
Water vapor and the hydrological cycle
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Time and zonal mean relative humidity: seasons 
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Time mean relative humidity at 500hPa
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Vertical-mean zonal flux of water vapor (m/s g/kg)
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Vertical-mean transient zonal flux of water vapor (m/s g/kg)
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Vertical-mean meridional flux of water vapor (m/s g/kg)
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Estimates of evaporation and precipitation rates
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Estimation of precipitation

all available GEO satellites (GOES 8/10, Meteosat-7/5, and GMS) provided by NCEP/CPC. Surface precipitation
rates are retrieved according to Aonashi et al. (1996). High-resolution (1° /1 h) precipitation maps are created
with a morphing technique using the IR cloud motion vector and Kalman filtering (Ushio & Kachi, 2010).
GSMaP_MVK refers to the Kalman filter-based system; a near-real-time system named GSMaP_MVK_RT
contains the propagation process forward in time.

Rain gauges provide relatively accurate and trusted measurements of precipitation at single points but are
unavailable over many sparsely populated and oceanic areas and can be affected by sampling errors.
Satellite observations provide precipitation information with homogeneous spatial coverage but contain
nonnegligible random errors and biases owing to the indirect nature of the relationship between the obser-
vations and precipitation, inadequate sampling, and deficiencies in the algorithms. Many attempts have been
made to merge different sources of information to overcome these problems while tapping into the indivi-
dual advantages of the different methods, to obtain optimal precipitation analyses with regular gridded fields
(Figure 4). The CPC Merged Analysis of Precipitation (CMAP) (Xie & Arkin, 1997) and GPCP (Adler et al., 2003)
are themost widely recognized and usedmerged data sets. The GPCP precipitation product was first released
in 1997 and version 2 was released in 2002. It is based on the sequential combination of MW, IR, and gauge
data. For the SSM/I period 1987 to the present, MW measurements from the SSM/I and the Special Sensor
Microwave Imager Sounder (SSMIS) calibrate the GPI between 40°S and 40°N and are combined with esti-
mates based on data from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric IR Sounder
to offer globally complete satellite-only precipitation estimates. For the pre-SSM/I periods, the calibrated
Outgoing long-wave radiation (OLR) Precipitation Index (OPI) (trained against GPCP for the period of
1988–1997) is used globally between 1979 and 1985; for other time periods, the Adjusted Global
Precipitation Index is used between 40°S and 40°N and the calibrated OPI is used elsewhere. Then, the multi-
satellite field is merged with rain gauge analyses (over land) by adjusting the satellite estimates to the gauge

Figure 4. Flowchart for the precipitation products. The images for satellite adapted from Hou et al. (2014).
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GPCP: long-term mean precipitation
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Atafu atoll; South Pacific near New Zealand 
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tropical precipitation is characterized by high spatiotemporal variability and stems mainly from convective
events, which requires accurate parameterization schemes and high resolution in the reanalysis model
(Pfeifroth et al., 2013). Owing to a lack of abundant direct observations, precipitation estimates over ocean
remain challenging and largely uncertain. Over global land, the largest differences among precipitation esti-
mates from gauge-based, reanalysis, and satellite-gauge merged products are concentrated in northern
Africa, northwest China, eastern Russia, northern North America, Greenland, and the west coast of South
America, areas that are characterized by sparse measurements owing to sparse populations and complex
terrain. High-elevation regions have relatively warm clouds. Incorrect discrimination between raining and
nonraining clouds with thermal IR could cause the IR rainfall retrieval algorithms to miss light-precipitation
events and underestimate total rainfall (Bitew & Gebremichael, 2010; Maggioni et al., 2016). Conversely, rea-
nalysis data sets tend to overestimate precipitation at higher elevations compared with observations from
stations. For instance, compared with the station observations from China Meteorological Administration
and the U.S. National Snow and Ice Data Center, MERRA, ERA-Interim, and CFSR significantly overestimate
precipitation at high elevations; however, the TRMM 3B42 satellite data underestimate precipitation in moun-
tainous areas in Central Asia (Hu et al., 2016). In addition, the discrepancies between products are slightly
greater in arid and semiarid regions than in humid regions (Cattani et al., 2016; Dinku et al., 2011). In tropical
regions, discrepancies between products did not increase when satellite estimates were included (Figure 9).

Figure 8. Spatial distribution of the 8 year (2003–2010) average precipitation estimates from different products. Precipitation estimates were based on the original
spatial resolution of each data set, without reinterpolation to a unified resolution.
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Comparison of annual precipitation (mm) 
from different global precipitation datasets
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ERA40 atlas

Surface latent heat flux (negative upwards, W/m2) 
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Peixoto and Oort, Fig 7.27

Zonal-mean evaporation rate over oceans (cm/year)
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Sensitivity of outgoing longwave radiation to a change in local specific humidity (W/m2/K).
Change in specific humidity is the change that would occur at constant
relative humidity for a 1K increase in temperature. Held and Soden, 2001

      (July; ECMWF, ISCCP data) 

Radiative importance of upper-tropospheric water vapor
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Transport and mixing of water vapor in the troposphere

Held and Soden, 2001
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Last saturation analysis of mean relative humidity: 
NCEP winds and MATCH tracers



Galewsky et al, JAS, 2005; fig 9

RH from NCEP/MATCH

Reconstructed RH using
tracers of last saturation
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Galewsky et al, JAS, 2005; fig 12b

PDF of last saturation
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