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ABSTRACT: Organic−inorganic hybrid materials present new opportunities for creating
low-dimensional structures with unique light−matter interaction. In this work, we report a
chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-
difluorophenylselenolate�AgSePhF2(2,6), a new member of the broader class of hybrid
low-dimensional semiconductors, metal−organic chalcogenolates. While silver phenyl-
selenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor,
introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural
transition from 2D sheets to 1D chains. Density functional theory calculations reveal that
AgSePhF2 (2,6) has strongly dispersive conduction and valence bands along the 1D crystal axis. Visible photoluminescence centered
around λp ≈ 570 nm at room temperature exhibits both prompt (110 ps) and delayed (36 ns) components. The absorption
spectrum exhibits excitonic resonances characteristic of low-dimensional hybrid semiconductors, with an exciton binding energy of
approximately 170 meV as determined by temperature-dependent photoluminescence. The discovery of an emissive 1D silver
organoselenolate highlights the structural and compositional richness of the chalcogenolate material family and provides new insights
for molecular engineering of low-dimensional hybrid organic−inorganic semiconductors.

■ INTRODUCTION
Dimensional reduction of organic−inorganic hybrid semi-
conductors affords dynamic changes in optical, electronic, and
vibrational properties.1 For example, transformation of bulk
three-dimensional (3D) halide perovskites into two- (2D),
one- (1D), or zero-dimensional (0D) perovskite structures
through the modification of organic cations leads to increases
in the electronic band gap and exciton binding energy through
quantum and dielectric confinement effects.2−4 Metal−organic
chalcogenolates (MOCs) are another emerging family of low-
dimensional hybrid materials,5,6 finding applications as light
emitters,7−15 field-effect transistors,16,17 photoconduc-
tors,14,18−20 photonic reflectors,21 and sensors.22 MOCs are
distinguished from other low-dimensional semiconductors
such as halide perovskites and transition metal chalcogenides
by the covalent interaction between metals and organic ligands.
Because of their covalent nature, MOCs are chemically stable,
and hybridized inorganic−organic interaction in MOCs
enables optoelectronic property tuning and morphology
transformation via ligand modification.5,23

A variety of MOCs from 0D to 1D to 2D have been
synthesized by a combination of d10 coinage metals and
organochalcogenolate ligands.5 Though the structure of MOCs
is difficult to predict a priori, it is clear that interactions
between ligands is a key factor. For example, phenylthiolate
ligands form a 1D chain structure with copper (I) ions,
([CuSPh]n),

16 while 2,4,6-triisopropylphenylthiolate, a bulkier
ligand, leads to a 0D complex ([CuSC6H2(i-Pr)3]8).

24 Melosh
and co-workers synthesized Cu MOCs with bulky diamondoid
ligands that behaved as 1D semiconductors.25 In another

example, Demessence and co-workers synthesized gold
phenylthiolate derivatives with functional groups located at
different positions of the benzene ring10,11,26 and reported
corresponding structural transformation from a 1D double
helical chain of [AuSPh]n to 2D lamellae of [Au(p-
SPhCO2H)]n, induced by hydrogen bonding between
neighboring mercaptobenzoic acid ligands. Dimensionality
control can also induce dramatic changes in optoelectronic
properties. Functional group modification of gold phenyl-
thiolate MOCs led to increases in the photoluminescence
quantum yield (PLQY) from 1 to 70%.10 Recently, silver
phenylselenolate (AgSePh) was shown to be a 2D excitonic
semiconductor exhibiting narrow deep-blue luminescence,7 in-
plane optical anisotropy,9 and chemical robustness.7 However,
limited examples of structural modification in this promising
new family of MOCs have been reported.12,13,23,27−29

Here, we report structural modification of AgSePh through
fluorination of the benzene ligand. Substituting phenyl-
selenolate for 2,6-difluorophenylselenolate induced a structural
transition from 2D AgSePh to 1D chain-structured silver 2,6-
difluorophenylselenolate [AgSePh-F2(2,6)]. Both crystals and
films of AgSePh-F2(2,6) exhibited broad yellow luminescence.
Crystals of AgSePh-F2(2,6) were stably emissive after soaking
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in various organic solvents and acidic or basic solutions.
Electronic structural calculations reveal AgSePh-F2(2,6) to be a
1D semiconductor with light effective masses of holes
(0.20m0) and electrons (0.26m0) at the band edge, suggesting
its potential utility in electronic and optoelectronic devices.
The emissive state is assigned to an exciton having a binding
energy of approximately 170 meV, which can undergo
entropically driven dissociation into free charge carriers along
the 1D chain.

■ RESULTS AND DISCUSSION
To prepare AgSePh-F2(2,6), we first synthesized an organic
precursor�1,2-bis(2,6-difluorophenyl) diselenide�by a reac-
tion between an in situ prepared Grignard reagent, 2,6-
difluorophenylmagnesium bromide, and elemental selenium
(see the Supporting Information for more information).30

Crystals of AgSePh-F2(2,6) (Figure 1a) were synthesized
using a water-diffusion-assisted growth method31 based on the
previously reported amine-assisted crystallization.13 Briefly, a
solution of silver nitrate (AgNO3) and the organic diselenide
precursor was prepared in a mixture of 1-butylamine and
toluene (Figure S1b) and was filtered and transferred into a
small vial sealed inside a larger jar containing deionized water
(Figure S1c). Over time, deionized water and the mixed
organic solvent were slowly exchanged, resulting in the lower
solubility of AgSePh-F2(2,6) and the formation of its sub-
millimeter crystals that exhibited a needle-like shape (Figures
1a and S1d).

Thin films of AgSePh-F2(2,6) (Figure 1b) were prepared by
the conversion of metallic silver films via a vapor-phase
chemical transformation known as the “tarnishing method”.8,14

A 5 nm thick silver film was deposited onto a glass substrate by
thermal evaporation and then placed inside a microwave
reaction vial containing the organic diselenide precursor and
N,N′-dimethylformamide (DMF). The vial was heated at 100

°C for 3 days, transforming the metallic silver film into a light-
yellow film of AgSePh-F2(2,6) (Figure 1b).

Under UV light excitation, both crystals and films exhibited
bright yellow emission, as shown in Figure 1a,b. The
absorption spectrum of AgSePh-F2(2,6) displayed distinct
peaks characteristic of low-dimensional excitonic semiconduc-
tors, with the lowest-energy absorption peak centered at 477
nm, as determined using UV−vis diffuse reflectance spectros-
copy (Figure 1c). The emission spectrum of AgSePh-F2(2,6)
exhibited broad yellow luminescence with a peak at 574 nm at
room temperature (Figure 1c). The PLQY of sonicated
dispersions of crystals in 2-propanol at room temperature was
2.4%.

Single crystal X-ray diffraction analysis at 100 K (Tables 1
and S1) revealed that AgSePh-F2(2,6) forms a 1D hybrid
organic−inorganic structure with an inorganic core composed
of Ag and Se atoms surrounded by organic 2,6-difluorophenyl
rings (Figure 1d). The core is composed of repeating Ag4Se4
units (Figure S2a) that each consist of two different Ag2Se2
parallelograms (Figure S2b,c) rotated in-plane by almost 90°
with respect to each other and stacked along the direction of
the 1D chain. The two different parallelograms are connected
by four Ag−Se bonds and two argentophilic interactions
(Figure 1e). The Ag−Se bond lengths range between 2.56 and
2.65 Å, and the separation of Ag atoms across planes is 2.99
and 3.20 Å, which is shorter than twice the van der Waals
radius of a Ag atom (3.4 Å).32 Each Se atom is connected by a
covalent Se−C bond to a 2,6-difluorophenyl ring that points
out in a perpendicular direction to the 1D chain.

The crystal structure of AgSePh-F2(2,6) at 100 K shows
evidence of both intra- and inter-chain interactions. Pairs of
neighboring fluorobenzene ligands along the 1D chain have
face-to-face distances of 3.28 to 3.30 Å (Figure S2d),
suggesting an intra-chain π−π interaction.33 Moreover, the
presence of inter-chain hydrogen interactions between adjacent
C−H···F−C bonds is suggested due to small H−F separations

Figure 1. Optical micrograph and image of AgSePh-F2(2,6) (a) crystals and (b) film on a glass substrate (12 × 12 mm2) under ambient or UV
(365 nm) light. (c) Absorption and PL spectra of AgSePh-F2(2,6) crystals. (d) Crystal structure of AgSePh-F2(2,6). Ag, Se, C, and F atoms are
depicted by gray, orange, black, and green spheres, respectively. Hydrogen and disordered atoms are omitted for clarity. (e) Structure of the AgSe
core in AgSePh-F2(2,6). (f) PXRD pattern of AgSePh-F2(2,6) in a film (blue), ground crystals (red), and a simulated (black) sample.
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of 2.42−2.75 Å (Figure S2e), which is in agreement with
previous studies of other fluorobenzenes.34

Unlike 2D van der Waals crystals of AgSePh, AgSePh-
F2(2,6) exhibited a 1D chain structure. Quite recently, a few
groups reported the ligand modification of 2D silver
organochalcogenolates by para-substitution of the phenyl
ring;12,13,23 however, no significant structural change was
observed in those studies. For AgSePh-F2(2,6), the distinct
structural transformation may be induced by steric effects of
fluorine atoms at the two ortho-positions, destabilizing the 2D
sheet structure and forming a 1D chain to relax strain energy.

Powder X-ray diffraction (PXRD) analysis of ground crystals
matched well with simulated data (Figure 1f). However, PXRD
patterns collected on thin film samples selectively showed
prominent (0k0) and (0kl) diffraction peaks, indicating a
preference for crystal growth parallel to the substrate (Figures
1f and S3). Indeed, bright-field optical micrographs of thin film
samples reveal needle like microcrystals of AgSePh-F2(2,6)
oriented parallel to the substrate (Figure S4), agreeing with
PXRD data. No distinct peak from other chemicals was
observed including the diffraction peak from Ag (∼38.2°). X-
ray photoemission spectroscopy of the thin films of AgSePh-
F2(2,6) showed signal from Ag, Se, and F (Figure S5), with a
Ag/Se ratio of 1:0.9, agreeing within the experimental error to
the chemical formula of AgSePh-F2(2,6).

AgSePh-F2(2,6) exhibited both thermal and chemical
stability. Thermogravimetric analysis (TGA) revealed the
stability of AgSePh-F2(2,6) up to ∼200 °C under N2, with a
5% weight loss temperature of 244 °C (Figure 2a). The mass
fraction remaining at 500 °C was 35.1%�equal to the mass
fraction of Ag atoms in AgSePh-F2(2,6) (36.0%)�implying

that silver was formed by thermolysis, as previously reported
for 2D AgSePh.35 The PL spectra before and after heating up
to 100 °C under vacuum were identical (Figure 2b), with some
overall intensity loss. Furthermore, AgSePh-F2(2,6) is resistant
to various organic solvents and can withstand both acidic and
basic conditions. Crystals of AgSePh-F2(2,6) are insoluble and
retain their luminescence properties even when submerged in
polar organic solvents (N,N′-dimethylacetamide, DMF,
acetonitrile, or methanol), a polar aromatic solvent (1,2-
dichlorobenzene), or an acidic (pH = 1) or basic solution (pH
= 14) (Figure S6). Strong chemical stability of AgSePh-F2(2,6)
may originate from covalent bonding of the organoselenolate
ligand to silver atoms along the 1D chain and from steric
blocking of the silver selenide core by those ligands.

Density functional theory (DFT) calculations were
performed to understand the electronic properties of
AgSePh-F2(2,6). Figure 3a shows the calculated band structure
of AgSePh-F2(2,6), having a direct band gap of 1.19 eV at Γ.
The band structure is characteristic of 1D semiconductors with
a large dispersion along the 1D chain and negligible dispersion
along the other orthogonal axes (Figure 3a,b). The wave
functions of the valence band maximum (VBM) and the
conduction band minimum (CBM) at the Γ point are mostly
located on the AgSe core (Figure 3c). The VBM of AgSePh-
F2(2,6) mostly consists of Se 4p and Ag 4d orbitals, whereas
the main contributions to the CBM are from Ag 5s and Se 4p
orbitals (Figure S7). Both the band dispersion and the wave
function distribution indicate that charge carriers near the
Fermi level are highly confined in each chain and there is
negligible hybridization between neighboring chains. Along the
chain elongation (Γ−X), the effective masses of the hole and
electron are 0.20m0 and 0.26m0, respectively, where m0 is the
electron rest mass. These carrier effective masses are notably
lighter than those reported in related 1D Cu MOC compounds
(copper adamantane-1-thiolate and copper diadamantane-4-
thiolate),25 which were close to or larger than 1m0.

Table 1. Crystallographic Data for AgSePh-F2(2,6)

AgSePhF2 (2,6)
identification code P21111
empirical formula C6 H3 Ag F2 Se
formula weight 299.91
temperature 100(2) K
wavelength 0.71073 Å
crystal system monoclinic
space group P21/n
unit cell dimensions a = 4.62930(10) Å

b = 23.2971(6) Å
c = 12.5151(3) Å

volume 1348.62(6) Å3

Z 8
density (calculated) 2.954 Mg/m3

absorption coefficient 8.331 mm−1

F(000) 1104
crystal size 0.250 × 0.055 × 0.015 mm3

θ range for data collection 1.748 to 33.200°
index ranges −7 ≤ h ≤ 7, −35 ≤ k ≤ 35, −19 ≤ l ≤ 19
reflections collected 48566
independent reflections 5158 [Rint = 0.0310]
completeness to θ = 25.242° 100.0%
absorption correction semi-empirical from equivalents
refinement method full-matrix least-squares on F2

data/restraints/parameters 5158/453/236
goodness-of-fit on F2 1.037
final R indices [I > 2σ(I)] R1 = 0.0180, wR2 = 0.0385
R indices (all data) R1 = 0.0218, wR2 = 0.0400
largest diff. peak and hole 2.292 and −0.645 e.Å−3

Figure 2. (a) TGA of AgSePh-F2(2,6) crystals under a N2 flow. (b)
PL spectrum of AgSePh-F2(2,6) crystals before (blue) and after
heating (red) up to 100 °C under vacuum.
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To investigate light emission in AgSePh-F2(2,6), we
measured PL properties upon exposure to different excitation
wavelengths and different excitation intensities. No excitation
or emission wavelength dependence was observed for PL
spectra excited between 250−450 nm (Figure 4a, red) or PL
excitation spectra with emission from 550−750 nm (Figure 4a,
blue), indicating a single homogeneous emission pathway in
the sample. Measurements of integrated PL emission
intensities revealed linearly increasing PL intensity with
increasing excitation laser power under both continuous-

wave (Figure 4b) and pulsed laser conditions (Figure S8).
Similarly, the PL spectral shape was identical under low or high
excitation power (Figure S9). The emission spectra of thin
films and ground powders were similar to that of isolated
crystals but with higher intensity in the 500 to 550 nm range,
likely arising from inner-filter effects in the crystals (Figure
S10). Altogether, these results suggest a single intrinsic and
excitonic origin of the yellow emission of AgSePh-F2(2,6).

Time-resolved PL (TRPL) decay of AgSePh-F2(2,6) was
well-described by a bi-exponential function at all sample

Figure 3. (a) Calculated electronic band structure of AgSePh-F2(2,6). (b) First Brillouin zone with the corresponding atomic structures. kx (Γ−Χ)
is along the 1D chain; ky and kz are orthogonal to the 1D chain. (c) Wave functions of the VBM and the CBM at the Γ point, distributed within the
silver selenide core.

Figure 4. (a) PL excitation (blue, left) and emission (red, right) spectra of AgSePh-F2(2,6). (b) Plot of integrated PL count as a function of energy
density of a continuous-wave laser (405 nm) with a range of 0.4 mW cm−2 to 600 W cm−2. TRPL decay and fit of AgSePh-F2(2,6) crystals at (c)
300 K and (d) 80 K. Insets show decay from a short time range. (e) Decay time of delayed (red) and prompt (blue) components obtained by bi-
exponential fitting in the temperature range from 80 to 320 K.
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temperatures across the measurement range from 80 to 320 K
(Figures 4c,d and S11), with a fast prompt emission
component that is more than 100× faster than the dominant
delayed emission component (Figure 4e). As the sample was
cooled below room temperature, the prompt decay slowed
slightly from 110 ps at 300 K to 160 ps at 80 K, while the
delayed component underwent a more dramatic change from
36 ns at 300 K to 2.6 μs at 80 K (Figure 4e). The time-
integrated photon count ratio of prompt/delayed emission was
0.3:99.7, meaning that 99.7% of the total emission intensity
occurs via the delayed emission channel. Despite the changing
emission dynamics, the ratio of total photon counts from the
prompt to delayed channels was approximately constant across
the temperature range (Table S2). The PL spectrum was also
measured from 80 to 300 K (Figure 5c). The spectrum blue-
shifted with increasing temperature from 615 nm (2.02 eV) at
80 K to 574 nm (2.16 eV) at 300 K.

To further understand the emission dynamics, we performed
spectrally resolved TRPL at 80 K (Figure 5a), which allows the
emission spectrum of the prompt and delayed components to
be separately analyzed. The PL spectrum collected during the 0
to 0.26 ns time window, which is dominated by prompt
emission, had a peak wavelength of 570 nm (Figure 5b,
purple). The PL spectrum collected during the 2.56 to 15 ns
time window, which is derived ∼100% from the delayed
component, had a peak wavelength of 610 nm (Figure 5b,
green). The total emission spectrum (Figure 5b, red) is nearly
identical to the delayed emission spectrum, agreeing with our
earlier calculation that ∼99.7% of the total emission occurs
through the delayed emission channel.

There are multiple hypotheses that could explain the prompt
and delayed emission behavior. As shown by spectrally
resolved TRPL (Figure 5b), the prompt and delayed emission

spectra are close in energy. A similar behavior has been
observed in CdSe nanoplatelets, which was attributed to
radiative recombination before and after exciton dissociation.36

In that case, the delayed emission originates from electron−
hole pairs that have dissociated then later re-formed an
emissive exciton and the slight red shift at the later times arises
from energetic heterogeneity within the sample. An alternative
hypothesis is thermally activated delayed fluorescence
(TADF).37 A variety of Ag complexes38 including multi-
nuclear Ag complexes27 have been reported as TADF emitters
with a high PLQY. Under the TADF hypothesis, the slight red
shift at later times could result from contributions of
phosphorescence to the measured signal. Finally, band-edge
excitons in low-dimensional semiconductors can exhibit a
complicated fine structure39−41 due to exchange, spin−orbit,
shape, and crystal field effects, in which case, contributions
from both exciton dissociation and spin−flip transitions could
affect the measured emission dynamics.

As temperature increased, the total integrated PL intensity
decreased (Figure 5d and Table S3). Assuming one thermally
activated nonradiative recombination pathway, the temper-
ature-dependent emission intensity can be well-fitted by the
Arrhenius equation (eq 1)42

(1)

where I(T) is the integrated PL count at temperature T, I0 is
the integrated intensity at a temperature approaching 0 K, A is
a process rate parameter, Ea is the activation energy for
nonradiative decay, and kB is the Boltzmann constant. Fitting
to the Arrhenius equation gives Ea = 166 ± 13 meV (Figure 5d
and Table S4).

The temperature-dependent emission behavior shown in
Figure 5d is characteristic of low-dimensional excitonic
semiconductors, where the dominant non-radiative recombi-
nation pathway is exciton dissociation followed by non-
radiative relaxation of the separated charge carriers.2,43,44

Under this interpretation, the activation energy is the thermal
energy required to separate the electron−hole pair, i.e., the
exciton binding energy. Correspondingly, we assign the exciton
binding energy in AgSePh-F2(2,6) to be Eb ≈ 170 meV. Note
that even though Eb > kBT at room temperature, exciton
dissociation can still proceed efficiently due to strong entropic
driving forces arising from the highly dispersive conduction
and valence bands.45

■ CONCLUSIONS
In conclusion, we presented a yellow luminescent 1D silver
organoselenolate using 2,6-difluorophenyl selenolate as a
ligand. Introducing fluorine atoms at the two ortho-positions
induced structural transformation from 2D van der Waals
crystals of AgSePh to 1D chain structured AgSePh-F2(2,6).
AgSePh-F2(2,6) exhibited thermal and chemical stability, and
both DFT calculations and optical spectroscopy reveal an
excitonic 1D semiconductor with strongly dispersive con-
duction and valence bands along the 1D chain.

The discovery of a new 1D member of the promising silver
phenylchalcogenolate family of semiconducting MOCs en-
courages further exploration of this attractive molecular design
space. Furthermore, the strongly excitonic nature of the
electronic excited state in AgSePh-F2(2,6) suggests its potential

Figure 5. (a) Spectrally resolved TRPL spectrum of AgSePh-F2(2,6)
crystals at 80 K. (b) PL spectrum of AgSePh-F2(2,6) crystals at 80 K
from 0 to 0.26 ns (purple), 0.26 to 2.56 ns (blue), and 2.56 to 15 ns
(green) and the total count (red). The time window from 0 to 0.26 ns
(purple) is dominated by the prompt emission pathway (97%),
whereas the time window from 2.56 to 15 ns (green) is dominated by
the delayed emission pathway (∼100%). (c) Normalized PL spectra
of AgSePh-F2(2,6) in the temperature range of 80 to 300 K. (d)
Temperature dependence of PL intensity from 80 to 300 K.
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use in a variety of optoelectronic applications featuring
anisotropic conductors or emitters.
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