Energetics

(Peixoto and Oort, fig 13.3: Kinetic energy is order 150 J/kg)

Daily-mean TOA insolation vs latitude and season

From Hartman, Physical Climatology

Albedos for different surfaces

Aerosols	Small but
	highly variable
Soil, rocks, vegetation	.1 to .3
Water	.02 to .2
Snow and ice	.6 to .8
Cb (clouds	~.9
Cu (clouds)	~.7
St (clouds)	~.5
Ci (clouds)	~.2
Rayleigh Scattering	~.05

(Stephens et al, JGR, 1981; from Fig. 6)

Planetary albedo very similar between hemispheres

	DJF	MAM	JJA	SON	Annual	error
Northern Hemisphere	30	33	31	29	31	
Southern Hemisphere	31	28	27	30	30	
Global	31	30	30	30	30	±1

Units: percent

Source: Stephens et al., 1981

Modern measurements show reflected shortwave essentially the same between NH and SH

(W m ⁻²)	Northern Hemisphere	Southern Hemisphere	Difference
Reflected clear-sky solar radiation	55.5	49.5	6
Reflected solar radiation	99.5	99.6	-0.1

Hemispheric averages of time-mean TOA irradiances as measured by CERES-EBAF (2000-2005) from Voigt et al, J. Climate, 2013

Modern measurements show reflected shortwave essentially the same between NH and SH Compensation by clouds must be involved. But why?

(W m ⁻²)	Northern Hemisphere	Southern Hemisphere	Difference
Reflected clear-sky solar radiation	55.5	49.5	6
Reflected solar radiation	99.5	99.6	-0.1

Hemispheric averages of time-mean TOA irradiances as measured by CERES-EBAF (2000-2005) from Voigt et al, J. Climate, 2013

Absorbed solar radiation (W m⁻²)

Annualized mean TOA ERBE measurements for the period Feb 1985-Apr 1989

(Trenberth and Stepaniak, J. Climate 2003; Fig 2)

Outgoing Longwave Radiation (W m⁻²)

(Trenberth and Stepaniak, J. Climate 2003 Fig 2)

Net Radiation Absorbed (W m⁻²)

(Trenberth and Stepaniak, J. Climate 2003 Fig 2)

Diabatic heating in K day⁻¹ (December to February)

Total (Peixoto and Oort, fig 13.2) Radiative Latent Boundary layer

Northward transport of sensible heat (K m s⁻¹)

(Peixoto and Oort, fig 13.4)

Northward transport of sensible heat (K m s⁻¹)

(Peixoto and Oort, fig 13.5)

Northward transport of sensible heat (K m s⁻¹)

(Peixoto and Oort, fig 13.6; multiply by 0.4 cos(lat) for PW)

Northward transport of latent heat (g kg⁻¹ m s⁻¹)

(Peixoto and Oort, fig 12.11)

Northward transport of latent heat (g kg⁻¹ m s⁻¹)

(Peixoto and Oort, fig 12.12; energy conversion not the same)

Northward transport of potential energy (10² m² s⁻¹)

(Peixoto and Oort, fig 13.7)

Northward transport of kinetic energy (10 m³ s⁻¹)

(Peixoto and Oort, fig 13.8)

Northward transport of kinetic energy (m³ s⁻¹)

(Peixoto and Oort, fig 13.9; 0.0004 cos(lat) for PW)

Northward transport of energy (K m s⁻¹)

(Peixoto and Oort, fig 13.11)

Energy transports from NCEP reanalysis; comparison of different components

(Trenberth and Stepaniak, J. Climate pages 3691-3705, 2003 Fig 1)

Covariance longer than monthly

Sub-monthly

(Trenberth and Stepaniak, J. Climate pages 3691-3705, 2003 Fig 1)

Northward energy transport: atmosphere and ocean (PW)

(Czaja and Marshall, 2006 after Trenberth and Caron 2001) Northward energy transport: atmosphere and ocean (PW)

Latitudes of greatest stratification differ in atmosphere and ocean

Energy transport streamfunction (PW)

