.8. Eigenvalue filtering

The normal matrix is generally inverted by the Cholesky

process, which will correctly handle some kinds of singula-

rities, such as an attempt to refine an unrefinable parameter

for an atom on a special position. It cannot handle more

complex situations leading to singularities or near-singula-

rities, such as refining a centrosymmetric structure in a

noncentrosymmetric space group. In this situation, pairs of

parameters should have symmetry-related values, and the

shifts in refinement should be equal and opposite. The

Cholesky invertor will apply some kind of shift to one member

of the pair and no shift to the other. Thus, although the

program will execute to completion, the refined structure will

be wrong. Eigenvalue filtering is a technique that analyses the

full normal matrix for latent singularities and generates

parameter shifts that have the correct symmetry relationships

between them. The centro/noncentrosymmetric case should

be dealt with correctly using this filtering, though it is best

resolved by using the correct space group, when this is known.

In practice, eigenvalue filtering is most useful as a tool for

trying to understand the source of singularities and near-

singularities (Watkin, 1994). In macromolecular crystal-

lography, it is used as a method for detecting noncrystallo-

graphic symmetry and also allows the detection of singular

parameters or parameter combinations that cannot be deter-

mined by direct examination of the X-ray data (Cowtan & Ten

Eyck, 2000).

3.9. Weak reflections

There is no doubt that, with modern area-detector

diffractometers and effectively infinite data storage facilities,

all reflections up to some predetermined resolution limit

should be estimated and recorded in the primary data file.

What weak data should be used for is more problematic.

There is now copious evidence that they should be included in

data sets used for structure solution by direct methods, since

they play an important role in the determination of the scale of

the data from the Wilson plot and in the estimation of figures

of merit involving negative quartets (Altomare et al., 1995).

A debate about the more general treatment of weak

reflections in refinement has been continuing since Hirshfeld

& Rabinovich (1973) demonstrated that, for a synthetic data

set, the omission of reflections whose observed intensity is less

than some threshold standard deviation had a detectable

effect upon the ADPs and the overall scale factor. Their

findings were supported using real data by Arnberg et al.

(1979). Seiler et al. (1984) reinvestigated the problem and

showed that, for data measured with a serial diffractometer,

the effect of the weak reflections upon the positional para-

meters is negligible, and that on the ADPs is only marginal.

More recently, Harris & Moss (1992) could see no strong

evidence for an improvement in macromolecular refinements

by the inclusion of the very weak data in the refinement.

Hirshfeld & Rabinovich (1973) concluded by commenting

‘our limited experience indicates that in real situations the

effect of biased data on the structurally interesting parameters

is rarely large enough to matter’, but suggesting that ‘for

safety’s sake’ one should include all reflections. The problem is

to decide what is meant by ‘all’.

There are broadly two kinds of weak reflections – those that

contain useful information and those that do not. Imagine a

data set for a simple organic material measured with Mo K�
radiation from a monoclinic crystal with a 10 Å unique b axis.

If the 0k0 reflections with k = 21, 23, 25 are weak, these tell us

almost nothing, because we can expect the k = 20, 22, 24

reflections to be weak also. In contrast, if the k = 1, 3, 5, 7

reflections are all weak, we have strong evidence for a 21 axis

(Glusker et al., 1994). There is clearly no special advantage in

including the weak 0 22 0 reflection in a refinement, but if in a

particular case the 020 reflection, normally expected to be very

strong, is instead very weak, its weakness will be highly
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Table 1
Bond lengths (Å) for each of the two phenyl groups in a pseudo-
centrosymmetric material with Z0 = 2.

Although the spread of values is very large, the overall mean is quite normal.
This is a characteristic feature of high correlation in the normal matrix.

Ring 1 Bond length Ring 2 Bond length

Atoms Molecule 1 Molecule 2 Atoms Molecule 1 Molecule 2

9–10 1.4034 1.3993 15–16 1.2912 1.6016
10–11 1.7301 1.1034 16–17 1.3887 1.4470
11–12 1.3216 1.2308 17–18 1.5639 1.0727
12–13 1.3242 1.4158 18–19 1.3814 1.3423
13–14 1.3917 1.3783 19–20 1.4245 1.4201
14–9 1.6112 1.1427 20–15 1.5164 1.2996

Average 1.4637 1.2784 Average 1.4227 1.3639

Overall Average 1.3834

Figure 7
The two independent molecules in QEQRUZ (Vigante et al., 2000),
overlaid with the best match using CRYSTALS. Although the molecules
are chiral in P21, the operator giving the best match between the
molecules is a pseudo-centre of symmetry.



significant. Prince & Nicholson (1985) have shown that,

provided reflections are not excluded on the basis of their

residual, exclusion of individual reflections should not bias the

outcome. That is not the same as saying that omitting a

reflection will have no effect. The same authors have shown

that some parameters can be strongly influenced by some

reflections, that is to say, inclusion of those reflections will

have an influence on the parameter standard uncertainties.

These significant reflections may be either strong or weak.

Omitting reflections on the basis of I/�(I) is insecure because

this ratio is indirectly correlated to the residual, since slightly

overestimated reflections are selected in preference to

underestimated ones (Seiler et al., 1984). This can often be

observed for batches of weak reflections, where
P

Iobs is

generally larger than
P

Icalc if an I/�(I) threshold has been

used.

It seems that the best strategy for filtering out low-infor-

mation reflections is to set a threshold in terms of resolution.

Schwarzenbach et al. (1989) assert that this strategy will

effectively discriminate against weak data without introducing

bias. As Weiss (2001) points out, for macromolecular crystal-

lographers setting a resolution threshold is largely subjective.

Some small-molecule analysts simply accept the arbitrary

recommendations in the IUCr guide for authors (i.e. �max > 25�

for Mo K�, �max > 67� for Cu K�). This may lead them to

include large numbers of worthless data from a weakly

diffracting crystal or omit useful data from a strong diffracter.

It is worth recalling the Parable of the Emperor of China

(Herbstein, 2000), which can be paraphrased as saying that a

lot of bad measurements cannot yield a good result.

The advantageous refinement apparently offered by the use

of resolution thresholding in order to retain the accidentally

weak low-angle data may be illusory. Analysis of the

systematic absences from a structure with a centred lattice

generally shows a significant number to be observed well

above background. This may be for physical reasons [e.g.

thermal diffuse scattering (Cooper & Rouse, 1968), �/2

contributions (Kirschbaum et al., 1997)] or because the peak-

search methods being used to integrate reflections are over-

enthusiastic. In contrast, Lenstra & Kataeva (2001) describe

the opposite situation, in which high-angle data are under-

estimated because of the method of integration. Fig. 8 illus-

trates the distribution of the intensity data for the systematic

absences from a C-centred cell measured from the same

crystal on two different diffractometers. The instrument in the

lower diagram found many more negative intensities than

positive ones – a systematic bias in the weak data – possibly

because of inappropriate data collection or processing

procedures.

As with the F/F 2 debate, the effects of thresholding only

have an impact in marginal cases, in which situation the

diffraction data will need careful scrutiny anyway. Perhaps the

most important of these marginal cases is the one where there

are difficulties in choosing between a centrosymmetric and a

noncentrosymmetric space group. Dunitz (1995) and others

(e.g. Schomaker & Marsh, 1979; Kassner et al., 1993) have

shown that it is the weak, low-order, reflections that offer the

best chance of resolving the situation. Fig. 9 illustrates that it is

the weak reflections (bottom diagram) that show the largest

relative changes in structure amplitude when symmetry is not

exact.

Crystals suffering from pseudo-translational symmetry

(including pseudo-centring due to heavy atoms lying on

special positions) can have whole classes of reflections

systematically weak (e.g. the h + k odd reflections for pseudo-

C-centring). In his careful analysis of the diffraction data from

quartz, Zachariasen (1965) noted that the largest fractional

Friedel differences [2(Ih � I�hh)/(Ih + I �hh)] occurred amongst the

weak reflections. This is generally the case when there are no

strong anomalous scatterers. Bernardinelli & Flack (1985)

describe a weighting scheme that will enhance the influence of

reflections with the largest anomalous differences. However,

before using this scheme the analyst should be convinced that

the weak reflections have not been systematically over-

estimated.

3.10. Shift multipliers and partial-shift damping factors

For a well behaved refinement in which the normal matrix

contains contributions from the second derivative, the shift in

each cycle will be the square of the shift in the previous cycle

(called quadratic convergence) (Rollett, 1984). In most

current crystallographic programs, the second derivatives are

neglected because of their destabilizing effect (reduced radius

of convergence), which has the effect of making the shifts in
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Figure 8
Distribution of intensity data for the systematic absences from a
C-centred cell measured from the same crystal on two instruments.
Ordinate: I; abscissa: I/�(I ). Top illustration: A well adjusted instrument.
Lower illustration: Underestimated weak reflections. There are very
many more negative reflections than positive ones; the data-collection
and processing parameters should be checked.



each cycle an approximately constant fraction of the shift in

the previous cycle, i.e. more cycles are needed to reach

convergence. Sparks (1961) and later Hodgson & Rollett

(1963) showed that, in suitable cases, these shifts can be

inflated to accelerate convergence. This idea does not seem to

have been automated in any widely used programs. However,

the converse operation, deflating the shifts if they seem

improbably large, is common to most programs [equation

(36)]. Note that these factors are applied after the solution of

the normal equations and so can take no account of parameter

correlations.

xnew ¼ xold þ p�x; ð36Þ

where p is the damping factor, usually less than or equal to

unity (Lipson & Cochran, 1966). In the event that a predicted

shift/s.u. exceeds some threshold, some or all of the shifts are

rescaled so that the maximum lies at this threshold. Because a

near-singular matrix can lead to massive predicted shifts and

s.u. values, most programs also set a limit on the maximum

shifts that can be applied to parameters. Shift-limiting

restraints (x5.1.8) modify the matrix before inversion, gener-

ally leading to better conditioning and hence stability in the

refinement.

4. Constraints

Constraints are rules about the permitted values of para-

meters or of the relationships between them that, in a math-

ematical sense, must not be disobeyed. Loosely, they are of

two types – those implicit in the overall formulation of the

model and those explicitly imposed. For example, if a model is

refined with isotropic ADPs, a constraint that the ADP is

spherical has been imposed. Not refining an extinction

correction implies the constraint that its value is zero, exactly.

The use of spherical form factors is another implied constraint.

One of the roles of the analyst is to judge what level of

complexity can be introduced into a model given the available

data. Amongst the explicitly imposed constraints are those

required to conserve the space-group symmetry requirements.

An atom on the special position ( 1
2,

1
2,

1
2 ) in P�11 should not be

refined at all – its parameters are constrained to these special

values. Alternatively, an atom on the special position (x, x, x)

in Wyckoff position e in space-group P23 can be refined but

must be constrained to have equal shifts applied in the x, y and

z directions. In general, constraints are rules about the rela-

tionships between parameters that must be obeyed.

Constraints arising from space-group symmetry relationships

are usually generated automatically by modern programs

(Burzlaff et al., 1978), but other constraints may be imposed by

the analyst. Many textbooks advocate applying constraints via

the method of Lagrange undetermined multipliers (Rollett,

1970), but this method seems to be largely ignored in general-

purpose crystallographic programs. Larson (1980) worked

through an alternative strategy, which reparameterizes the

problem via a matrix of constraint.

4.1. The matrix of constraint

In the application of constraints, the physical parameters

used in the normal representation of the model (x) are related

by an expression to a smaller set of parameters, which will

actually be refined (x0):

x ¼ M0x0 þ c; ð37Þ

where c is a vector of constants, so that

�x ¼ M � �x0; ð38Þ

where M is the matrix of derivatives of M0 with respect to the

parameters x0. Substituting (37) into (32) gives

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � �wnn

2
6666664

3
7777775
�

@F1calc

@x1
�

@F1calc

@xm

� � �

� � �

� � �
@Fncalc

@x1
�

@Fncalc

@xm

2
6666664

3
7777775
�

@x1

@x0
1
�

@x1

@x0q

� � �

� � �

� � �

@xm

@x0
1
�

@xm

@x0q

2
6666664

3
7777775

�

�x01

�

�

�

�x0q

2
6666664

3
7777775
¼

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � wnn

2
6666664

3
7777775
�

F1obs
� F1calc

�

�

�

Fnobs
� Fncalc

2
6666664

3
7777775
ð39Þ

lead articles

J. Appl. Cryst. (2008). 41, 491–522 David Watkin � Structure refinement 503

Figure 9
A strong (top) and weak (bottom) reflection at the same Bragg angle,
with four equal atoms in the cell. The solid lines are the contributions to
|F | in the centrosymmetric case. In the pseudo-centric case, the phase
angles for the contributions from the second two atoms are slightly
shifted, so that the phase angle of the final structure factor is not zero. The
resulting amplitude, |F 0|, has a larger relative change for the weak
reflection.



and the corresponding normal equations

�x0 ¼ ðMtAt
�WA �MÞ�1

� ðMtAt
Þ �W�F: ð40Þ

The important thing to notice about equation (39) is that the

number of least-squares variables (x0) is less than the number

of real physical variables (x). The extra knowledge needed to

expand x0 to x is contained in the matrix of constraint, M. This

matrix is also needed for the computation of the variance–

covariance matrix of the parameters x from the variance–

covariance matrix of the parameters x0. Without a knowledge

of M, it is not possible to compute proper standard uncer-

tainties of quantities computed from x, for example, bond

lengths (which is why checkCIF sometimes returns s.u. values

rather different from those computed by the refinement

program).

Some examples of matrices of constraint are listed below.

4.1.1. Special positions. If x0 is the least-squares parameter,

the matrix needed for Wyckoff position e in P23 is

@x
@y
@z

2
4

3
5 ¼ 1

1

1

2
4

3
5 � @x0: ð41Þ

4.1.2. Site occupation factors (SOFs) and disorder. It is not

uncommon in minerals to find an atomic site that can be

occupied by either of two element types. Different asymmetric

units can contain one or other of the elements, but the average

occupancy of the site, totalled over the whole sample, should

come to one (unless there are some asymmetric units in which

the site is vacant). If the refinement starts with the two

elements distributed evenly on the site then the SOFs will both

be 0.5. During refinement, if the occupancy of one element

(occ1) rises, that of the other (occ2) must decrease by the same

amount to keep the total unity. If occ0 is the least-squares

parameter, the matrix needed is

@occ1

@occ2

	 

¼

1

�1

	 

� @occ0: ð42Þ

If more than two elements are involved, the matrix of

constraint takes the form

@occ1

@occ2

@occ3

@occ4

2
664

3
775 ¼

1 0 0

0 1 0

0 0 1

�1 �1 �1

2
664

3
775 �

@occ01
@occ02
@occ03

2
4

3
5: ð43Þ

In this example, four physical occupation factors are replaced

by three least-squares parameters such that the sum of the

shifts of the physical parameters is zero.

A similar situation can occur in organic materials where an

atom or group of atoms can occupy either of two sites in the

asymmetric unit. For a group of (say) four atoms occupying

either a site a or a site b, all the atoms on site a will have the

same SOF (occa), and all the atoms on site b will have occb =

(1 � occa). There are thus eight physical SOFs but only one

least-squares parameter.

4.1.3. Riding models. The term ‘riding model’ is used rather

loosely in the literature, but one reasonably clear-cut defini-

tion is that the analyst wants one set of physical parameters to

move synchronously with another set. Most commonly, this

technique is used to move H atoms synchronously with the C

atoms to which they are bonded, thereby preserving the bond

length and direction. The crude way to achieve this is to

compute shifts for the C atoms and then apply the same shifts

to the H atoms. However, if the matrix of constraint has been

properly encoded into the program, this provides a more

rigorous mechanism. Consider a CH group (Fig. 10).

For atoms C1 and H1 there are six positional parameters,

but if the H and C atoms ride together, there are only three

least-squares parameters – the shifts x, y and z of both atoms.

The matrix of constraint is

@Cx

@Cy

@Cz

@Hx

@Hy

@Hz

2
6666664

3
7777775
¼

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

2
6666664

3
7777775
�

@x0

@y0

@z0

2
4

3
5: ð44Þ

The advantage of this method over the crude one is that the

terms in the normal matrix contain contributions arising from

the scattering from both the C and the H atoms. The matrix of

constraint has implemented the ‘chain rule’ for differentiation.

While a riding constraint preserves the relative dispositions of

the ‘ridden’ atoms, the geometry with respect to other atoms

becomes distorted – in this example particularly the angles

made from H1 to other atoms joined to C1. This may require

the geometry to be re-regularized after a cycle of refinement.

In a general least-squares program the user should be able

to make any parameter ‘ride’ on any other, so that, for

example, whole groups of positional parameters or ADPs can

be made to shift synchronously; such an approach might be

useful during the early stages of a difficult refinement. If

groups of parameters can be made to ride, but some of the

shifts are inverted before being applied, one has a mechanism

for applying noncrystallographic symmetry constraints. This

provides a mechanism for refining part of a structure in a low-

symmetry space group and the rest with a higher symmetry.

This situation was foreseen 40 years ago by Cruickshank et al.

(1964), who proposed that a program should be able to handle

more than one space group at a time.

4.1.4. Rigid groups. The mechanism described in x4.1.3

enables translational shifts to be applied uniformly to groups
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Figure 10
Riding refinement. Atoms C1 and H1 are riding together, preserving both
the length and the direction of the C—H bond. Since C2 can move
independently, the C2—C1—H1 angle may change from its original value.



of atoms – the whole group moves parallel to the cell edges.

More commonly, the analyst may want a group of atoms to

shift and rotate as a rigid body (e.g. each of the phenyl groups

in a triphenylphosphine ligand). If the group contains n atoms,

there are 3n physical parameters but only six least-squares

parameters (three rotational and three translational shifts of

the rigid group).

@x1

@y1

@z1

@x2

@y2

@z2

@x3

@y3

@z3

2
6666666666664

3
7777777777775
¼

1 0 0 @x1

@�
@x1

@’
@x1

@�

0 1 0 @y1

@� : :
0 0 1 : : :
1 0 0 : : :
0 1 0 : : :
0 0 1 : : :
1 0 0 : : :
0 1 0 : : :
0 0 1 @z3

@�
@z3

@’
@z3

@�

2
66666666666664

3
77777777777775
�

@u
@v
@w
@�
@’
@�

2
6666664

3
7777775
: ð45Þ

Because nonlinear least squares only computes shifts to

parameters, the rigid group must have the correct relative

geometry before refinement begins. The terms in the matrix of

constraint depend upon the current model and so must be

recomputed before each refinement cycle. More sophisticated

implementations reduce the number of degrees of freedom

further, for example, only allowing a tert-butyl group to rotate

about the terminal linking bond. Few implementations permit

rigid groups containing more than one atom on special posi-

tions or groups sharing atoms. For these reasons, this

constraint has largely been superseded by equivalent

restraints (see x5).

4.1.5. ADP constraints and TLS groups. Changing from

isotropic to anisotropic atomic displacement parameters

replaces the single parameter Uiso with the six parameters of

the symmetric tensor Uaniso, i.e. more than doubles the number

of parameters to be refined for each atom. Modern data from

good crystals will generally permit the anisotropic refinement

of non-H atoms. However, if the data are poor (for example,

have large standard uncertainties or were only observable to a

low Bragg angle), the model may need simplifying or the

X-ray observations may need supplementing by observations

of restraint (x5).

For example, if the data only extend to low resolution, there

may be a temptation to refine some of the ‘less important’

atoms (e.g. peripheral phenyl or tert-butyl groups) with

isotropic ADPs in order to reduce the number of variables.

This is almost certainly a poor model to use if the poor

diffracting power of the sample is due to large thermal motion

of the atoms. The peripheral atoms will almost certainly be

vibrating anisotropically, leading to the paradox that poor data

can be best represented by a complex model. The best solution

is to use anisotropic ADPs, together with TLS (translation,

libration, screw) constraints or copious restraints to assure a

physically reasonable model.

If a group of atoms are bound more or less inflexibly

together, their individual ADPs will be highly correlated. The

individual ADPs can be replaced by a group TLS tensor

(Schomaker & Trueblood, 1968). This is a six-by-six tensor,

T St

S L

	 

:

The 3 � 3 subtensor T corresponds to rectilinear displace-

ments of the whole group – it is rather similar to the

conventional atomic Uij. The subtensor L (degrees or radians

squared) represents torsional oscillation (libration) around

three perpendicular axes. The screw tensor S and its transpose

St link the libration and the translation tensors. TLS contains

20 independent parameters, which replace the six individual

Uij terms for each atom in the group, leading to a substantial

reduction in the number of parameters to be refined for a rigid

group of four or more atoms (Pawley, 1966; Winn et al., 2001).

As with rigid-body refinement (x4.1.4), there are imple-

mentational problems if different TLS groups share atoms or

include symmetry operators. From a physical point of view it is

unlikely that large groups of atoms (i.e. those that would most

benefit from a TLS approach) will be strictly rigid. For this

reason, TLS-constrained refinement has largely been super-

seded by ADP similarity or TLS restraints.

4.1.6. Reparameterization. If pairs of parameters are highly

correlated in their natural coordinate system (for example,

because of pseudo-translational symmetry), they can be

transformed to a coordinate system that reduces the correla-

tion (Prince, 1994b). In the new system, one coordinate

direction corresponds to the sum of the parameters, the other

to the difference. This is similar to eigenvalue filtering, except

that the rotation needed to diagonalize the 2 � 2 matrix is

prescribed in the matrix of constraint (Fig. 11).

This technique is commonly used in biological and social

sciences but is not widely implemented in crystallography

(Watkin, 1994). The matrix of constraint is

x1

x2

	 

¼

1 1

1 �1

	 

�

x01
x02

	 

: ð46Þ

4.1.7. Miscellaneous. With the widely used refinement

programs, the user is generally restricted to a set of pre-

defined constraints aimed at commonly occurring situations.

This is largely because of the difficulty in providing a general

method for converting an arbitrary function defined by the

user into a properly integrated matrix of constraint. Some

programs will let the user provide simple linear functions of
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Figure 11
Uncorrelated (left) and correlated (right) parameters. The circle and
ellipse are the locus of points of the constant minimization function as x1

and x2 are varied. For uncorrelated parameters, a small change in x1 has
almost no effect on x2. For the correlated parameters, a small shift in
either parameter implies a shift in the other. Re-parameterization to the
x0–x0 0 coordinate system removes (or reduces) the correlation.



the usual crystallographic parameters. TOPAS, a very modern

computer program, permits the user to define new variables

and provide completely general functions as constraints

(Coehlo, 2004).

4.1.8. Standard uncertainties of constrained parameters.
The scaled inverse of the weighted normal matrix is the source

of all information about parameter uncertainties and their

correlations. If constraints have been applied, the normal

matrix only contains information about least-squares para-

meters, and the matrix of constraint must be used to propagate

this information into the physical parameters. Without these

two matrices, it is not possible to compute proper uncertainties

on derived parameters (such as interatomic distances). In the

example of the riding CH group given above, the standard

uncertainties on the H atom will be exactly the same as those

for the C atom because both come from the same least-squares

parameters. However, because the physical parameters are

100% correlated (through the constraint matrix), the bond

length between them will have an s.u. of exactly zero. The

same argument is true for a rigid group. The atoms in the

group will all have associated uncertainties, but the s.u. values

of interatomic distances within the group will be zero. Thus

while the s.u. of a distance between two H atoms riding on the

same C atom will be exactly zero, the s.u. of the distance

between two H atoms riding on different C atoms will be the

same as the s.u. of the distance between the C atoms. It is for

this reason that some programs emphasize that they use the

full correlation matrix and yield correct derived parameter s.u.

values, which may be different from those computed by

programs that only have access to atomic s.u. values.

5. Restraints

When an analyst has no doubt about a functional relationship

between parameters in the physical model, constraints are the

correct tool to use to feed this information into the refinement.

A more flexible tool for influencing the outcome of a refine-

ment under less clear-cut conditions is the use of the ‘obser-

vations of restraint’, usually just called restraints (Waser,

1963). With this technique, instead of using the functional

relationship to reduce the number of least-squares parameters,

the relationship is used to generate new observations to be

used in addition to the usual X-ray observations. Equation

(12) was an example of a function of the X-ray observations

that was to be minimized during refinement. An equivalent

function including restraints is

N ¼
PAll observations

w F2
obs � F2

calc

� �2
þ

PAll restraints

w Tobs � Tcalcð Þ
2;

ð47Þ

where Tcalc is the value of some target function computed from

the structural parameters, and Tobs is the corresponding value

taken from some other source. The Tobs values become a few

additional observations amongst many X-ray observations,

and so their influence is not absolute. The linearized equation

of restraint [cf. equation (19)] used in least squares is

Tobs � Tcalc ¼
Xparameters

@Tcalc

@x
�x: ð48Þ

The strength of the restraint can usually be adjusted by giving

it a standard uncertainty (reflecting one’s confidence in the

assertion), which is converted into a least-squares weight in

the usual way (Rollett, 1970). With a sufficiently small s.u., a

restraint will influence the model almost as strongly as a

constraint. As will be evident from equation (49),

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � wnn

� � �

� w1 � �

� � w2 �

� � � w3

2
6666666666664

3
7777777777775
�

@F1calc

@x1
�

@F1calc

@xm

� � �

� � �
@Fncalc

@x1
�

@Fncalc

@xm

@T1calc

@x1
�

@T1calc

@xm

� � �

� � �
@Tncalc

@x1
�

@Tncalc

@xm

2
6666666666666664

3
7777777777777775

�

@x1

@x0
1
�

@x1

@x0q

� � �

� � �

@xm

@x0
1
�

@xm

@x0q

2
66664

3
77775 �

�x01
�

�

�x0q

2
6664

3
7775

¼

w11 w12 � w1n

w21 w22 � �

� � � �

� � � �

wn1 � � wnn

� � �

� w1 � �

� � w2 �

� � � w3

2
6666666666664

3
7777777777775

F1obs
� F1calc

�

�

�

Fnobs
� Fncalc

Tobs � Tcalc

�

�

2
66666666666664

3
77777777777775
;

ð49Þ

the equations of restraint are just additional observations, so

they must be filtered through the matrix of constraint. This

means that, if a parameter is the subject of both a restraint and

a constraint, the constraint will be obeyed even if there is a

conflict. This conflict will be evident as a large value for the

restraint residual (Tobs � Tcalc). Residuals larger than about

three times the requested standard uncertainty should always

be investigated.

In crystallography, restraints are generally applied under

one (or both) of two situations:

(1) The starting model is very poor, and the user suspects

that the minimization space is full of false minima. Suitable

soft restraints may help the minimization move towards an

acceptable (and hopefully correct) minimum – they provide a

guide through the minimization space. Once the solution is

‘correct’, the restraints can be slackened or removed so that

the structure becomes the one ‘seen’ by the X-ray data only.

This method is commonly used in macromolecular analyses,

where phasing and map interpretation are uncertain, and in

extended lattice work (e.g. zeolites), where the starting model
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may be a related compound. In an extreme case, the initial

model may be derived from a related compound by refinement

without any X-ray data at all, but with an extensive list of

restraining interatomic distances and angles. Such a procedure

is sometimes called DLS [distance least squares, after a

program of the same name (Meier & Villiger, 1969)]. To be

effective, there must be sufficient restraints to define the

position of every atom relative to its neighbours and sufficient

restraints involving symmetry-related atoms to fix the struc-

ture with respect to the space-group symmetry operators.

Without these latter restraints, the position of the structure in

the cell would be undefined.

(2) Normal refinement has produced an unacceptable

structure, i.e. one that does not conform in detail to the

accepted rules of chemical bonding. The structure could quite

simply be ‘wrong’ – a false solution to the phase problem (see

Murphy et al., 1998). Alternatively, the result could imply that

the data are inadequate in some way or that the model is

under-parameterized. If the data cannot be improved and the

user cannot think of additional valid parameters to add to the

model, restraints should be investigated as a way to achieve a

preconceived end result. Ideally, the standard uncertainty of

the unrestrained anomalous feature should be sufficiently high

that the feature lies within 3� of the expected value, implying

that the X-ray data lack the information content needed to

define the feature. A well chosen restraint will not be in

conflict with the X-ray data. Fig. 12 shows how a distance

restraint will fix the location of an ill-determined parameter in

a broad minimization well. There are two complications to

watch out for in restrained refinement.

One is that the values of the restrained parameters deviate

from the target values by more than 3�. This implies a conflict

between the X-ray data and the requested restraint.

The other is applying restraints with very small s.u. values.

The crystallographer should be aware that many restraints

(e.g. distances, angles, geometric similarity, ADP similarity,

Hirshfeld restraints) involve the differences between para-

meters, rather than the parameter values themselves. This

means that the restraints will make significant contributions to

the off-diagonal elements of the normal matrix. This is

inevitable since the restraint is simply encoding the fact that

the parameters are correlated. Excessive weighting of the

equations of restraint can reduce the diagonal-dominance of

the matrix and have a detrimental effect upon the condi-

tioning, leading to numerical instability.

Restraints are commonly used in cases of disorder to ensure

normal bond lengths and ADPs. The standard uncertainties of

the restraints are adjusted manually to achieve a desired

conformity with the target values. Nocedal & Wright (1999)

put this concept on a formal basis, varying the restraint

weights on a cycle-by-cycle basis. Note that if, at the end of the

refinement, |Tobs � Tcalc| is much greater that the requested

uncertainty there is almost certainly an incompatibility

between the model and the X-ray data.

5.1. Restraints commonly used in small-molecule crystal-
lography

5.1.1. Geometric restraints. The CSD contains the atomic

coordinates of 25 000 000 atoms, and one can estimate that

over 50 000 000 bond lengths can be computed from them.

From these, reliable mean values and dispersions can be

computed for the more common molecular geometries. The

most common of these are tabulated in International Tables

for Crystallogaphy, Vol. C. Because bond lengths between

atoms are influenced by the nature of the environment (e.g.

other atoms connected to the bonded atoms), the tables have

entries for common geometries. For less common atomic

arrangements, programs such as MOGUL (Bruno et al., 2004)

can directly search an auxiliary database compiled from the

CSD for the required bonds and standard uncertainties.

Providing that the geometry of interest is well represented,

mean bond lengths extracted from the CSD make good target

values for restraints, and the observed dispersion about the

mean can be used to provide a measure of confidence in the

mean. The observational equation is

Dobs �Dcalc ¼
XAll parameters

for two atoms @Dcalc

@x
�x; ð50Þ

where D are the interatomic distances and x are the coordi-

nates of the two atoms (A and B) forming the bond. The

derivatives are given in equation (51), where gij are elements

of the metric tensor:

@D
�
@xA ¼ ðg11�xþ g12�yþ g13�zÞ

�
D;

@D
�
@xB ¼ �ðg11�xþ g12�yþ g13�zÞ

�
D:

ð51Þ
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Figure 12
Schematic representation of a C—H distance restraint. The bond is
assumed to be parallel to the x axis so that only one coordinate need be
visualized. The heavy lines are the X-ray minimization function (MX) for
small changes in the C- or H-atom position. Note the broad minimum for
hydrogen (c1–c2), implying that the X-rays only poorly determine its
position. The light lines are the minimization function (MD) for a C—H
distance restraint and are the same for both atoms. The C atom is well
defined by the X-rays (a), and the restraint places the H atom at an
optimal position (d ) on the broad plateau. If the C—H distance had been
restrained to a much longer value, this would have driven the H-atom
position up the side of the X-ray minimization function, revealing a
conflict with the X-ray data.



Note that only differences in atomic coordinates occur in these

expressions, so that unless atom A is related to B by a

symmetry operator, absolute values cannot be found for x, y

and z (Watkin, 1988).

Angles can be restrained either directly to some target

value or by restraints on the two 1–2 and one 1–3 distances. In

the latter case a nondiagonal weight matrix should be used,

but this is rarely done in practice. Because inter-bond angles

are more flexible than bond lengths, the target values are more

difficult to assign, and the standard uncertainties will be much

greater. Similarly, torsion angles can be represented either as a

function of the coordinates of the four atoms or by six distance

restraints. The standard uncertainties will be even greater than

for angles.

5.1.2. Rigid-group restraints. Distance restraints do not

necessarily have to be between directly bonded atoms (e.g. the

torsion angle restraint above involves a 1–4 distance). If

sufficient bonded and nonbonded distances can be specified,

the atoms involved will behave like a rigid group. However, if

the group is approximately planar, interatom distances will not

be effective in controlling out-of-plane displacements, since

quite large displacements have only a small effect on the

distances.4 There are several better algorithms for restraining

groups of atoms to be coplanar (Urzhumtsev, 1991) or to have

similar geometry, that is, one group is related to the other by a

translation vector and a 3 � 3 matrix (Blanc & Paciorek,

2001). This matrix can represent a pure rotation, a rotation–

inversion or a rotation–dilation (Watkin, 1980).

5.1.3. Anti-bumping restraints. These are used to control

nonbonded relationships between atoms, usually to prevent

solvent molecules or disordered groups ‘bumping’ into other

parts of the structure. The restraint can be implemented either

as a normal distance restraint, which is only applied if the

interatomic distance becomes less than some threshold, or as a

distance restraint where the weight is itself a function of the

interatomic distance. An expression of the form

w /
Sum of van der Waals radii

Interatomic separation

� k

ð52Þ

is similar to the repulsive part of the Lennard–Jones potential

and avoids a discontinuity when the observed separation

equals the target separation (CRYSTALS; Betteridge et al.,

2003). Note that, since the weight is a function of the residual,

it must be recomputed for each cycle of refinement and that

the refinement is thus no longer strictly least-squares.

5.1.4. Linked-parameter restraints. In x4.1.3 we discussed

the riding model, in which pairs or whole groups of parameters

are constrained to move synchronously. Sometimes, something

less rigorous may be appropriate. For example, in a mineral, a

particular site might be occupied by either of two elements, A

and B. If we know that the site must be fully occupied, then the

constraint of x4.1.2 is appropriate. However, if there is the

possibility that the site may be only partially occupied, or may

be contaminated by a small amount of an unidentified heavy

impurity, a restraint should be used. An appropriate equation

of restraint is SOFA + SOFB ’ 1.0 (1), where 1.0 is the

expected total site occupancy, and the s.u. in parentheses

expresses the type of deviation from this value that we think

possible.

5.1.5. Similarity restraints. In cases where exact target

values for restraints are not available, targets can be inferred

from the symmetry of the material. For example, in a CF3

fragment, there is a high probability that all three C—F bonds

will have the same length. Their average value, recomputed

before each cycle of refinement, can be used as the target.

Similar symmetry arguments can be applied to a phenyl group.

If the data are of poor quality, all six C—C bonds can be made

to be similar. A less stringent model might simply aim at

achieving twofold similarity. If there are repeated fragments in

a structure, equivalent bonds (and angles) in each fragment

can be restrained to be similar. A similar approach can be

applied to the independent molecules in a Z0 > 1 structure. In

general, geometrical similarity restraints are limited to 1–2 and

1–3 distances. This permits the groups to have independent

torsional flexibility. Longer nonbonded distances can be

restrained if total similarity is required.

5.1.6. Atomic displacement parameter restraints. Our

knowledge about the behaviour of atomic displacement

parameters is much less secure than our knowledge of mol-

ecular geometry, so ADP restraints are generally applied

rather slackly (Irmer, 1990). To set up a restraint one needs to

have some physical model for the atomic displacements.

(1) Approximate sphericity. The component Uij is

restrained so that the ellipse is only slightly distorted from a

sphere. The required expressions are

U11
’ Uequiv; U12

’ Uequiv cos 	� etc: ð53Þ

There are two commonly used definitions of Uequiv. If Ui etc.

are the principal axes of the ellipse U[ij] then

Uarithmetic ¼ ðU1 þ U2 þ U3Þ=3;

Ugeometric ¼ ðU1 U2 U3Þ
1=3:

ð54Þ

The arithmetic mean is normally quoted in CIF files; the

geometric mean corresponds to a sphere with the same

volume as the ellipsoid and is preferable in some calculations

since it is sensitive to extreme values of the principal axes

(Watkin, 2000).

(2) Bond stretching. The magnitude of the mean displace-

ments of pairs of atoms, ur , is restrained to be equal along the

direction linking the atoms A and B, i.e. the differences in the

components of the ADPs are reduced. This restraint imple-

ments Hirshfeld’s ‘rigid-bond’ condition, which postulates that

X-rays cannot detect bond stretching vibrations (Hirshfeld,

1976).

hu2
r i ¼ r0UAr ’ r0UBr; ð55Þ

where r is the normalized vector between the two atoms, and r0

is its transpose.

The atoms A and B are often next neighbours (linked

atoms) but in fact can be any or all pairs in a structural motif
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4 If D is the bond length, a the small change in this length and d the out-of-
plane displacement, then d2 = a2 + 2aD.



behaving as a rigid body. This scheme provides restraints

equivalent to a TLS constraint, with the advantage that it

permits slight deviations from absolute rigidity. It ensures that

a refinement will conform to the Hirshfeld criteria, that the

components of the ADPs will be equal along the directions of

the interatomic vectors for a rigid fragment of a well deter-

mined structure (Hirshfeld, 1976). Its main weakness is that it

provides little control over out-of-plane components of Uij for

approximately planar groups (see x5.1.2).

(3) Similarity. The individual components Uij of the ADPs

of adjacent atoms (A and B) are restrained to be similar. This

restraint implements the idea that, even in flexible systems,

adjacent atoms generally behave similarly.

U
ij
A ’ gU

ij
B; ð56Þ

where g is a user-defined scale factor, generally unity. This

model is likely to be more uncertain than the previous and so

is generally applied with a smaller weight (larger s.u.). Its uses

include controlling out-of-plane components of the ADPs and

ensuring that equivalent atoms in a disordered fragment have

similar ADPs. This similarity restraint can be applied simul-

taneously with the Hirshfeld restraint [x5.1.6 point (2)].

(4) Rigid body. The individual ADPs are restrained to

conform to some predetermined rigid-body atomic displace-

ment model (TLS model; see x4.1.5). The equation of restraint

is

Uobs ’ Ucalc ¼ I A
� � T St

S L

	 

I

At

	 

; ð57Þ

where A is a matrix containing functions of the atomic posi-

tions [not to be confused with the design matrix, equation

(32)]. Such a restraint can be used to ‘regularize’ the individual

ADPs of a group of atoms. T, L and S are determined from the

current model and used to guide refinement in a subsequent

cycle of refinement, after which they are recomputed for the

following cycle. Madsen et al. (2004) extend the regularization

concept to H atoms, where the ADP consists of an ellipsoid

computed from the local rigid-group TLS tensor augmented

by additional components parallel and perpendicular to the

bond from the adjacent heavier atom.

5.1.7. Sum and average restraints. Groups of site occupa-

tion factors can be constrained so that their sum is unity

exactly [equation (43)]. However, with some materials, for

example minerals, it is possible to have more than two sites or

species involved in a relationship, and for the sum of the

occupation factors to be less than unity if vacancies can occur

or greater if an unidentified heavier element is present in small

quantities. Restraining the sum of the occupation factor shifts

to be about zero, with a standard uncertainty, will deal with

this situation (see x4.1.2):

0:00 ð1Þ ¼ �occ1 þ �occ2 þ �occ3 þ �occ4: ð58Þ

A related situation is where a number of sites are expected to

have approximately the same occupation factor. This can be

achieved by restraining the individual sites to their average

value.

5.1.8. Origin fixing. There are a number of space groups

where the origin of one or more directions is not fixed by

symmetry operators. These space groups are often called

polar, and axes whose origins are not fixed are called the polar

or origin-free axes. The origins of these axes are arbitrary and

are said to be floating origins. Examples are P1211 (one

floating origin parallel to b), P1c1 (floating origins parallel to a

and c) and P1 (three floating origins). In these polar direc-

tions, the relative positions of the atoms can be determined (so

that their separations can be computed), but their absolute

positions are undefined. Simple attempts to refine the coor-

dinates of all atoms in the structure in the polar direction will

lead to a singular normal matrix. The ill-conditioning of the

matrix is generally controlled automatically in modern

programs by applying restraints to keep the centre of gravity

of the structure invariant during the refinement (Flack &

Schwarzenbach, 1988). The origin can also be fixed by a

constraint of the form given in equation (42), but with the

occupation parameter shifts replaced by the positional para-

meter shifts, weighted by the atomic scattering powers, along

the free axis. In the older literature there are many structures

reported where the origin was fixed by not refining the

appropriate coordinate of one atom. Under this constraint the

selected coordinate, being unrefined, had a standard uncer-

tainty of zero exactly, and the s.u. that should be associated

with it was added to the corresponding coordinate uncer-

tainties of all other atoms. This is not a serious problem if the

selected atom is a very heavy atom. If a light atom (C, N, O) is

used, bond length s.u. values computed from the positional s.u.

values only (e.g. in PARST or PLATON) will be seriously

overestimated. Those computed from the full variance–

covariance matrix will be correct.

5.1.9. Shift-limiting restraints. A technique for stabilizing

refinements widely used in noncrystallographic domains is the

Levenberg–Marquardt method (Gill et al., 1981). In this

method, all the terms on the diagonal of the normal matrix are

multiplied by a factor (1 + �), thus increasing the dominance

of the diagonal elements and improving the conditioning of

the matrix, but at a cost of predicting smaller shifts, i.e.

providing a kind of ‘damping’ for the refinement. In some

applications the value of � is obtained in an iterative process

by the program itself. In crystallography, this is impractical

because, for each iteration to determine �, shifts have to be

applied and structure factors recomputed. In SHELXL, a

simplified strategy is used in which � is set to a small default

value suitable for dealing with the effects of rounding errors in

the mathematics or moderate parameter correlation. The user

should increase � in cases of severe correlation and set it to

zero for a final cycle of refinement in order to obtain the best

estimates of parameter correlations and standard uncertain-

ties.

A different implementation of the same idea is via shift-

limiting restraints (Watkin, 1994). Here, only terms affecting

volatile parameters are modified. The restraining equation is

0:00 ð1Þ ¼ xnew � xold;

leading to
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xnew ¼ xold þ
@xold

@x
�x; ð59Þ

where 0.00 (1) is the expected shift (zero) and tolerance (0.01)

in the natural units of x. This equation simply augments the

diagonal element for the parameter x by a factor depending on

the tolerance. Unlike proper Marquardt damping, the

restraint can be different for different parameters and does

not require the normal matrix to be normalized. All

Marquardt-type methods for damping the refinement have the

advantage that they modify the normal matrix before it is

inverted, and this approach should not be confused with the

application of partial shift factors after inversion (x3.10).

One of the criteria for the satisfactory convergence of a

refinement is that the largest shift in every parameter is only a

small fraction of its s.u. Occasionally this criterion cannot be

achieved for one or more parameters, with the shift changing

sign on successive cycles but maintaining about the same

magnitude. This might happen for the cross terms of the ADP

of an almost cylindrical or spherical ellipsoid, where the

direction of the axes is almost undefined. A few cycles of

refinement with heavier damping may stabilize the parameter,

after which the damping can be relaxed.

5.1.10. Miscellaneous restraints. Because restraints are just

additional observational equations, they are easy for

programmers to implement in a general way in order to

provide the user with flexible choices. In CRYSTALS

(Betteridge et al., 2003), the user can include in the data file a

Fortran-like expression involving the refinable parameters and

other crystallographic data (unit cell, atomic weight, ionic

charge etc.) to be used as a restraint. For example, the mineral

garnet has the general formula A3B2(SiO4)3, where A could be

Ca2+, Fe2+, Mg2+ or Mn2+ and B could be Al3+, Fe3+, Cr3+ etc.

In melanitic garnet (titanium andradite), Ti4+ can partially

substitute for B and for Si in (SiO4). To preserve the charge

balance, some of the Si and O will be chargeless, leading to the

relationship

3ð2Ca2þ
occ þ 2Fe2þ

occÞ þ 2ð3Fe3þ
occ þ 3Al3þ

occ þ 4Ti4þ
occÞ

þ 3ðSiocc þ 4Si4þ
occ þ 4Ti4þ

occÞ ¼ 12ðOocc þ 2O2�
occÞ;

derived from 3Ca2+ + 2Al3+ + 3Si4+ = 12O2�, where the

occupancies of these atomic sites are refinable parameters

(Agrosi et al., 2002). Even with this equation of restraint, the

site occupation factors (which provide information about the

origins of the mineral) can only be determined by the use of

very high quality data. The most common problem occurring

when site occupancies are being refined is instability of the

ADPs. This is because the shape of an atomic form factor and

the shape of the ADP smearing function are similar over a

small resolution range. As a consequence, a slight change in an

ADP has almost the same effect on a computed structure

factor as a slight change in occupancy (i.e. the two parameters

are highly correlated). This correlation is best reduced by

collecting diffraction data to a high resolution and applying a

very reliable geometrical absorption correction (which is also

resolution-dependent).

6. Some numbers

6.1. Why crystallographic refinement works so well

So far, we have been concerned with outlining the mathe-

matics and physics encoded in most modern programs on the

assumption that the methods will work in practice – and of

course experience shows that they do. Nonetheless, it is illu-

minating to carry out an order-of-magnitude estimate of the

calculations involved.

Imagine an organic structure in P1 with a cell of 10 � 10 �

10 Å. For an averagely well diffracting crystal on an ordinary

diffractometer, it turns out that the index of the highest-order

reflection (hmax) observable along an axis is at least equal to

the length of the axis in ångstroms. Since in P1 the asymmetric

part of the reciprocal lattice only needs any two of h, k or l to

take both positive and negative values, the number of unique

reflections that can be observed is

n ’ 20� 20� 10 ¼ 4000:

For organic and organometallic materials, the approximate

volume of the molecule can be estimated as about 20 Å3 per

non-H atom. The number of atoms in the cell is thus

m ’ 1000=20 ¼ 50:

For an isotropic model (parameters x, y, z, Uiso per atom), this

gives 4000/(50� 4) = 20 observations per refinable parameter.

For the anisotropic model (x, y, z and six Uij), this gives nine

observations per parameter. This calculation would be

equivalent to determining the gradient and intercept of a

straight line through 18 experimental observations. In the

simplified analogy of fitting a straight line to experimental

observations, one only needs two error-free observations to

determine the gradient and intercept. In the presence of

experimental errors, more observations enable one to deter-

mine their effects on the parameter values and s.u. values, and

to ensure that the model is functionally valid. For example, a

straight line, an arc of a circle and a sine curve can all be drawn

through two points. It is unlikely that 18 observations from a

linear function would also fit an arc or sine curve unless the

observations were bunched close together. The IUCr guide-

lines of ten observations per parameter for centric or heavy-

atom structures reduces the possibility of a fundamentally

wrong structure being published. For noncentric structures,

there are only one-half of the number of theoretically inde-

pendent reflections per parameter, so that the reduced

guidelines are eight observations per variable in the absence

of any atoms heavier than chlorine. Since it is often possible to

infer that the model is essentially correct by reference to the

chemistry or physics of the material, these guides represent

the most pessimistic case, and convincing refinements can be

completed with many fewer observations [see, for example,

Lozano-Casal et al. (2005), where a sample contained in a

diamond anvil cell yields only 5.7 observations per variable].

Crystallographers are in the privileged position of appar-

ently having an experimental technique that yields copious

independent data. However, not all data are of equal value for

determining the structural parameters. Some reflections,
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unidentified at the start of an analysis, may have a special

influence on some parameters. The effect is called the

‘leverage’ of an observation (Prince, 1994c), and the matrix

that shows the leverage of each reflection on each parameter is

called the ‘projection’ or ‘hat’ matrix. While for the compu-

tation of a Fourier synthesis it is important to include all

possible observations, it is quite permissible to drop obser-

vations from a least-squares refinement at will, provided the

rejection is not based on the residual. The refined parameters

should not be affected by the omissions, but their standard

uncertainties will be. The hat matrix shows which reflections

should be included in order to obtain the most reliable para-

meters and standard uncertainties (Merli et al., 2000). This is

an expensive computation that can only be completed once

the structure has been solved, so that the IUCr guidelines

represent generous margins set in the hope of including all

important data for day-to-day working.

6.2. Computing requirements

The design matrix [equation (31)] has one row for each

reflection and one column for each parameter. For a structure

with n = 100 atoms, there will be approximately 1000 para-

meters and 10 000 reflections, giving a matrix of 10 000 000

elements. The matrix is massive in terms of personal

computing and so is almost never computed and stored as

such. Instead, if solution of the least-squares equations is to be

via the normal equations [equation (34)], the normal matrix

AtWA is computed directly. This is a square matrix, with one

column and row for each parameter – in this case about

1 000 000/2 elements since the matrix is symmetric. It is usually

possible to store a matrix of this size in a modern personal

computer, but its formation takes considerable computing

effort – in this example 1000 � 1000 � 10 000/2 =

5 000 000 000 multiplications and additions. As memory

becomes ever cheaper and processors ever faster, there is a

temptation to simply increase the amount of storage allocated

in a program for the normal matrix. Because the matrix is of

the order O(n2), this rapidly becomes ineffective. The best

solution when dealing with very large structures is to use

macromolecular refinement programs, which do not involve

the formation of this matrix, and use fast Fourier techniques

for computing both the structure factors and the derivatives

(Tronrud, 2003).

6.3. Blocked matrix strategies

In the past, various modified normal matrix strategies were

designed to reduce storage and computation time for slower

and smaller computers. They can still be useful today when

dealing with moderately large systems (100–1000 atoms) and

traditional small-molecule programs. The simplest strategy is

to refine different parts of the structure in different least-

squares cycles. This method is seductive in programming terms

since it is simple to implement, but suffers from the cost of

having to compute structure factors for all the atoms in the

structure for each cycle – even the atoms that are not being

refined. An improved strategy is to compute structure factors

and derivatives for all atoms, but only accumulate certain

‘blocks’ of the normal matrix. For example, if there are n

atoms, the positional parameters can be refined in one block

(3n parameters) and the anisotropic ADPs in the next (6n

parameters), or n/2 positions and ADPs can be refined in one

block and the remaining n/2 in the next. As explained in x3.7,

the off-diagonal terms in the matrix can be expected to be

small so that the omission of carefully selected parameter

combinations has a reduced impact on the rate of convergence

of the refinement. Either of the strategies described above can

be used to define the parameter blocks – in practice it is best to

alternate the two strategies from time to time. For very large

structures, it may make sense to pass a window of refined

parameters through the structure. The idea can be extended

still further and the full matrix reduced to nothing more than a

chain of 4 � 4 (positions and Uiso) or 9 � 9 (positions and

Uaniso) blocks along the leading diagonal. See Rollett (1970)

for some suggested blocking schemes and cautions (Fig. 13).
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Figure 13
Matrix blocking schemes. Refining different parts of the structure in
different matrix blocks (or different cycles) enables relatively large
structures to be refined with normal small-molecule programs. Top row:
Large-block schemes. Middle row: Schemes that put ADPs into different
blocks. Note the small Cruickshank block containing the overall scale
factor and dummy isotropic ADP. Bottom row: Sliding window scheme. A
large block is moved through the structure with some parameters (atoms)
from the previous block included in the current block.



Whenever the full normal matrix is replaced by sub-blocks,

there is a risk of over-shifting parameters, so that partial shift

factors of about 0.8 are sometimes automatically applied. In

the extreme case for the 100-atom example above, if the full

matrix of 500 000 elements is replaced by a chain of 100 9 � 9

atom blocks, only about 4500 elements need computing, with a

corresponding massive reduction in the time (1/100) to

compute and invert the normal matrices. The cost of this

saving is that many more cycles must be computed to

approach convergence, that the path to convergence is less

certain and that no information is available about the corre-

lation between parameters. In addition, structure factors and

derivatives must be recomputed for each cycle. Nonetheless,

this strategy has been implemented satisfactorily in the auto-

matic structure development stages of the SIR2004 program

(Burla et al., 2005), where a partial shift factor of 0.5 is applied

for each cycle.

There is inevitably a large degree of correlation between the

overall scale factor and the ADPs. If the ADPs are split into

several blocks, their correlation with the scale factor can be

handled via a special 2 � 2 block consisting of the scale and a

‘dummy overall isotropic ADP’ (Cruickshank, 1961). It must

be emphasized that any normal matrix method of refinement

that does not accumulate the whole matrix simultaneously is

deliberately throwing away information about parameter

correlations and so should only be used if experience shows

that it is safe to do so. One case where this is definitely not

permitted is when there are motifs related by either pseudo-

translational symmetry or an approximate centre of symmetry

(or worse still, the space group has been incorrectly assigned

and the operators should be exact). In these cases ordinary full

matrix refinement may be unstable because of the high

parameter correlations. Refining different motifs in different

matrix blocks (or different refinement cycles) will only conceal

this correlation (leading to incorrect parameter values) and

not cure it.

Finally, the cosines of the unit-cell angles have an influence

on the correlation between parameters, so that the correlation

increases for cell angles far from 90�. For monoclinic crystals it

is better to choose a unit cell with angles close to 90�, even

if this means using a nonstandard space group. If a cell

with oblique angles must be used, parameters related by the

oblique angle must be refined together (Giacovazzo et al.,

2002).

7. Refinement strategies

It is probably true to say that, for a university structure analyst

dealing with a mix of organic and organometallic materials,

something like 50% of the samples will solve and refine

effortlessly, with the analyst only having to verify the atom-

type assignments. It is the remaining 50% that provide interest

and challenges for both the analyst and software designers.

However, even in easy cases the users (or the program) need a

strategy and methods for assessing the progress of the work.

7.1. Data assessment

It is important to have realistic expectations about the

outcome of a refinement, based upon an assessment of the

original X-ray data. In general, high redundancy or high

multiplicity of observations is more important than high

completeness (i.e. the number of independent reflections

observed as a fraction of those possible). This is because high

redundancy enables one to detect outliers and enables data

processing programs to make better compensations for defi-

ciencies in the crystal quality or data-collection procedures.

Rint (or the merging R) is a measure of the self-consistency of

the data and should be looked at as a function of I/�(I) and of

resolution. Values of Rint in excess of 0.50 (50%) for batches of

data indicate that, for the batch in question, the data are not

even self-consistent and are therefore unlikely to be consistent

with any model. The mean intensity and maximum I/�(I) of

the systematic absences should be used as a guide to the

quality of the weak data – it is often found that the weak data

are systematically over- or underestimated. A Wilson plot

deviating from the usual gentle undulation, especially an up-

turn at high angles, may indicate a problem with the data. A

Wilson plot giving an abnormally small (or even negative)

overall ADP may point to an inadequate absorption correc-

tion or warn of high pseudo-symmetry.

7.2. Getting started

Nonlinear least squares converges to the nearest local

minimum of the minimization function. If the starting model is

basically wrong, least squares is unlikely to make it come right.

Make a careful examination of the model extracted from a

Fourier map. If there are peaks (atoms) in really improbable

places, eliminate them. If there are peaks that seem to

conform to a distorted image of an expected moiety, use a

geometrical regularization procedure to improve the

geometry. If the model from direct methods or Patterson

methods looks as expected, try least squares; otherwise try

Fourier refinement. If a peak is eliminated by accident, do not

worry (unless it was the heaviest atom in the structure) – it will

reappear in a subsequent Fourier or difference map. Occa-

sionally, when a structure is solved with SIR (Burla et al., 2005)

(which displays the atomic model throughout the develop-

ment process), the initial E map looks convincing but the

structure disintegrates during the refinement stage. If this

happens, re-run the program, but stop it at the end of direct

methods and then simply refine the overall scale factor. An

examination of the reflections with the largest discrepancies

between Fobs and Fcalc will almost certainly reveal one or more

seriously mismeasured reflections, which should be elimi-

nated. Refinement should then proceed normally.

For extended lattice structures, it may be appropriate to use

geometric regularization to improve the initial model. This can

be performed with a program designed for this purpose (DLS;

Meier & Villiger, 1969) or a more general program that

permits refinement without X-ray data. An example of the use

of this technique might be where an inorganic material

undergoes a phase transition with a change of space group and
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small changes in cell dimensions. A trial structure for the new

phase can be obtained by putting the original atom coordi-

nates (plus some symmetry-equivalent ones if necessary) into

the new cell and refining with appropriate distance restraints.

The main problem is creating the very large number of

distance restraints (which will generally involve symmetry

elements) that are needed to define the material.

7.3. Proceed cautiously

If the model is very good, a full anisotropic refinement may

be possible immediately. However, if the model is unreliable

or data are known to be poor or scarce, a more cautious

approach is required. Start with pure statistical weights if you

are confident in the estimates of �(I); otherwise use unit

weights for F or modified unit weights for F 2 refinement

(Rollett, 1984). The overall scale factor (which puts the

observed structure factors onto an absolute scale) and average

isotropic ADP can be estimated from the Wilson plot – start

with these values and only refine positional parameters for a

few cycles. During the development of a structure, it is not

necessary (or useful) to refine each stage to completion. It is

generally advisable to compute a few cycles of isotropic

refinement before using an anisotropic model. If there are a

few very heavy atoms and lots of light ones, some people

recommend extending the anisotropic model first to the heavy

atoms and then to all atoms. Careful examination of the ADPs

at this stage may reveal misidentified atoms. Thus, if a C atom

(six electrons) is erroneously assigned as an N atom (seven

electrons), least squares will try to dissipate the extra electron

by increasing the ADP (compared with near neighbours). This

may be evident in a graphics program (Fig. 14) or via the

Hirschfeld (1976) test.

If the model contains a totally false atom, in the least

squares procedure its ADP will rise to a very large value,

indicating that it should be removed from the model. Least

squares can reveal spurious atoms, but it cannot introduce new

ones. Missing atoms can be inferred from the chemistry [e.g. a

phenyl group revealing three or more atoms can usually be

improved geometrically (Fig. 15)] or found in a Fourier

synthesis. There is some difference of opinion as to when a

search should be made for H atoms – or even whether a search

should be made at all. If one is going to look for the H atoms,

one argument proposes that difference Fourier maps should

be computed at the end of the isotropic ADP refinement, on

the basis that anisotropic ADPs may elongate to try to simu-

late the missing H atoms. The alternative argument is that,

since anisotropic ADPs are probably a better representation

of the actual physical state, their inclusion should give more

reliable estimates of the phase angles and hence a sharper

difference map. The best solution is probably to place

geometrically as many H atoms as possible and refine the

atoms they are bonded to anisotropically. If the other H atoms

cannot be found when their neighbouring atom is anisotropic,

restore it to isotropic and try again. For extremely difficult

cases, the Dunitz & Seiler (1973) weighting scheme may help

(x3.5.4).

Having placed or found the H atoms, there is also much

debate about their treatment during refinement. With the use

of modern data from a good crystal, Harlow (1998) remarks ‘I

have a lot of confidence in structures where the hydrogen

atoms were found and refined to reasonable positions (e.g.

0.85 < C—H < 1.05 Å) and with reasonable thermal para-

meters (e.g. 2.0 < Biso < 6.0 Å2).5 The hydrogen atoms appear

to be very sensitive indicators of a reliable structure and

simply don’t refine well if there are even modest errors in the

data or the model, or if the data is insufficient for the struc-

tural analysis.’ However, since for the majority of organic and

organometallic compounds there are roughly as many H as

non-H atoms, this strategy raises the number of refined

parameters by about 50%, running the risk that the analysis

will fail to meet the IUCr parameter:observation ratio

criterion. The most widely used strategies either refine the H

atoms with riding constraints to their neighbouring atoms,

refine them with copious restraints or simply recompute their

positions geometrically after each cycle of refinement. Unless

the analysis is specifically aimed at locating H atoms, their

exact treatment is not really important. H atoms must be

included somewhere near their ‘real’ positions because of the

contribution they make to Fcalc, but the exact parameter values

do not have too much significance.
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Figure 14
In the left image, the N atom of the nitro group has been misassigned as
an O atom, O3. Note that the ADP is relatively large, as least squares tries
to dissipate the extra electron. In the right image, the same atom has been
misassigned as a C atom, C3. In this case, least squares has compressed
the atom to try to increase the electron density to make up for the missing
electron.

Figure 15
The left image is an incomplete triphenylphosphine group from the E
map for a Z0 = 3 coordination compound containing over 180 non-H
atoms. In the middle image local geometry has been used to add four ‘Q’
peaks at approximately correct places, and in the right image one whole
phenyl group has been ‘regularized’ (Q1 plus the black atoms). In the
original work, completion and regularization were performed on all 27
phenyl groups, leading to a satisfactory refinement.

5 B = 8�2U.



Fcalc ’
PNon�H atoms

j

fj exp 2�i hxj þ kyj þ lzj

� �� �
þ

PH atoms

j

fj exp 2�i hxj þ kyj þ lzj

� �� �
: ð60Þ

Omitting the H atoms altogether leads to a systematic

underestimation of Fcalc [equation (60)] and hence to a

systematic bias in Fobs� Fcalc, which will have a small effect on

the refinement of other atomic parameters.

Minor parameters such as extinction (x7.4.2) or the Flack

parameter (x7.4.4) should only be introduced once the atomic

model is seemingly resolved. To obtain valid values and

standard uncertainties, these parameters must be refined

together with the other refinable parameters.

7.4. Out-of-range parameter values

Occasionally during a refinement, parameters may take on

values that are outside of their physically sensible range. There

are two rather different ways in which a parameter may be out

of range. If the discrepancy is of similar magnitude to the

parameter standard uncertainty then the deviation is not

significant. If the discrepancy is of the order of several stan-

dard uncertainties then there is almost certainly either

something systematically wrong with the data or a serious

problem elsewhere in the model, so that refinement is being

performed in the region of a false minimum.

7.4.1. ADPs. Quite reliable values for the ADPs can be

estimated by looking at the results for similar materials under

the same conditions. For an organic or organometallic material

at room temperature, Uequiv is generally in the range 0.04–

0.06 Å2, and at low temperature, 0.02–0.04 Å2. For extended

lattice materials, these values might be halved. The ADPs are

always correlated with the overall scale factor. Note that,

although the refined scale factor k is optimized to minimize

(Yobs � kYcalc)
2, in general it should be similar to the Wilson

plot scale factor or to k0, where k0 =
P

Fobs /
P

Fcalc. Large

differences between these three definitions may indicate an

incorrect molecular composition being used for the Wilson

plot, incorrect atom assignments in the trial structure or a few

very badly measured reflections. As explained above, very

large ADPs for a few atoms probably mean that they are

spurious and should be removed from the model, or that they

are part of an entity that is disordered in some way and which

needs more careful modelling. If most of the ADPs are large,

verify the quality of the data and begin to think about looking

for twinning or the possibility that the structure is modulated.

Look carefully at the original diffraction images for split

reflections or weak satellite reflections.

If all the ADPs are unusually small, or possibly negative for

Uiso and nonpositive definite for Uaniso, check the variation in

absorption correction for the value of 
r (where r is half the

medial dimension of the crystal and 
 is the absorption

coefficient) in Table 6.3.3.3 of International Tables for Crys-

tallography (1995, Vol. C) at the minimum and maximum

observed � values. For example, anisotropic refinement of

inorganic materials containing very heavy atoms can lead to

nonpositive definite ADPs if the only absorption correction

applied is based on discrepancies between equivalent reflec-

tions (multi-scan method; Blessing, 1995). This correction

effectively reduces the sample to a small sphere. This sphere

may still give rise to a substantial variation in the absorption as

a function of �, which should also be corrected for. Fig. 16

shows the �-dependent correction to be applied to samples

with different values of 
r. For a value of 
r = 3.0, the data

measured at 30� will be twice as strong as they should be,

relative to data at 0�, i.e. giving the appearance that the ADPs

are small.

If just a few atoms go nonpositive definite, this may indicate

that there is some unidentified systematic error with the data

or that the model is inadequate in some unidentified way.

When the source of the problem cannot be located, the correct

way forward is to look at the parameter standard uncertain-

ties. If these are large compared with the parameter values

themselves then the X-ray data do not contain sufficient

information to define the parameter fully, and it is appropriate

to apply the ‘brutal Bayesian’ strategy of setting the parameter

to a ‘reasonable’ value and not refining it further, or to make it

subject to restraints. If the s.u. is relatively small, restraints can

be tried, but it is important to verify that the observed and

target values do not differ by more than three times the

requested standard uncertainty. If the restraint residual is

large, there is something seriously wrong, and data should be

re-collected from a different sample.

7.4.2. Secondary extinction parameter. Secondary extinc-

tion affects the most intensely diffracted beams from a high-

quality crystal. In effect, so much of the incident radiation is

diffracted by the side of the crystal facing the source that the

opposite side receives an attenuated beam. This means that

the integrated intensity of the diffracted beam is less than it

should be (Larson, 1970). For most X-ray work, a single

isotropic parameter is refined to compensate for this effect.

For neutrons, an anisotropic model is often used.

The decision to refine an extinction correction is usually

based on an examination of an Fobs versus Fcalc plot. If this

shows Fobs falling below the expected Fcalc value for the strong
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Figure 16
Absorption correction for spheres. Curves at intervals of 0.5 in 
r,
maximum = 5.0. For 
r of 3.0 (dotted curve), the correction at 0� is twice
that at 30�.



reflections, or if the ratio hFobsi/hFcalci is substantially below

unity for batches of high-intensity reflections, then an extinc-

tion parameter may need refining. If after refinement the

value of the extinction correction is small compared with its

standard uncertainty, it should be reset to zero and not refined

further. A very negative value indicates something seriously

wrong with the data or the current model.

7.4.3. Twinning. The phenomenon of twinning was rela-

tively well understood when intensity data were measured

photographically (e.g. Dunitz, 1964), but much of this

knowledge was forgotten during the period dominated by

serial diffractometers. Area-detector instruments have once

again made working with twinned crystals relatively simple

(Cooper et al., 2002; Müller et al., 2006). For the moment, we

can consider a sample crystal that consists of two parts for

which the reciprocal lattices interpenetrate in a rational way.

This means that some (or all) of the diffraction spots will

overlap, so that the measured intensities will contain contri-

butions from both parts of the sample. Since the diffraction

effects from the two components are not coherent, the

observed intensity is simply the sum of the two component

intensities,

F2
obs ¼ t1F2

component1
þ t2F2

component2
; ð61Þ

where t1 and t2 are the fractions of the sample corresponding

to the two components and are parameters to be included in

the refinement. The constraint t1 + t2 = 1.0 must be applied if

the overall scale factor is also being refined. The presence of

twinning may not always be evident when the data are being

collected – it may become evident during refinement because

the analysis fails to converge to a reasonable R factor, because

there is apparent disorder that cannot be resolved with any

reasonable model, because there are inexplicable values for

some of the ADPs or because there are a substantial number

of reflections for which Fobs is significantly higher than Fcalc.

The twin fraction values must fall in the interval 0–1; values

outside of this are physically meaningless. A very small (or

negative) value for a twin fraction coupled with a large stan-

dard uncertainty indicates that there is no detectable diffrac-

tion from that component, which should therefore be removed

from the model.

7.4.4. Flack parameter. The Flack parameter (usually given

the symbol x) is defined by equation (62):

Icalc h; k; lð Þ ¼ ð1� xÞ Fcalc h; k; lð Þ
�� ��2þx Fcalc

�hh; �kk; �ll
� ��� ��2; ð62Þ

where hkl and �hh �kk�ll are a Friedel pair of reflections. Physically,

equation (62) represents the diffraction from a crystal twinned

by inversion and consisting of two domain states, the first

domain state being that of the model crystal structure and the

second being that of the inverted crystal structure. The mass

fractions of the two domain states are x and 1 � x. For an

enantiopure compound, a value of 0.0 for x indicates that the

molecules in the crystal are of the same chirality as the

structural model, whereas a value of 1.0 indicates that the

chirality of the model and the molecules in the crystal are

inverted one with respect to the other. x should fall in the

interval 0–1, and values outside of this interval are physically

meaningless. Flack & Bernardinelli (2000) show that if the s.u.

on the Flack parameter is greater than 0.30, the X-ray data

contain no information for obtaining a reliable value for the

parameter itself. In this case, the absolute configuration of the

molecules can only be assigned, if at all, by non-X-ray means,

and the value of x can be set to zero and not refined. It may be

appropriate to report x and its s.u. to demonstrate that the

calculation was actually performed. If the s.u. is small enough

(< 0.04) then the parameter itself can be evaluated. If x falls

close to zero or unity then the absolute configuration has been

determined. If it falls within this range, but is significantly

distant from the bounds, the material is probably twinned by

inversion. If it falls significantly outside the range, there is

probably something wrong with the data or other aspects of

the model. In this case, one strategy would be to reset x to the

closest limiting value and accept the rise in the residualP
w(|Fobs| � |Fcalc|) as an indicator of the problems with the

analysis. In any case, the refined value of x and its s.u. should

be reported. Fig. 17 illustrates this graphically.

In the event that the Flack parameter refines to a significant

value essentially equal to unity, the refined model is the

inverted image of the real crystal. To make the model and the

crystal correspond, the model structure must be inverted. For

most of the noncentrosymmetric space groups in the standard

settings given in International Tables for Crystallography,

Vol. A, this can be achieved simply by replacing all atomic

coordinates x, y, z by �x, �y, �z (the ADPs are centrosym-

metric so will not need changing). However, within the 11

pairs of enantiomorphous space groups, the space group will

also need to be interchanged with the other member of the

pair. Moreover, there are seven space groups where the

coordinate inversion must be undertaken at some particular

point other than the origin (Table 2).

7.5. Disorder

Substitutional disorder in inorganic materials (xx4.1.2 and

5.1.7), in which one element is sometimes replaced by other

elements, can be dealt with either by a constraint that fixes the

sum of the shifts in the site occupancies to be zero [equations

(42) and (43)] or by a similarity restraint [equation (58)]. Such

analyses are notoriously difficult and unstable. This is because
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Table 2
The 11 enantiomorphous space-group pairs and the seven space groups
requiring a change of origin when the structure is inverted.

The enantiomorphic space groups

P31 P32 P61 P65 P41 P43

P3112 P3212 P62 P64 P4122 P4322
P3121 P3221 P6122 P6522 P41212 P43212

P6222 P6422 P4132 P4332

Space groups requiring a change of origin on inversion

Fdd2 I41 I4122
I41md I �441cd
I42d F4132



the site occupation factors are very highly correlated with the

ADPs (Fig. 18). The best chance of resolving the occupation

factors and ADPs requires good quality, absorption-corrected

data covering an extended resolution range. Even so, it is

generally necessary to assign a single ADP to the disordered

atoms and possibly assign it a fixed value by analogy with

neighbouring atoms.

Positional disorder in organic and organometallic

compounds raises different problems, and it is not uncommon

for more time to be spent on this part of the structure than on

all the rest of the analysis. Symptoms of positional disorder

include the following.

7.5.1. Positional parameters. If free refinement leads to

unacceptable bond lengths and inter-bond angles, these should

be restrained either to known values or to preserve chemically

appropriate symmetry.

7.5.2. Site occupation factors. The shifts in these will

generally be constrained to conserve a total occupancy of

unity.

7.5.3. ADPs. The following problems may arise.

(1) Cigar-shaped ADPs. Anisotropic ADPs that are

extremely elongated compared with their neighbours are

always suspicious. The least squares procedure may have tried

to ‘stretch’ the ellipsoid so that it includes two or more atomic

positions. Delete the troublesome atoms from the model (or

set their site occupation factors to zero) and view a difference

electron density map in a suitable graphical program. If the

electron density at the site of the troublesome atoms is more

or less continuous then the cause is likely to be dynamic

disorder or structural modulation. If the structure really does

consist of two alternative sites for the atom, it may be possible

to ‘split’ the atom into two partially occupied sites located near

the extremities of the elongated ADP. When the refinement of

the partial atoms is unstable (unacceptable ADPs or bond

lengths, or the two atoms running together again), restraints or

constraints may be needed. Imagine a CF3 group (Fig. 19),

with the F atoms split over two sites F 0n and F 00n . If the aniso-

tropic ADPs cannot be refined independently for each F atom,

constraints can be used to make the corresponding compo-

nents of each atom ride together (F 0nUij = F 00n Uij) or restraints

can be used to ensure they are similar (F 0nUij ’ F 00n Uij). These

subsidiary conditions are not completely appropriate – they

relate the pairs of ellipsoids by a centre of symmetry rather

than a twofold axis – but are probably adequate in most cases.

Bond-stretching restraints can be applied to each C—F bond,

and may also be applied in the F� � �F direction of atoms in the

same disordered moiety. Note that F 0nUij ’ F 00mUij similarity

restraints (e.g. F 01–F 002 ) are inappropriate since the principal
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Figure 17
Domains of values of x, its u and the inversion-distinguishing power: (a)
the physical domain of x; (b) the statistical domain of x; (c) the domain of
x where the crystal and the model are inverted one with respect to the
other; (d ) the statistical domain of a crystal untwinned by inversion; (e)
the statistical domain of a crystal twinned by inversion; ( f ) the domain of
strong inversion-distinguishing power; (g) the domain of enantiopure
sufficient inversion-distinguishing power; (h) the domain of weak
inversion-distinguishing power. For ( f ), (g) and (h), the horizontal lines
are of varying intensity. In the part of the line that is black, the inversion-
distinguishing power may be deduced from the value of u alone. In the
part of the line that is grey, the inversion-distinguishing power may not be
deduced from the value of u alone. In (b), (d ) and (e), arbitrary values of
u have been drawn and in practical applications the value of u yielded by
the experiment must be used. (Flack & Bernardinelli, 2000.) Reproduced
by permission of the authors and IUCr.

Figure 18
Scattering factors for Ca2+ and Fe2+ (see x5.1.10). Note that until sin(�)/�
is about 0.5, the two curves are almost related by a simple scale factor. An
even closer fit could be achieved in this range by applying an ADP factor
to one or both of them. This explains why the occupation numbers and
ADPs are strongly correlated. Taken over a longer resolution range, the
dissimilarity between the curves becomes more evident, so that refined
parameters become less correlated.



axes of all of the ellipsoids will be tangential to the circle

passing through the F atoms.

(2) Extremely thin disk-like ADPs. These may indicate

some kind of two-dimensional disorder, but are more likely to

indicate that there is something more seriously wrong with the

data or the model, such as twinning.

(3) Physically unrealistic ADPs in a Z0 > 1 structure. In this

case, the Hirshfeld condition is not satisfied for some atom

pairs, or the ellipsoid for one or more atoms is unexpectedly

small, large or eccentric. As explained above, pseudo-

symmetry can have a degrading effect on a refinement, which

may need to be controlled by the use of restraints. However, if

the pseudo-operator looks exact, it may be that the real and

the pseudo-operators have been misassigned. For example, if

there is an additional good pseudo-centre of symmetry in P�11,

try shifting the origin so as to make the former pseudo-centre

into the true centre.

7.5.4. Satellite peaks in the difference Fourier synthesis
adjacent to existing atoms. If these occur symmetrically

around a heavy atom (e.g. a metal) and at unreasonable

interatomic distances, they may be due to uncorrected

absorption effects. In an Fobs or 2Fobs � Fcalc map, they could

be due to termination-of-series effects if the data in the

highest-resolution shell are still appreciably strong. If such

peaks are due to disorder, do not put too much reliance on the

atomic positions found by an automated peak-search program.

These find local maxima, which in the case of a broad and

diffuse feature may be unrealistically precise. The best

procedure under these circumstances is to look at the

contoured three-dimensional electron density maps (see

Fig. 20).

Whenever a disordered model is proposed, it is important

that it is chemically feasible. It must be possible to construct

acceptable patterns of connectivity between the proposed

atoms, with acceptable bond lengths and angles. Since disor-

dered atoms are generally only poorly defined by the X-ray

data, it is permitted and often desirable to restrain geometric

features and ADPs to normal values.

For very highly disordered systems, such as an unsymme-

trical solvent molecule disordered over a site with �33 symmetry,

solvent molecules disordered in an infinite channel or crystals

solvated with a mixture of solvents, modelling with partial

atoms can become unrealistically complicated. In this situa-

tion, a strong argument can be made for modelling the solvent

volume simply with the discrete Fourier transform of the

residual electron density in the solvent-accessible volume

[BYPASS (van der Sluis & Spek, 1990); PLATON/SQUEEZE

(Spek, 2003)]. In equation (1) we saw that the structure factor

could be represented as an integral of the electron density, and

in equation (3) we represented it as the sum of contributions

from resolved atoms. SQUEEZE uses a hybrid structure

factor expression,

Ahkl ¼
P

j

fj cos 2� hxþ kyþ lzð Þ

þ
R
v

�xyz cos 2� hxþ kyþ lzð Þ@v ð63Þ

(where the integration is over the solvent-accessible volume

v), with a similar expression for the ‘B’ part. The first term is a

summation over the resolved atoms. The integral in the second

term is actually replaced by a summation over small elements

from the unresolved solvent-accessible parts of the electron

density map. The recovery of the solvent contribution involves

an iterative series of difference Fourier maps. The result is a

solvent contribution Fsolv with a phase that differs from the

phase of Fcalc. The PLATON/SQUEEZE program is inde-

pendent of any refinement program and integrates smoothly

with refinement programs, such as CRYSTALS, that can take

fixed contributions to the structure factor calculation. Alter-

natively, a ‘solvent-free’ Fobs (or Fobs
2 ), calculated by

subtracting Fsolv from Fobs as complex numbers, can be used

for the refinement of the ordered part of the structure with

programs that do not have that option. In principle, this
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Figure 19
A rotationally disordered CF3 group. If the data are of good quality and
the F atoms have low dynamic disorder, it may be possible to refine them
without constraints or restraints. Improbably eccentric ADPs can be
controlled by the use of bond-stretching restraints along the C—F
directions, and diagonally between the F atoms in each moiety. Weak
ADP similarity restraints can be set up between each F atom and its
counterpart by disorder.

Figure 20
Map Interpretation. The left-hand figure was computer interpreted as a
phenyl group with two spurious peaks. The right-hand figure was the
manual interpretation as a disordered methylcyclopentadienyl ligand.
(Prout & Daran, 1978.) Reproduced by permission of the authors and
IUCr.



subtraction process should be iterated. However, in practice

this is found to be rarely necessary. The solvent contribution

should be added again to Fcalc, after the convergence of the

refinement of the model, for comparison with the original Fobs.

The result of both approaches is approximately the same.

7.6. Weights and outliers

Initial refinement should always be performed with a simple

weighting scheme – unit weights for F, quasi-unit weights for

F 2 or 1/variance for either. Once the model is fully para-

meterized the data should be examined for outliers, by looking

at either a table of disagreeable reflections or a plot of Fobs

versus Fcalc. Fig. 21 shows how a few outliers can spoil the fit of

the bulk of the data (top figure).

If there are more than just a few outliers, be suspicious of

both the data and the model. If there are several independent

estimates of the errant reflections, check that they are in

agreement among themselves. If they are in agreement, this

may indicate either a systematic error in the data collection

procedure or a failure in the model. The output from the data

processing software should give an indication of the overall

self-consistency of the data (Rmerge or Rint) and may also list

groups of reflections having particularly poor self-consistency.

If possible, examine the original data. If the data were

collected on an area-detector machine, try to look at the actual

images.

Once the model has been finalized and the outliers dealt

with, the weights should be optimized. For optimized weights,

the overall GoF has virtually no diagnostic use, but the

weighted residual, w�2 (where � can be in terms of F or F 2),

should be examined as a function of F and of resolution. A

suitable weighting scheme will have constant w�2 for all

systematic rankings of the data (Cruickshank, 1961). If the

application of weights causes substantial shifts in the atomic

parameters, the weights may need to be reoptimized. When-

ever this is done, the results must be carefully scrutinized,

since it is possible for repeatedly reoptimized weights to

discriminate in favour of a false solution.

7.7. A reasonable model

At the end of an analysis, the model should be assessed

against the background of known related structures. If the

current structure has totally novel features, consider very

seriously the possibility that it is incorrect (Murphy et al.,

1998). If possible, impose a more reasonable geometry onto

the model and use this to start a new refinement. Alter-

natively, try solving the structure from scratch using different

starting criteria. Failing all else, apply random perturbations to

the structure and verify that it refines back to the same final

solution.

If the model makes chemical sense but some groups of

ADPs seem unexpectedly large, try to ascertain (possibly with

the aid of a Dreiding model6) if the groups could be in a state

of fluxion or libration (rotatory vibration). Libration can be

measured by performing a TLS analysis of the Uij parameters

of molecular fragments (Schomaker & Trueblood, 1968). T is a

measure of the overall translational vibration of the group and

L a measure of the overall libration. Verify that the T and L

subtensors have positive diagonal elements and reasonable

magnitudes, and that the Uijs back-computed from T, L and S

are substantially the same as the least-squares refined values.

If a realistic TLS model cannot be fitted to the anisotropic

ADPs, look again for disorder. A large diagonal element in L

means that there is substantial libration. This can have a large

effect on bond lengths, making them appear shorter than they

are by a factor much larger than the least-squares standard

uncertainty. For a bond lying substantially in the plane of

maximum libration, the adjusted bond length is approximately

dc ’ do(1 + L33/2), where do is the uncorrected bond length

and L33 is in radians2 (Haestier et al., 2008). Fig. 22 shows a

ruthenium–Cp* compound in which the Cp* ligand is under-

going substantial libration. Table 3 shows the substantial
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Figure 21
Fobs–Fcalc plots for an organic material. Top image: The structure is fully
parameterized, including hydrogen, but the refinement has converged to
R = 15%. The model has reasonable bond lengths; the ADPs are a little
smaller than expected. There are four reflections where Fobs is much
lower than Fcalc. Note that the bulk of the data lie above the line of unit
gradient and have a wide spread. Bottom image: Three reflections
(circled) have been flagged as outliers because Fobs << Fcalc and omitted
from the refinement, which converged to 5% with reasonable ADPs. Note
that the bulk of the data now lie close to the line of unit gradient and have
less spread. Examination of the data shows that these three reflections
occur at � < 4� and are probably partially occluded by the beam trap or its
support.

6 Dreiding models are built from modules consisting of an atomic centre with
‘bonds’ pointing out at angles appropriate for the expected hybridization. The
modules can be plugged together to make molecular fragments in which the
valence distance and angles are conserved but the dihedral angles are
unconstrained.



changes in bond lengths that occur when a libration correction

is applied (Busing & Levy, 1964).

7.8. Under- and over-parameterization

The IUCr guidelines for the observation:parameter ratio

are only guidelines, and the model refined in every structure

analysis must be judged on its own merits. If there are very

many high-quality X-ray observations, they may easily support

the refinement of a very detailed model – for example, the

inclusion of a more complex representation of the ADPs than

the usual Gaussian (Trueblood et al., 1996).

If the data are poor or sparse, the choice of parameters to be

refined becomes more difficult. If more parameters are refined

than the data will support, their values risk becoming mean-

ingless – hence Stewart Pawley’s comment ‘It is often said that

with enough parameters you could fit an elephant.’ Let us coin

the phrase ‘elephant parameter’ for any model parameter that

has no relevance to reality. Now let us ask ourselves the

question: how many elephant parameters did we use in our

last model refinement (Pawley, 1972)? In macromolecular

crystallography, this over-parameterization is frequently called

‘over refinement’. As explained in x4.1.5, it is not uncommon

for poor or sparse data to require a complex model in order to

predict a reasonable fit to the observations. Examples of

complexity include resolvable positional disorder and very

aspherical anisotropic ADPs. If, under free refinement, these

give models with physically unacceptable parameters or

derived parameters (e.g. weird bond lengths) accompanied by

large standard uncertainties, the recommended procedure is to

use restraints to regularize the model. The restraints should be

chosen on the basis of sound physical arguments and should

be assigned realistic uncertainties. In general, similarity

restraints are easier to justify than actual numerical target

values. Table 4 shows the consequences of applying reasonable

and unreasonable restraints to one of the phenyl groups in

tetraphenylene (which, forming good quality stable crystals in

a centred space group and having chemical fourfold symmetry,
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Table 3
Application of a libration correction to a ruthenium–Cp* compound.

(a) The principal axes of the ADPs of a librating Cp* group (Å2).

C1 0.0393 0.0521 0.1858
C2 0.0314 0.0616 0.2063
C3 0.0233 0.0700 0.2641
C4 0.0266 0.0801 0.2555
C5 0.0420 0.0842 0.1724

C11 0.0716 0.0949 0.3856 Might be split
C12 0.0488 0.0962 0.4511 Might be split
C13 0.1059 0.1109 0.6858 Might be split
C14 0.0638 0.1430 0.8415 Might be split
C15 0.0640 0.1104 0.8912 Might be split

(b) The TLS tensors. Note the value of L33. This large libration results in a
significant apparent shortening of the bond lengths.

Centre of gravity, centre of libration �0.1809 �0.1139 �0.2056
Centre for which S is symmetric �0.0916 �0.0972 �0.1615

L T S

14.35 0.00 0.00 0.05 0.00 �0.01 0.22 0.00 0.00
0.00 40.14 0.00 0.00 0.09 0.01 0.00 0.19 0.00
0.00 0.00 249.57 �0.01 0.01 0.03 0.00 0.00 �0.03

(c) The bond-length adjustments are almost ten times as large as the s.u.
computed from the normal matrix.

Uncorrected Corrected Difference

Tangential bonds
C5—C4 1.416 (5) 1.474 0.058
C5—C1 1.432 (5) 1.492 0.060
C4—C3 1.416 (5) 1.478 0.062
C3—C2 1.414 (5) 1.470 0.056
C2—C1 1.411 (5) 1.473 0.062

Radial bonds
C15—C5 1.636 (5) 1.705 0.069
C14—C4 1.616 (5) 1.680 0.064
C13—C3 1.611 (5) 1.682 0.071
C12—C2 1.610 (5) 1.676 0.066
C11—C1 1.608 (5) 1.672 0.064

Figure 22
The Cp* ligand, which lies above the Ru atom, is clearly undergoing
librational motion. This leads to a shortening of both the radial and the
tangential bonds, as determined with X-rays. The correction for the
shortening is about ten times the s.u. values of the bonds as determined by
the least-squares refinement.

Figure 23
Idealized difference electron density through the site of a heavy atom that
was refined with an isotropic ADP when an anisotropic model would have
been more appropriate. The negative (dotted) lobes indicate that the
model has too much density in these regions.



is an excellent material for testing data-collection and refine-

ment strategies). There are copious good data, so that a

reasonable restraint has no impact. An unreasonable restraint

with a tiny uncertainty causes the model to come into conflict

with the X-ray data, so that the R factor rises.

Under-parameterization is the opposite situation, in which

the model is too simple, for example refining a routine

organometallic compound using only isotropic ADPs or

omission of a solvent molecule. Symptoms of under-para-

meterization may include unexpectedly high conventional R

factors, structured noise in a difference map (Fig. 23) or a

systematic trend in Fobs � Fcalc. In addition, the trial structure

may appear distorted or have unrealistic ADPs as the

refinement tries to adjust the available parameters to

compensate for the missing parameters.

8. Conclusion

In the introduction we said that there is no simple recipe for

refining difficult structures. This paper has described some

commonly available tools and hopefully provided enough

theoretical background to enable them to be applied

successfully. At all times, it must be remembered that the

atomic model is only a model and that there may be several

marginally different models that yield structure amplitudes in

fair agreement with the observed values. If we had more

reliable estimates of the errors in the data, and an under-

standing of the consequences of shortcomings in the model,

purely statistical tests might select between alternative models.

Even if we have good statistical information, final distinctions

have to be made on the basis of experience and the general

consensus of the crystallographic community. This may sound

dangerously close to ‘chi-by-eye’ (Press et al., 2005), but it is

perhaps better than putting blind faith in insecure statistical

inference. If a structure ‘looks wrong’, it probably is wrong.

The converse is not necessarily true. Harlow (1996) divides

refined structures into four classes – ‘quality structures’, which

are the gold standard analyses obtained by careful work on

very good crystals; ‘fuzzy structures’, which are the normal

run-of-the-mill products from routine

analytical work; ‘incorrect structures’,

which are ones where a fundamental

error has been made; and finally ‘junk’

structures. This final class could be

subdivided. A structure could satisfy

Harlow’s ‘junk’ criteria simply as a result

of careless work, in which case the result

is worthless. However, if the sample

preparation and data collection have been

carefully performed, failure to refine to a

conventionally fuzzy structure (or better)

is an indication that something unusual is

happening in the diffraction process,

which may be worth reporting and rein-

vestigating. Nature is not always so obli-

ging that she invariably follows the laws

that we make. Watkin (1994) points out

that the conventional space groups are just mathematical

points in what is almost certainly a continuum. Modulated,

incommensurate and quasi-crystals stretch the scientific

imagination. The problem for the journals is to try to distin-

guish between good work on bad crystals and bad work on

good crystals. If all you have is a CIF, the two cases must look

very similar.

This paper is largely a collection of other people’s flowers,

selected to show the sometimes conflicting ideas about an

optimal strategy for structure refinement. I am very grateful to

the referees for their helpful comments, and to many

colleagues for their suggestions for improvements and addi-

tions.
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0.01 Å, showing that the restraint is inappropriate. When the requested s.u. is reduced to 0.001, this has a
serious effect on the model. The restraint is now obeyed, with the consequence that the X-ray R factor
rises substantially.

Type s.u. R Rw C1—C2 C1—C6 Mean � Residual

Free – 4.16 10.50 1.3928 (19) 1.4011 (18) 1.39695 0.00415 –
Modest 0.01 4.16 10.50 1.3928 (18) 1.4010 (18) 1.39690 0.00410 0.00410
Mean
Harsh 0.0001 4.20 10.61 1.39691 (10) 1.39694 (10) 1.39693 0.00002 0.00002
Mean
Modest 1.29 0.01 4.16 10.52 1.391 (2) 1.3992 (19) 1.39510 0.00410 0.10092
Harsh 1.29 0.0001 12.17 29.28 1.29005 (10) 1.29006 (10) 1.29006 0.00001 0.00006

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB120
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=kk5025&bbid=BB12


Burzlaff, H., Bohme, R. & Gomm, M. (1978). Computing in
Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H.
van Koningsveld & G. C. Bassi, pp. 75–79. Delft University Press.

Busing, W. R. & Levy, H. A. (1964). Acta Cryst. 17, 142–146.
Coehlo, A. (2004). TOPAS-Academic. Bruker AXS, Karlsruhe,

Germany.
Cooper, M. J. & Rouse, K. D. (1968). Acta Cryst. A24, 405–410.
Cooper, R. I., Gould, R. O., Parsons, S. & Watkin, D. J. (2002). J.

Appl. Cryst. 35, 168–174.
Cowtan, K. & Ten Eyck, L. F. (2000). Acta Cryst. D56, 842–856.
Cruickshank, D. W. J. (1950). Acta Cryst. 3, 10–13.
Cruickshank, D. W. J. (1961). Computing Methods and the Phase

Problem in X-ray Crystal Analysis, edited by R. Pepinsky, J. M.
Robertson & J. C. Speakman, pp. 43–46. London: Pergamon.

Cruickshank, D. W. J. (1969). Crystallographic Computing, edited by
F. R. Ahmed, pp. 187–197. Copenhagen: Munksgaard.

Cruickshank, D. W. J., Sime, J. G., Smith, J. G. F., Truter, W. R., Wells,
M., Rollett, J. S. & Freeman, H. C. (1964). Edition 1. Computing
Laboratory, University of Oxford, UK.

Debaerdemaeker, T., Germain, G., Main, P., Tate, C. & Woolfson,
M. M. (1987). MULTAN87. University of York, UK.

De Titta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H. (1975).
Acta Cryst. A31, 472–479.

Dunitz, J. D. (1964). Acta Cryst. 17, 1299–1304.
Dunitz, J. D. (1995). X-ray Analysis and the Structure of Organic

Molecules. Basel: Cornell University Press, Verlag HCA.
Dunitz, J. D. & Seiler, P. (1973). Acta Cryst. B29, 589–595.
Edwards, A. W. F. (1992). Likelihood. Baltimore: The John Hopkins

University Press.
Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
Flack, H. D. & Bernardinelli, G. (2006). Inorg. Chim. Acta, 359, 383–

387.
Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499–506.
Gavezzotti, A. & Flack, H. D. (2005). http://www.iucr.org/iucr-top/

comm/cteach/pamphlets/21/index.html.
Giacovazzo, C., Monaco, H. L., Artoli, G., Veterbo, D., Ferraris, G.,

Gilli, G., Zanotti, G. & Catti, M. (2002). Fundamentals of
Crystallography, 2nd ed., p. 105. Oxford: Oxford Science Publica-
tions.

Gill, P. E., Murray, W. & Wright, M. H. (1981). Practical Optimisation.
London: Academic Press.

Glusker, J. P., Lewis, M. & Rossi, M. (1994). Crystal Structure Analysis
for Chemists and Biologists. New York: VCH Publishing Inc.

Haestier, J., Sadki, M., Thompson, A. L. & Watkin, D. J. (2008). J.
Appl. Cryst. 41, 531–536.

Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P.
& Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252.

Harlow, R. (1996). J. Res. Natl Inst. Technol. 101, 327–339.
Harlow, R. (1998). The Hydrogen Challenge. http://www.pitt.edu/

~geib/challenge.html.
Harris, G. W. & Moss, D. S. (1992). Acta Cryst. A48, 42–45.
Herbstein, F. H. (2000). Acta Cryst. B56, 547–557.
Herrendorf, W. (1993). HABITUS. University of Karlsruhe,

Germany.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.
Hirshfeld, F. L. & Rabinovich, D. (1973). Acta Cryst. A29, 510–513.
Hodgson, L. I. & Rollett, J. S. (1963). Acta Cryst. 16, 329–335.
Hoppe, W., Gassman, J. & Zechmeister, K. (1970). Crystallographic

Computing, edited by F. R. Ahmed, pp. 26–36. Copenhagen:
Munksgaard.

Hughes, E. W. (1941). J. Am. Chem. Soc. 63, 1737–1752.
Huml, K. (1980). Computing in Crystallography, edited by R.

Diamond, S. Ramaseshan & K. Ventatesan, pp. 12.01–12.22.
Bangalore: Indian Academy of Sciences.

Irmer, E. (1990). PhD thesis, University of Göttingen, Germany.
Kassner, D., Baur, W. H., Joswig, W., Eichhorn, K., Wendschuh-
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