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Key Points:

• Rare event algorithms may help address the challenge of simulating extreme weather
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Abstract
A leading goal for climate science and weather risk management is to accurately model
both the physics and statistics of extreme events. These two goals are fundamentally at
odds: the higher a computational model’s resolution, the more expensive are the ensem-
bles needed to capture accurate statistics in the tail of the distribution. Here, we focus
on events that are localized in space and time, such as heavy precipitation events, which
can start suddenly and decay rapidly. We advance a method for sampling such events
more efficiently than straightforward climate model simulation. Our method combines
elements of two recent approaches: adaptive multilevel splitting (AMS), a rare event al-
gorithm that generates rigorous statistics at reduced cost, but that does not work well
for sudden, transient extreme events; and “ensemble boosting” which generates phys-
ically plausible storylines of these events but not their statistics. We modify AMS by split-
ting trajectories well in advance of the event’s onset following the approach of ensem-
ble boosting, and this is shown to be critical for amplifying and diversifying simulated
events in tests with the Lorenz-96 model. Early splitting requires a rejection step that
reduces efficiency, but nevertheless we demonstrate improved sampling of extreme local
events by a factor of order 10 relative to direct sampling in Lorenz-96. Our work makes
progress on the challenge posed by fast dynamical timescales for rare event sampling,
and it draws connections with existing methods in reliability engineering which, we be-
lieve, can be further exploited for weather risk assessment.

Plain Language Summary

What is the strongest rainstorm that we can expect in a given thousand-year pe-
riod? To augment the available ∼ 100 years of historical data and to account for climate
change, computer simulations are a useful, but expensive, tool to answer such questions.
A model must run for many millennia to deliver an answer with statistical confidence.
Rare event algorithms provide a promising alternative simulation protocol, in which an
ensemble of short simulations is biased to produce more extreme events and reweight-
ing is used to correct for the bias when calculating statistics. However, a classical rare
event algorithm fails when the events of interest are short and “bursty” (like heavy rain-
storms) instead of long and slow-moving (like anomalously hot summers). We modify
the rare event algorithm to make it amenable to precipitation-like events in an idealized
dynamical system with chaotic traveling waves.

1 Introduction

In climate modeling, high spatial resolution is important for realistically represent-
ing localized extreme weather events like cyclones producing extreme precipitation and
winds (O’Brien et al., 2016; van der Wiel et al., 2016). But given finite computational
resources, high resolution has to be traded off with the need for ensembles of models and
simulations to deal with uncertainty related to model physics, parameters, initial con-
ditions and boundary conditions including emissions scenarios. Extreme events are par-
ticularly challenging because they occur infrequently, and hence need large ensemble sizes
to have their small probabilities accurately quantified. The conflict for computational
resources therefore comes to a head in the study of extreme events.

A variety of shortcuts have developed in the past century to alleviate this conflict.
Leading statistical approaches include extreme value theory (EVT; Coles, 2001) and large
deviation theory (Touchette, 2009), which respectively describe the behavior of maxima
and anomalously large running means in random processes. In principle, we can use these
theories to fit a parametric family to limited data and then extrapolate to even longer
return periods. EVT has become an important tool in risk assessment and climate change
attribution (Kharin et al., 2007; Naveau et al., 2020), while large deviation theory suc-
cinctly encodes the severity of long-lasting, large-area events such as persistent heat waves
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(Gálfi et al., 2021). Statistical theories help make the most of a fixed dataset, but pa-
rameter estimation can be unstable given the restrictive underlying assumptions and the
limited datasets available (W. K. Huang et al., 2016; Gálfi et al., 2017). For example,
EVT only holds in the limit of large blocks of data or high thresholds for extremity, which
directly conflicts with the requirement of many samples for low-variance parameter es-
timation. Moreover, statistical theories don’t provide spatio-temporal resolved extreme
events (e.g., the spatial field of rainfall and other fields on the day of an extreme event)
which are needed to drive impact models.

Statistical or dynamical downscaling is another way to address the problem of ex-
tremes by reducing the computational cost of obtaining high-resolution output from long
simulations or large ensembles (X. Huang et al., 2020; Lee et al., 2020; Emanuel, 2021;
Saha & Ravela, 2022; Krouma et al., 2022). Downscaling nevertheless has some draw-
backs. Dynamical downscaling using regional climate models faces the challenge of cor-
rectly forcing a regional model with output from a different global model, and the re-
gional model inherits errors in large-scale fields from the global model (Adachi & Tomita,
2020), while statistical downscaling assumptions can create systematic errors (Schmidli
et al., 2007) and may not generalize to different climates.

The focus of this paper is rare event sampling, which is a strategy for allocating
more of the computational effort towards rare events, and less effort towards the long
intervening periods of comparatively mild behavior. This is usually achieved by split-
ting methods, which consist of three steps repeated in a cycle: (1) run an ensemble of
simulations forward, (2) identify the ensemble members making the most progress to-
wards the extreme event, and (3) clone these most-promising ensemble members (apply-
ing small perturbations) while discarding the less-promising members, resulting in a new
ensemble that is more prone to extremes than was the original ensemble. With repeated
rounds of splitting, one can populate the tail of the probability distribution more fully,
while neglecting the more typical behavior of lesser interest. Crucially, in statistical anal-
ysis of the ensemble, one must compensate for the bias by weighting each clone with a
factor less than one, relying on the importance sampling formalism. See Bucklew (2004)
for an introduction to rare event sampling.

This generic procedure has many possible variants, which have been developed largely
in the fields of physics (Kahn & Harris, 1951; Giardinà et al., 2006), chemistry (Kästner,
2011; Zuckerman & Chong, 2017), and reliability engineering (Au & Beck, 2001), but
have recently started to make an impact on Earth and planetary sciences. For example,
extreme European heat waves were sampled by Ragone et al. (2018) and Ragone and
Bouchet (2021) with genealogical particle analysis (GPA), and by Yiou and Jezequel (2020)
with empirical importance sampling. Wouters et al. (2023) sampled extreme European
seasonal precipitation accumulations, also using GPA. Webber et al. (2019) developed
a quantile-based variant of GPA to sample more extreme versions of tropical cyclones.
Planetary science applications include jet nucleation (Bouchet et al., 2019) and orbit desta-
bilization (Abbot et al., 2021). For studies of climate, rare event sampling can be ap-
plied to global models or paired with the dynamical and statistical downscaling approaches
mentioned earlier.

We have elected to use a particular rare event algorithm called adaptive multilevel
splitting (AMS), which was first established by Cérou and Guyader (2007) and is sim-
ilar to the earlier RESTART algorithm (Villén-Altamirano et al., 1991). Lestang et al.
(2018) successfully applied AMS to the Ornstein-Ulhenbeck process, while Lucente, Rol-
land, et al. (2022) and Baars et al. (2021) used AMS to study regime transitions in ide-
alized climate models. AMS has also been usefully employed in other diverse fields such
as molecular dynamics and air traffic control (see Cérou et al. (2019) for a recent review).
The distinguishing feature of AMS is that it operates on the level of full trajectories over
a fixed time horizon, and applies the small perturbation to trajectories at the instant that
they first cross a threshold of extremity. The “child” trajectory is identical to its par-
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ent up until this time, whereas it diverges from its parent afterward to give a new re-
alization of the extreme event. All ensemble members failing to cross the threshold are
discarded, and the threshold is then raised for repeated rounds of splitting and killing.

A related approach, “ensemble boosting”, is a novel technique for generating “sto-
rylines” of unprecedented climate extremes (Gessner et al., 2021; Gessner, 2022). In this
approach, one identifies several extreme events from a long climate simulation, perturbs
the antecedent conditions (1-3 weeks ahead of time), and re-simulates the event to gen-
erate alternative realities, which sometimes turn out even more extreme. While similar
to splitting methods, ensemble boosting does not explicitly quantify statistics. As ex-
plained below, a major goal of this paper is to combine the benefits of ensemble boost-
ing with that of rare event algorithms, in particular AMS.

Given the successes in using rare event sampling discussed above, it is desirable to
also use it to sample shorter-term extreme weather events, such as daily precipitation
extremes, which have large societal impacts in the current climate (Wright et al., 2021;
Thompson et al., 2017) and are expected to intensify under climate change (O’Gorman,
2015; Pfahl et al., 2017; Tandon et al., 2018; Myhre et al., 2019). However, heavy pre-
cipitation events (or high wind events) have some dynamical characteristics that distin-
guish them from the previous applications and pose challenges to existing rare event al-
gorithms. Unlike continental-scale, seasonally averaged anomalies studied previously (Ragone
et al., 2018; Wouters et al., 2023), heavy precipitation events of interest are often sud-
den, transient, and relatively small-scale. Their timescale at a particular location is of-
ten limited by the propagation of the dynamical feature causing the precipitation such
as cyclones and fronts (Dwyer & O’Gorman, 2017). The strategy used in Ragone et al.
(2018) and Wouters et al. (2023) relies on some slow-moving notion of progress towards
the extreme event, naturally given by the integrated temperature anomaly itself when
targeting extreme seasonal average temperatures, in order to decide which simulations
to clone or kill. In the precipitation study of Wouters et al. (2023), the extreme event
is again a seasonal total, for which a mid-seasonal total is a reasonable measure of progress.
But for individual precipitation events, if one uses precipitation itself to measure progress
towards the event, and applies perturbations to a simulation when precipitation picks
up, it is too late for these perturbations to take effect by the time of maximum precip-
itation. The event simply comes and goes faster than perturbed simulations diverge. Lestang
et al. (2018) found a similar pathology with AMS when sampling extreme pressure fluc-
tuations on a body embedded in a turbulent channel flow. There, the extreme events were
caused by vortices sweeping past the body, roughly analogous to cyclones sweeping past
a location on Earth, and the rapidity of the fluctuation crippled the effectiveness of the
standard splitting strategy.

To isolate and solve the problem of applying rare event algorithms to sudden, tran-
sient extremes, we postpone the specific application to precipitation and first descend
the model hierarchy to the Lorenz-96 model (Lorenz, 1996), a spatiotemporal chaotic
system often used as a toy model for the atmosphere. The model produces extreme events
posing the same algorithmic challenges as precipitation extremes: intermittent, short-
lived bursts carried by traveling waves with unpredictable amplitudes. It has been used
in numerous past studies of extreme event statistics and predictability (Sterk & van Kekem,
2017; Qi & Majda, 2016; Hu et al., 2019). With this cheap but behaviorally rich model,
we have developed a simple modification to AMS, drawing inspiration from ensemble boost-
ing by simply applying a split in advance of the event’s onset by some advance split time
δ—hence, “trying early” AMS (TEAMS). To make this statistically rigorous, a rejection
step is necessary, which comes at an efficiency cost, but still enables moderate speedups
of ∼10 relative to direct sampling. Fig. 1 displays a schematic diagram for TEAMS, which
will be elaborated in section 3. In fact, TEAMS is a repurposing of a more general method
called subset simulation (Au & Beck, 2001) from structural reliability engineering, a field
whose sophisticated rare event algorithms could benefit the climate risk community.
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Figure 1. Schematic of the splitting step in (a) AMS and (b) TEAMS. Black curves represent

an initial ensemble member, or ancestor, which exceeds the first level `1 and has been selected

for cloning in the first round. In AMS, the perturbation is applied at the instant t0(`1) when the

ancestor first exceeds `1, resulting in a descendant trajectory (blue) which essentially replicates

the extreme event because the separation timescale is longer than the event itself. On the other

hand, in TEAMS (right) we apply the perturbation in advance, by some margin δ > 0. This

can sometimes result in rejection (blue descendant), i.e., failure to cross `1. However, when a

descendant is accepted (red) it will be more distinct from the ancestor than the corresponding

descendant in AMS and have the potential to reach a substantially higher peak value.

This paper is organized as follows. In section 2, we present a stochastically forced
Lorenz-96 model and the behavior of its extreme events as a function of stochastic forc-
ing strength. In section 3, we first introduce the general framework of subset simulation.
In section 3.1, we specialize to AMS, and in section 3.2 we show that AMS fails in the
low-noise forcing regime, which is often most relevant for weather and climate models.
In section 3.3, we modify AMS to use a “trying early” step with rejection sampling and
recover a substantial speedup. In section 4, we further explore the relationship between
the advance splitting time—a key algorithmic parameter—and classical notions of pre-
dictability timescales. Finally, in section 5 we point out directions for further develop-
ment.

2 Lorenz-96: a customizable spatiotemporal chaotic system

Lorenz (1996) introduced a simple dynamical system (L96 hereafter) meant to cap-
ture some crucial aspects of atmospheric dynamics. The model state space consists of
K (≥ 4) variables {xk}Kk=1 arranged on a one-dimensional periodic lattice, each k rep-
resenting a longitude sector on Earth. xk represents a generic atmospheric variable like
wind speed or vorticity and evolves according to the coupled equations

dxk
dt

= axk−1(xk+1 − xk−2)− xk + Fk, k = 0, ...,K − 1, (1)

where xk+K is identified with xk. The quadratic terms on the right-hand side represent
advection, like the quadratic nonlinearity in the material derivative of the Navier-Stokes
equations, which on its own conserves “energy” 1

2

∑
k x

2
k. The linear term −xk repre-

sents damping due to friction, and the additive term Fk represents external forcing, like
a meridional insolation gradient. The latter two terms destroy exact energy conserva-
tion, but balance out in a time-averaged sense to make for a statistically steady state.
Lorenz (1996) introduced the above model with Fk constant in k and also a version in
which Fk is a “subgrid-scale forcing” that is a function of an additional tier of dynam-
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Table 1. Physical parameters for Lorenz-96 system (upper section), and algorithmic parame-

ters for the TEAMS algorithm (lower section).

Symbol Explanation Value or range

K Number of longitude sites 40
a Strength of advection term {1, 0} (mostly 1)
F0 Constant background forcing 6
m Wavenumber for stochastic forcing {1, 4, 7, 10} (mostly 4)
Fm Strength of stochastic forcing at wavenumber m {3, 1, 0.5, 0.25, 0}

N Number of initial ensemble members 128
κ Number of members to kill each round 1
J Number of rounds of splitting 896
T Time horizon 6
δ Advance split time [0, 2]

ical variables representing finer scales, and this version has proven useful for testing stochas-
tic parameterization schemes (e.g., Wilks, 2005; Hu et al., 2019; Gagne II et al., 2020).
Here, we also allow Fk to vary stochastically with longitude (k) and time:

Fk = F0 + Fm

[
η1 cos

(
2πmk

K

)
+ η2 sin

(
2πmk

K

)]
(2)

where η1,2 are independent Gaussian white-noise processes, and m is an integer wavenum-
ber. Formally, Eq. (2) renders Eq. (1) a diffusion process, using the Itô convention for
stochastic integrals (Pavliotis, 2014). This simple stochastic forcing is analagous to a stochas-
tic parameterization in a weather or climate model, and in the AMS framework it allows
us to easily generate new ensemble members by splitting an existing ensemble member
at a certain time. We verify below that for weak amplitudes the stochastic forcing does
not appreciably alter model statistics.

The parameters used here are summarized in the upper section of Table 1. We set
K = 40, following Lorenz and Emanuel (1998). We fix the constant part of the forc-
ing to be F0 = 6.0, which is sufficient for weak turbulence (a larger value would be needed
with smaller K). We choose the stochastic forcing wavenumber as m = 4 because that
empirically seems to drive ensemble members apart slightly faster than very small or large
wavenumbers (see section 4.2). Indeed the stochastically perturbed parameterization ten-
dencies (SPPT) method developed at ECMWF uses noise that is spatially correlated at
a ∼ 10◦ length scale (Buizza et al., 1999; Palmer et al., 2009). The amplitude of Fm(=
F4) will be explored systematically below. One further parameter, the coefficient a, de-
termines the strength of the advection term. a = 1 is standard for L96, while a = 0
gives an array of correlated Ornstein-Uhlenbeck (OU) processes (Pavliotis, 2014). Re-
taining the OU process as a special case of L96 is useful to provide a reference case on
which existing rare event splitting algorithms excel. Results for a = 0 are shown in sup-
plementary Figs. S1 and S2, and all other results presented are for a = 1.

Fig. 2 displays short numerical integrations of L96 with four different parameter
choices. We used the Euler-Maruyama method with a timestep of 0.001 to integrate Eq. (1),
saving out every 0.05 time units. For comparison, Lorenz and Emanuel (1998) interpret
a single time unit as 5 days. The left column shows single-site variables x0(t) for each
parameter set, while the right column shows corresponding Hovmöller diagrams. In the
standard deterministic system F4 = 0 in the top row, x0(t) fluctuates with a semi-regular
period of ∼ 2 time units (10 “days”) but with irregular amplitudes, the largest of which
are precisely the extreme events we choose to study here. The Hovmöller diagram re-
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Time evolution of the L96 model expressed as timeseries of x0(t) (left column) and

Hovmöller diagrams (right column) with three different levels of stochastic forcing. (a,b) have

F4 = 0 (the deterministic system); (c,d) have F4 = 1 (moderate forcing); (e,f) have F4 = 3

(strong forcing).

veals these fluctuations to arise from a field of traveling waves, with roughly eight peaks
and troughs moving with negative (“westward”) phase velocity. The waves experience
intermittent disturbances, sometimes getting stuck in place for several turnover times
and setting up favorable conditions for extreme events. Globally, these stagnations man-
ifest as kinks that propagate in the positive (“eastward”) direction. This is reminiscent
of atmospheric Rossby waves, whose phase and group velocities have opposite signs (up
to a Doppler shift due to the mean flow) (Lorenz & Emanuel, 1998). Thus, we can loosely
think of the peaks and troughs as being like highs and lows in the midlatitude atmosphere.

Fig. 2 rows 2 and 3 show analogous pictures for moderate (F4 = 1) and strong
(F4 = 3) stochastic forcing, respectively. As noise increases the traveling waves tran-
sition from unidirectional to zigzagging. The timeseries become more jagged and more
liable to take large excursions from their mean and hover there for longer durations.

Fig. 3a overlays PDFs of the single-site value (x0) for all these parameter regimes,
plus two more: F4 = 0.5 and 0.25. Reducing the noise roughly preserves the mode but
shrinks the tails. The PDF appears basically converged for F4 ≤ 0.5. Fig. 3b confirms
this is true even in the far tail, with a log-transformed plot of return level vs. return time
for x20. The limiting case F4 = 0 has a bounded tail, which is easy to see with an en-
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ergy argument (see also Qi and Majda (2016)): defining x = 1
K

∑K
k=1 xk, the energy

E = 1
2

∑
k x

2
k evolves as dE

dt = −2E + KFx. Since |x| ≤
√
x2 =

√
2E/K by the

Cauchy-Schwarz inequality, the first term dominates for E larger than some critical E0,
which must therefore bound the steady-state distribution’s tail. However, E0 would in-
crease with K, i.e., higher-dimensional systems can in principle support heavier tails (e.g.
Lucarini et al., 2016, ch. 4 discusses general relationships between the shape parame-
ter and the attractor dimension). This is part of our motivation to set K relatively large.

The return level vs. return period plot (as in Fig. 3b) will be used throughout the
paper, and we calculate it using the “modified block maximum” method of Lestang et
al. (2018). For a fixed return level `, the return period τ(`) is defined as the mean (over
initial conditions and noise realizations) of the waiting time until an exceedance occurs:
τ(`) = E[min{t : R(x(t)) > `}], where R is some observable of interest for the dy-
namical system. We take R(x) = x20, the local energy (times two) at longitude k = 0.
Lestang et al. (2018) approximates the exceedance times by a Poisson process for high
` to give

τ(`) = − T

log
[
1− pT (`)

] . (3)

where pT (`) is the probability of at least one exceedance in a fixed time T . pT (`) can
be estimated from any collection of length-T blocks of data—either from a single con-
tinuous timeseries or not. This is very useful because rare event splitting algorithms gen-
erate branching trees of short trajectories, from which we can estimate block-wise ex-
ceedances but not return times directly.

To produce Fig. 3b, we started with simulations of length 1.28 × 106 (after dis-
carding the first 50 for spinup), split them into B blocks of length T = 6, and measure
the maxima M1, ...,MB of x20 over each block. Letting M(b) denote the bth largest block
maximum, we use the empirical (complementary) CDF estimator, p̂T (M(b)) = b/B. Hence,
the return curve should interpolate the ordered pairs (τb, `b) =

(
− T

log(1−b/B) ,Mb

)
. Be-

cause it is common to think of ` as a function of τ , and to consider logarithmically spaced
return periods, we linearly interpolate M(b) over log τB to get a curve ˆ̀(τ). We bootstrap
to estimate uncertainty, resampling the blocks 1, ..., B with replacement and repeating
the above procedure 5000 times. Shading indicates the basic bootstrap 95% confidence
interval (Wasserman, 2004), meaning ˆ̀(τ)+(ˆ̀(τ)−`∗0.975(τ), ˆ̀(τ)−`∗0.025(τ)), where `∗α
denotes the αth quantile of the bootstrap distribution of ˆ̀ for each τ . Note that when
`∗0.025(τ) is much less than ˆ̀(τ), we get a very large upper bound on the confidence in-
terval, because it suggests via the basic bootstrap philosophy that ˆ̀(τ) could be very much
less than the true parameter `(τ). The lowest-noise curves are close to within uncertainty
even in the far tails, demonstrating the convergence of extreme value statistics for F4 ≤
0.5. This confirms that stochastic forcing, when sufficiently weak, does not alter the sys-
tem’s statistics very much, which allows us to approximate the deterministic system’s
rare events while remaining within the AMS framework which relies on explicit random-
ness.

The longest return period estimable by this method of “direct numerical simula-
tion” (DNS) is ∼ 8 × 105, the simulation’s length. Rare event algorithms can sample
physical realizations of extreme events at long return periods τ(`) with much less com-
putation time than τ(`), but have not yet been applied to local events in L96 with weak
stochastic forcing. Wouters and Bouchet (2016) did apply rare event algorithms to L96,
but their system parameters differed substantially from ours, with F0 = 256 giving a
much more turbulent regime reminiscent of a stochastic process. Moreover, their target
quantity of interest was a globally averaged energy, whereas we target local energy at
one longitude as a closer analogue to extreme precipitation or winds hitting a particu-
lar location.
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(a) (b)

Figure 3. Steady-state statistics of the L96 model as a function of noise strength, calculated

from a long simulation of length 1.28 × 106. (a) Histograms of the model variable at one site (x0)

and (b) return level vs. return period for (twice) the local energy x20. Shading in (b) represents

95% bootstrapped confidence intervals from the modified block maximum method. See text for

details.

The parameters a and F4 allow us to test the performance of AMS for a range of
problems, from systems on which AMS performs well to more difficult systems akin to
the extreme local precipitation problem. a = 0 (the OU process) is an easy setting for
AMS; a = 1 with large noise F4 is harder, but still doable because of the dominance
of noise. Shrinking F4 further, towards the system of actual interest, gradually renders
standard AMS ineffective and leads us to a modified version of the algorithm called TEAMS
that allows for early splitting. The next sections present the basic algorithm and its mod-
ification along this parameter path.

3 Subset simulation

TEAMS (and the special case AMS) may be viewed as a version of subset simu-
lation (SS), which we use to frame our overall approach, and which we believe has con-
siderable potential for application to climate problems. SS was introduced in Au and Beck
(2001) and has been most widely used in structural reliability engineering (X. Huang et
al., 2016). For a short pedagogical introduction, see Zuev (2015). The description be-
low will introduce several tunable algorithmic parameters, which are summarized in the
lower section of Table 1.

The goal is to estimate the probability that a random variable x from a distribu-
tion ρ gives rise to large values of some quantity of interest S(x),

p(`) =

∫
I{S(x) > `}ρ(x) dx = Eρ

[
I{S(X) > `}

]
, (4)

given only the ability to draw samples X1, X2, ... ∼ ρ. I{·} denotes the indicator func-
tion: one if the argument is true, zero if false. For us, each Xi = {Xi(t) : 0 ≤ t ≤ T}
is a length-T trajectories of L96 (with stochastic forcing); the score function is a max-
imum over the interval, S(X) = max0≤t<T R(X(t)); and ρ(x) is the distribution over
trajectories of length T induced by the stochastically forced L96 system. In structural
engineering, X might be the state of a building or dam, with ρ(x) induced by a prob-
ability distribution over external stresses like wind, earthquakes, or rainfall, while S(x)
would measure the proximity to failure. Because the probabilities of interest are very small,
a set of independent samples {Xn}Nn=1 from ρ will usually have few if any exceedances,
making the “vanilla” Monte Carlo estimate of p(`) (the fraction of exceedances) subject
to high relative uncertainty. The ratio of the estimator’s variance to its mean is approx-
imately 1/

√
Np(`) (Zuev, 2015). If we want to aim for a tenfold-longer return period
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with the same uncertainty, we need to generate tenfold more samples. Worse, to reduce
uncertainty tenfold we would need one hundredfold more samples, which may be unten-
able.

SS breaks down this task into a sequence of easier tasks by setting up a series of
intermediate levels `1 < `2 < ... < `J = ` where J is the number of levels, and esti-
mating a sequence of conditional probabilities P{S(X) > `j+1|S(X) > `j} =: p(`j+1|`j),
which all have moderate magnitudes and are expected to be easier to estimate. Their
product provides an estimate for the target probability:

p̂SS(`) = p̂(`1)p̂(`2|`1)...p̂(`J |`J−1). (5)

The first term can be estimated by vanilla Monte Carlo: generate N samples X1, ..., XN ,
and attach unit weights to each: Wn = 1 for n = 1, ..., N . Rank the samples by S so
that S(X(1)) ≤ S(X(2)) ≤ ... ≤ S(X(N)), and let p̂(`1) = (N − κ1)/N , where κ1 is
chosen so that S(X(κ1)) ≤ `1 < S(X(κ1+1)). The parameter κ1 is the number of tra-
jectories that are “killed” meaning they don’t appear in the first subset (see below). For
the case of AMS, κ1 is chosen as a parameter of the algorithm, and `1 is then set adap-
tively as `1 = 1

2 [S(X(κ1)) + S(X(κ1+1))].

The second term p̂(`2|`1) is estimated with a splitting strategy in which we focus
in on the “subset” of samples that exceed the first threshold: {S(X) > `1} containing
samples X(i) with κ1 < i ≤ N . To better sample this subset, we spawn additional sam-
ples from it via a “Modified Metropolis algorithm”:

1. Initialize a list X1 = {X(κ1+1), ..., X(N)}, which will eventually grow to a (user-
chosen) size N1 as well as a first-in-first-out queue Q of the same elements but in
a random order: the “parent queue”.

2. Pop Q to yield the next parent X. Apply some small perturbation to X to gen-
erate a new sample X̃, which itself is drawn from ρ but correlated to X. A gen-
eral way to do this is with one step of the Metropolis-Hastings algorithm which
involves an accept/reject step, but an easier approach is available in the partic-
ular case of AMS as described in the next section.

3. Evaluate S(X̃). If it exceeds `1, we have successfully generated a new sample from
the subset. Accept the new sample, meaning insert X̃ into both Q and X1 and as-
sign it a weight equal to that of its parent X. Otherwise, if S(X̃) ≤ `1, reject
X̃. Re-insert X into Q and add a copy of X to X1. (In implementation, we don’t
store two copies of the high-dimensional object X, but rather we assign a multi-
plicity to each member and increment X’s multiplicity by one.)

4. Repeat steps 2 and 3 until X1 has N1 elements (counting multiplicity).

5. Multiply the weights of all members of X1 by a factor (N −κ1)/N1, which pre-
serves the total weight N of the original ensemble {Xn}Nn=1 while spreading that
weight over more members.

Having expanded to N1 samples from the subset {S(X) > `1}, we can now pro-
ceed to the next level and generate additional samples from the next subset {S(X) >
`2} so that it contains N2 samples, where `2 can be determined adaptively as an order
statistic of X1, i.e., the average of the κ2th and the (κ2+1)th ranked values. The same
procedure is repeated to generate the next subset X2 (and Q is initialized with only unique
elements, not counting multiplicity, in order to maintain as much diversity as possible).
X3,X4, ...,XJ are generated in the same fashion, until either a computational budget is
reached, an ultimate target threshold is overcome, or some other halting criterion is met.

Ultimately we are left with a weighted ensemble {(X1,W1), ..., (XM ,WM )}, where
M = κ1 + κ2 + ... + κJ + NJ . The sampling {S(Xm)}Mm=1 is over-represented in the
tails, but with correspondingly smaller weights there, and all weights sum to N . Any ex-
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pectation of an observable Φ(x) can be estimated as

E[Φ(X)] =

∫
Φ(x)ρ(x) dx ≈ Φ̂ =

1

N

M∑
m=1

Φ(Xm)Wm. (6)

The SS algorithm will generally help to improve this estimate for functions Φ most sen-
sitive to the tail region of S(x), rather than its central bulk. In particular, setting Φ(x) =
I{S(x) > `}, we recover the estimator p̂SS(`):

E[I{S(X) > `}] = p(`) ≈ 1

N

∑
m:S(Xm)>`

Wm = p̂SS(`). (7)

An important set of algorithmic choices are the population parameters N,N1, ..., NJ ,
the killing numbers κ1, κ2, ..., κJ , as well as the halting criterion which determines J . Cérou
et al. (2019) reviews theoretical bases for several different choices, but here for simplic-
ity we opt for the same rule as used in Lestang et al. (2018): κj = κ = 1 (the “drop
1” rule) and Nj = N for all j = 1, ..., J (the population is replenished after each new
level is set). Note that with κj = 1, only a single parent is selected from Q at each round
before the level is raised and the queue re-initialized.

3.1 Adaptive multilevel splitting (AMS)

AMS (in particular “trajectory AMS (TAMS)” in the nomenclature of Lestang et
al. (2018)) can be seen as a special case of SS where each X = {X(t) : 0 ≤ t ≤ T} is
a length-T trajectory of a stochastic dynamical system, S(X) = max0≤t<T R(X(t)) for
some time-dependent score function R, and with a particular choice for splitting trajec-
tories. Trajectories are split by constructing a new forcing sequence η̃(t) (η̃1,2(t) for our

L96 model) to drive the child trajectory X̃(t) starting from the old forcing sequence η(t)
that drove the parent. First, copy the initial condition X̃(0) = X(0). Then, copy η̃(t) =
η(t) up until some split time tsp, which is chosen as first time t0(`) that the parent clears
the threshold:

tsp = t0(`1) = min{t ∈ [0, T ] : R(X(t)) > `1}. (8)

For following times t ≥ tsp, swap in a new and independent noise forcing sequence for
η̃(t). No Metropolis-style accept/reject step is needed for step (2) above; each newly sam-
pled Brownian increment of η̃(t) is drawn independently from N (0,∆t), and so η̃(t) is
a proper sample from the same noise-generating distribution as η(t). Furthermore, the
choice of tsp = t0(`1) guarantees X̃(t) = X(t) for all t ≤ t0(`1), so that S(X̃) > `1,
and acceptance is guaranteed in step (3) as well.

The change in forcing for t ≥ tsp will cause the child to diverge from the parent,

producing a new—but correlated—sample (Fig. 1a). How correlated X̃ is to its parent
X depends on tsp, with later tsp implying a longer shared history and less independence.
Applying the split at tsp = t0(`) maximizes the independence of the child—and ulti-

mately the diversity of the AMS ensemble—while guaranteeing S(X̃) exceeds `1, and there-
fore is accepted in the modified Metropolis Algorithm. The same procedure is carried
out for every subsequent level.

We performed a sequence of AMS experiments with the following parameters:

1. Physical constants and timescales: F4 ∈ {3, 1, 0.5, 0.25} for the default case a =
1 which gives the stochastically forced L96 model, and F4 = 3 for the case a =
0 which gives the OU process (shown in supplementary Figs. S1 and S2). We fix
F0 = 6, and K = 40 throughout, and set the time horizon to T = 6.

2. Ensemble sizes and population control: N = Nj = 128 and κj = 1 for j =
1, 2, ..., J = 896 adhering to a fixed computational budget of 1024 time horizons
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simulated. One additional halting criterion is imposed: if the population loses so
much diversity that all active ensemble members descend from the same ances-
tor, we terminate the algorithm early.

3. We repeat the whole procedure M = 56 times for each parameter set, with dif-
ferent seeds for pseudo-random number generation. Each repetition will be called
a “run” of AMS. Having multiple runs allows us to assess variance, and by using
pooled estimates from all runs to hedge against stagnation within local optima of
phase space in a particular run.

The initial N -member ensemble is generated as a sequence of consecutive blocks
from a moderate initialization simulation of length N×T (T = 6 is the time horizon),
after discarding the first 50 units as spinup. The spinup is initialized as xk(0) = F0 +

1
1000 sin

(
2πk
K ). The random number generator used to create the noise forcing sequences

η1,2(t) is seeded with s ∈ {0, ...,M−1}, a different value for each AMS run with a fixed
parameter set. The N initial blocks, although weakly correlated, comprise a sample from
the steady-state distribution of the stochastic L96 system. Larger N reduces the vari-
ability of the AMS results, but it also means more up-front cost and more rounds of split-
ting needed to reach return times long enough to make the algorithm worthwhile.

We compare our results from AMS to a long DNS simulation of length 1.28×106

(separate from the initialization), which is then further elongated by a factor of 40 (con-
catenating all K timeseries end-to-end) into 5.12×107, exploiting the statistical equiv-
alence of all K = 40 sites of L96. This curve is our best estimate of ground truth. Note
that the symmetry is only exploited to extend the DNS estimate, not the AMS estimate.
In a climate model with zonal inhomogeneities, such as continents, it would be inappro-
priate to aggregate different longitudes together.

Fig. 4a,b illustrates the effect of successive mutations over the course of the AMS
algorithm, on the relatively easy test case with strong stochastic forcing, F4 = 3 and
a = 1 (the even easier case of a = 0—the OU process with no interference from advection—
is documented in Lestang et al. (2018) and included in supplementary Figs. S1 and S2
for completeness). By design, the levels increase monotonically over the course of gen-
erations and the descendant scores march upward, ultimately mutating the moderate an-
cestor into an extreme descendant. Going beyond this successful “anecdote”, Fig. 5(a,b,c)
confirm the benefit of AMS for a statistically accurate sampling of the distribution’s tails.
Fig. 5a shows return period curves calculated with the modified block maximum method
according to three datasets: the full weighted ensemble from AMS; the initialization (“Init”),
consisting of N ensemble members per AMS run; and the long DNS simulation. The re-
turn levels are interpolated onto a common logarithmically spaced grid of return peri-
ods for easy comparison between the three data sources. Whereas return level estimates
based on the initializations alone (blue) scatter considerably around the ground truth,
AMS provides a tighter range of estimates (red) around the ground truth, and for ∼ 3
orders of magnitude-longer return periods, at only 8 times the cost of initialization (1024
members from an initial 128). Moreover, each AMS run is ∼ 5000 times less costly than
the DNS run that gave the ground truth curve; altogether, the 56 AMS runs are ∼ 100
times less costly.

Another way of comparing AMS to DNS is by pooling together all members from
the 56 ensembles and considering them as one larger ensemble of size 56×1024 = 57344.
Fig. 5b shows the resulting statistics which have the advantage of extending to consid-
erably longer return periods than the individual AMS runs. Here, as in Fig. 3, the er-
ror bars are given by the basic bootstrap 95% confidence interval using 5000 bootstrap
samples, but in the case of DNS (gray error bar), each bootstrap resampling contains
only enough blocks to match the total simulation time used by AMS (including all in-
dependent runs). This lets us compare the uncertainties fairly between the two meth-
ods. In the case of AMS error bars, the members within a single run are not indepen-
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 4. Scores for single ancestors and their descendents within the AMS algorithm (special

case of TEAMS with δ = 0). For each stochastic forcing amplitude, 56 independent runs of AMS

were carried out (indexed 0-55) with N = 128 ensemble members (0-127). (a) Time-dependent

score function R(X(t)) for the 7th initial ensemble member (ancestor) of run 14 for F4 = 3. A

black circle indicates the scalar score S(X) = maxtR(X(t)). R(X(t) and S(X) are also shown

for a single lineage (path down the family tree) in a sequence of brightening colors, ending with

the highest scoring descendant’s score in red. (b) Scores in gray dots, with the horizontal axis

numbering all descendants from ancestor 7 of run 14 for F4 = 3. Colored circles indicate those

descendants in the lineage from (a). The dashed gray curve indicates the levels ` from which

each descendant was split. (c,e,g) are the same as (a), and (d,f,h) are the same as (b), but with

stochastic forcing strength decreasing to F4 = 1, 0.5, and 0.25 respectively. In each case, the run

and ancestor were hand-selected among the ancestors with the maximum boosting.
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

DNS 
same 
cost as 
TEAMS

Figure 5. Performance of the AMS algorithm (special case of TEAMS with δ = 0). (a) Re-

turn level vs. return period plots for F4 = 3. Blue lines show estimates from the initial 128 mem-

bers of each AMS run; red lines show estimates from the completed AMS runs; black line shows

DNS. (b) Return level vs. return period for a pooled AMS ensemble containing all 56 × 1024

members. Blue and red envelopes indicate 95% confidence intervals (see text for details). Gray

envelope is a 95% confidence interval based on subsets of DNS equal in total cost to the 56 AMS

runs. Thus, the dashed red line and shading from AMS is of equal cost to the gray shading from

DNS. (c) Unweighted histogram of scores for AMS initialization (blue), completed AMS (red),

and DNS (black). Following rows are same as first row, but with noise decreasing to F4 = 1, 0.5,

and 0.25, respectively. The slight variability in TEAMS costs listed to the left are due to the

early halting criterion of one single ancestor remaining (see section 3).
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dent of each other, and so we resample the AMS runs. That is, we sample the numbers
{0, ..., 55} 5000 times with replacement, and for each resampling we pool together all mem-
bers from the corresponding list of AMS runs, including repetitions. Fig. 5c shows the
unweighted histogram of scores coming from the three data sources. The difference in
shape of the AMS histogram compared to the DNS histogram demonstrates the main
effect of AMS: to undersample the low end of the distribution and oversample the tail,
shifting the computational burden to where it is more useful for sampling extremes.

We consider AMS to “win” over DNS if either of two criteria are met: (i) the AMS
estimate remains close to the DNS (relative to error bar width) for return periods well
beyond the AMS total simulation time TAMS; (ii) the AMS error bar is much smaller than
the DNS error bar at TAMS. Under strong stochastic forcing, AMS performs very well
by both criteria, accurately (and confidently) estimating return periods as long as 107

in the pooled estimate using only 3.4×105 time units of computation. This aligns with
the demonstration in Lestang et al. (2018) for the OU process, and serves as a depar-
ture point for our modification of the algorithm.

3.2 Failure of AMS in the regime of weak stochastic forcing

The story gets more complicated when the stochastic forcing is weak and nonlin-
ear dynamics dominate. In deterministic chaos, perturbations grow exponentially with
a rate inversely proportional to the Lyapunov timescale—at least, so long as the pertur-
bations remain infinitesimal. Only after several elapsed Lyapunov times—what we call
the divergence timescale, quantified further in section 4—do perturbations become large
enough to be useful for splitting algorithms, but also at which size nonlinear effects take
over. In contrast to deterministic chaos, white noise realizations diverge immediately.
The stochastic L96 system inherits both behaviors to some extent, determined by the
relative strength of stochastic forcing. Our main thesis is that when nonlinear dynam-
ics dominate, and divergence time exceeds the duration of the event of interest, standard
AMS is inadequate, but this can be remedied by adjusting the choice of splitting time
tsp as shown in the next section.

Fig. 4c-h show ancestors and descendents for AMS, analogous to Fig. 4a,b and with
identical algorithmic parameters, but with decreasing levels of stochastic forcing: F4 =
1, 0.5, 0.25. For all four stochastic forcing strengths, ancestors can spawn more extreme
descendants. However, there is a key difference between the strong- and weak-stochastic
forcing regimes. With strong stochastic forcing F4 = 3 (Fig. 4a,b), each descendant along
the lineage improves upon the same event. In other words, the sequence of maximum
scores comes from a peak in the timeseries for R(X(t)) that grows taller and taller, drift-
ing only slightly forward in time. With weaker stochastic forcing (Fig. 4 c-d, e-f and es-
pecially g-h), events tend to see only modest boosts from generation to generation. The
only way for a child X̃ to improve substantially over its parent X is by creating a whole
new event—a new peak later in the time horizon—rather than building on an existing
event. This happens because the stochastic forcing is too weak to open a large gap be-
tween R(X̃(t)) and R(X(t)) during the short interval between the splitting time t0(`),
when R(X(t)) first exceeds `, and the peak argmaxtR(X(t)). The child ends up essen-
tially replicating the parent’s peak, which is the same behavior illustrated schematically
in Fig. 1a. The characteristic time scale of the peak (what we will call the event dura-
tion) is set by the zonal propagation of waves, and this timescale is not long enough com-
pared to the divergence time for AMS to work well. The same phenomenon was observed
in Lestang et al. (2020)): extreme spikes in the force on a body in a turbulent channel
flow (see their Fig. 14) could not be boosted via AMS, which was attributed to the “sweep-
ing” of vortices past the body. Similar reasoning holds for the zonal propagation of waves
in L96 and the passage of midlatitude cyclones or fronts past a location in the midlat-
itudes.
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Fig. 5 summarizes the performance of AMS for different strengths of stochastic forc-
ing. The suspicion of failure raised by Fig. 4 is confirmed by the clear degradation of per-
formance as F4 shrinks. In particular, the individual AMS return level curves tend to
fall farther and farther underneath the true return level curves (left column of Fig. 5).
There is a large scatter in the individual runs, and in the case F4 = 0.5, a lucky few
of the 56 runs salvage the pooled estimate for a decent approximation of the DNS re-
turn levels, but the width and asymmetry of the confidence intervals indicate the unre-
liability of this result (Fig. 5h). The problem becomes particularly acute as F4 drops to
0.25, with the individual AMS runs barely improving upon the initial scores (Fig. 5j) and
a large underestimate at longer return periods for the pooled estimate (Fig. 5k).

It thus appears that standard AMS is dead on arrival for cases where the diver-
gence timescale is longer than the event duration. In principle, there is a canonical fix
for this problem, namely to use a more intelligent score function than the quantity of
interest R(X(t)) itself. The ideal such proxy is the committor : the probability, given an
initial condition X(t) = x, that R(X(s)) will exceed ` at some time s ∈ (t, T ) before
the time horizon ends. By definition, the committor incorporates information about the
model state X(t) that is not available from R(X(t)) = x20, for example the speeds and
magnitudes of different wave packets scattered across the domain that may all soon con-
verge at k = 0 and result in an extreme burst of energy. The committor is an optimal
score function for AMS in terms of minimizing the variance for p̂(`) (Lestang et al., 2018;
Cérou et al., 2019; Lucente, Rolland, et al., 2022). Considerable research has recently
pursued approximation strategies for the committor in various climate applications (e.g.,
Tantet et al., 2015; Finkel et al., 2021; Lucente, Herbert, & Bouchet, 2022; Miloshevich
et al., 2023; Jacques-Dumas et al., 2023).

Unfortunately, these strategies all require either a high volume of training data—
potentially canceling out the savings of a rare event algorithm, which is useful precisely
in the low-data regime—or very specific knowledge of phase space geometry, such as a
bistable structure, which is not typically available for realistic climate models. A sec-
ond, related problem is that the optimality property only holds true for a single com-
mittor with a fixed threshold `. What if we seek return periods for a whole range of thresh-
olds? We would have to sacrifice the accuracy of some return periods in favor of others.
Alternatively, we could use the committor for a single very high threshold `max, but then
even less training data would be available. Although it is interesting and worthwhile to
search for committor functions based on traveling-wave dynamics, we leave that to fu-
ture work, and in the next section we describe a simpler strategy to get around the stag-
nation issue seen in Fig. 4.

3.3 Trying-early adaptive multilevel splitting (TEAMS)

To address the failure of AMS in the nonlinear regime, we adjust tsp = tδ(`) =:

t0(`) − δ by an advance split time δ > 0, allowing some time for the child X̃ to drift
farther away from the parent and possibly achieve a higher maximum score. Indeed, en-
semble boosting (Gessner et al., 2021) does exactly that, systematically applying per-
turbations every day from 19 to 7 days in advance of heat wave onset, although ensem-
ble boosting does not by itself allow the calculation of return periods for the boosted events.
When splitting early we lose the guarantee that R(X̃(t)) clears the current level ` (decpicted
schematically in Fig.1b), which is why we frame our modified algorithm using subset sim-
ulation (see section 3) which includes an accept/reject step: when a child fails to score
higher than `, it is discarded from the ensemble and its parent is duplicated instead (in
other words, doubling its statistical weight). The resulting algorithm, which we call TEAMS
(“trying-early adaptive multilevel splitting”), incurs additional cost due to rejected sam-
ples, but also gains back the ability to build significantly upon ancestral scores. One can
interpret δ as setting the width of the proposal distribution, a key parameter in Markov
chain Monte Carlo methods. A wider proposal allows the child to explore farther afield
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from its parent, but increases the risk of rejection. Proposal width often has to be tuned
carefully, and the sampling community has devoted substantial efforts to adaptively de-
signing the proposal (Walter R. Gilks & Sahu, 1998; Andrieu & Thoms, 2008). Such meth-
ods will surely prove useful for complex climate models, but in our present proof-of-concept
study of the algorithm, we found approximately optimal δ values by exhaustive grid search
for each noise level. Section 4 explains this procedure and shows that the optimal δ can
be related to the error saturation timescale, a classical measure of predictability.

We performed a sequence of TEAMS experiments with (F4, δ) ∈ {3, 1, 0.5, 0.25}×
{0, 0.2, 0.4, ..., 2.0}. We adjust the time horizon T = 6+δ to give each parameter choice
the same length of score to boost. All other parameters are as before for the AMS ex-
periments.

Fig. 6 shows TEAMS in action for the same parameter sets from Fig. 4, but with
(roughly optimal) advance splitting times δ = 0.0, 0.6, 1.0, and 1.4 for the decreasing
noise levels (at F4 = 3, δ = 0 still works best, and panel (a) is the same as in Fig. 4a)).
Note that the score functions R(X(t)) are only defined for times t > δ, because if t0(`) <
δ then tδ(`) < 0, so we cannot apply the split early enough. This is implemented by
setting the early scores to NaN, and lengthening the time horizon from T to T+δ as men-
tioned above. We account for this extra cost in all the performance calculations to fol-
low, but we omit the first δ time units from the plots. For all four stochastic forcing strengths,
we see examples of children building significantly, and directly, upon a parent’s maxi-
mum, without having to discover a new peak farther into the future. The values of the
scores form continuous point clouds in panels (b,d,f,h), unlike the discrete horizontal bands
appearing in Fig. 4(f,h) where δ = 0 and stochastic forcing is weak. The negative side-
effect is that many gray dots fall short of the gray dashed line, indicating a rejected sam-
ple. Clearly, increasing δ brings both higher risk and higher reward.

Fig. 7 quantitatively confirms the hopeful suggestion of Fig. 6: that increasing δ
can give TEAMS a speedup over DNS in the weak stochastic forcing regime. For all cases
shown, TEAMS extends the estimated return period, accurately, well beyond the gray
envelope which marks the limit achievable by an equal-cost run of DNS. The black ground
truth curve remains within the 95% confidence band of TEAMS to return periods of ∼
107 across all forcing levels. Simultaneously, the TEAMS confidence band is narrower
than the DNS band.

Fig. 7 shows TEAMS gives a good estimate of the return values when all runs are
pooled together, but that most individual TEAMS runs underestimate the true return
values while a few overestimate them to allow for a good pooled estimate. As in Lucente,
Rolland, et al. (2022), we can attribute this behavior to apparent bias, which is best ex-
plained by analogy: an experiment consisting of 100 flips of a coin with p = P(heads) =
0.001 has a nine in ten chance of landing no heads, yielding a probability estimate p̂ =
0. But one experiment out of ten will yield p̂ = 0.01, a gross over-estimate, and only
by pooling these two scenarios together can we see the estimator’s lack of bias. Unlike
the coin-flipping experiment, TEAMS is designed to preferentially sample extreme val-
ues, but a given AMS run for L96 may still get stuck in a local optimum yielding un-
derestimated return values, especially if the stochastic forcing is too weak to jolt a tra-
jectory out of it. Thus, pooling over multiple runs is especially crucial in the determin-
istic limit.

4 Optimizing advance split time

In this section, we explain how we determined optimal values of the advance split
time δ using a simple exhaustive search. We then investigate the behavior of δ as a func-
tion of stochastic forcing strength as a guide for choosing δ prior to running TEAMS on
a more expensive model for which exhaustive search would not be feasible.
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 6. Scores for single ancestors and their descendants generated by the TEAMS algo-

rithm: the same as Fig. 4 but with advance split times δ chosen to be approximately optimal for

each noise level: δ = 0, 0.6, 1, and 1.4 for F4 = 3, 1, 0.5, and 0.25, respectively. Because δ = 0

is optimal for F4 = 3, (a,b) is the same as Fig. 4a,b. Section 4 explains how the δ values were

chosen.
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

DNS 
same 
cost as 
TEAMS

Figure 7. Performance of the TEAMS algorithm: the same as Fig. 5 but with advance split

times δ chosen to be approximately optimal for each noise level: δ = 0, 0.6, 1, and 1.4 for

F4 = 3, 1, 0.5, and 0.25, respectively. Because δ = 0 is optimal for F4 = 3, (a-c) are the same

as Fig. 5a-c.
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4.1 Exhaustive search

We selected the “optimal” δ values based on two simple performance metrics, which
are plotted in Fig. 8.

1. Return level RMSE: the root-mean-square difference of return level between a TEAMS
estimate (from a single run) and the DNS-determined ground truth, where the mean
is taken over uniform bins in log τ space. This metric is proportional to the L2-
norm between a red line and the black line in the left columns of Figs. 5 and 7.
In cases where the red line stops before the black line, it is extrapolated to longer
return periods with a constant given by its maximum to penalize the algorithm
getting stuck at a false upper bound. We calculate statistics of the return level
RMSE across runs, including the mean and quantiles, which are displayed in Fig. 8(a,c,e,g).
Note that these correspond to percentile bootstrap confidence intervals (Wasserman,
2004), as opposed to the basic bootstrap confidence intervals shown in Figs. 5 and 7.
Here we use the percentile bootstrap as a means of sensitivity analysis, to show
the range of results that might occur due to sampling variability. The basic boot-
strap, by contrast, is intended to bracket the ground truth of some parameter value.
The return level RMSE can also be calculated for the pooled estimate, and it shows
similar but noisier trends.

2. Mean family gain: the maximum improvement (difference in scores) from ances-
tor to descendant over all N ancestors, averaged over the 56 runs. This does not
measure statistical accuracy, but only the consistent ability to generate extreme
events out of moderate events. Fig. 8 (b,d,f,h) shows mean family gain. Other met-
rics of gain, such as the maximum descendant score minus the maximum ances-
tral score (not necessarily from the same family tree) yield very similar trends with
δ, albeit different absolute values.

A good choice of δ should have a small return level RMSE and a large mean family gain.
Based on both performance metrics, we selected optimal δ = 0, 0.6, 1, 1.4 for F4 = 3, 1, 0.5, 0.25,
respectively. These optimal values are marked with vertical gray lines in Fig. 8, and they
are used in Figs. 6 and 7. For F4 = 0.5, the two metrics gave slightly difference opti-
mal values ( δ = 1.2 for return level RMSE or δ = 1 for mean family gain); we chose
δ = 1 because it gave the better pooled estimate. We emphasize that the optimal val-
ues are only discernible by averaging over many independent runs. For completeness, we
display all 44 return level vs. return period plots (4 values of F4 × 11 values of δ) in the
supplement. In general, shifting the optimal δ by ±0.2 doesn’t change the results qual-
itatively, but larger shifts can degrade performance. The absolute values of errors should
not be compared between stochastic forcing levels, since each has its own statistical steady
state. Rather, the important takeaway is the increase in optimal δ as the stochastic forc-
ing weakens. Indeed, in the singular limit of zero stochastic forcing the advance split time
must necessarily go to infinity to have any effect at all, and initial condition perturba-
tions would be needed to split trajectories.

To summarize, we have found that some choices of δ can make TEAMS effective
where AMS is not effective, and that the optimal δ increases as stochastic forcing mag-
nitude decreases. In the next section we relate this behavior to the predictability time,
which points toward a cheap method to estimate an optimal—or at least, reasonably performant—
δ, without having to repeatedly run TEAMS.

4.2 Relation between optimal advance time and error saturation timescales

Heuristically, we expect the optimal advance time δ to reflect the divergence timescale
of perturbed trajectories that are introduced in splitting. Can this be related to classi-
cal predictability timescales? Lyapunov analysis describes perturbation growth by way
of Lyapunov exponents and singular vectors (Cencini & Ginelli, 2013; Norwood et al.,
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(b)(a)

(d)(c)

(f)(e)

(h)(g)

Figure 8. Performance of TEAMS as a function of advance split time δ and as measured by

(a,c,e,g) return level RMSE and (b,d,f,h) mean family gain for F4 = (a,b) 3, (c,d) 1, (e,f) 0.5,

and (g,h) 0.25. Return level RMSE is computed separately for each run. Thick red lines show the

average over runs, and red envelopes show the quantile ranges 25%-75% (or interquartile range,

IQR) and 2.5%-97.5% across the 56 runs. Mean family gain is maximum gain in score within a

single family averaged over the 56 runs. Vertical gray lines show the optimal values of δ used in

Figs. 6 and 7.
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2013; Pazo et al., 2010; Maiocchi et al., 2024), but it applies to the regime of infinites-
imal perturbations. The kind of perturbations we strive for in rare event sampling are
finite and nonlinear, turning peaks into substantially larger peaks as in Figs. 4, 6. “Fi-
nite size Lyapunov exponents” (FSLEs) (Boffetta et al., 1998; Cencini & Vulpiani, 2013)
are closer to what we need, generalizing the Lyapunov exponent to be dependent on an
initial error amplitude. Typically, error grows in two stages: first exponentially, during
which the FSLE equals the leading Lyapunov exponent, and then diffusively (scaling as
a power law with time), during which the FSLE declines. The divergence timescale is
bounded below by this change point, which approaches zero as stochastic forcing becomes
dominant: indeed, the variance of pure Brownian motion grows linearly in t immediately.

On the other hand, the optimal δ is bounded above by the error saturation timescale,
when perturbed ensemble members become independent and inhabit totally different re-
gions of the attractor. By then, the root-mean-square error (RMSE) of the ensemble will
equal the root-mean-square distance (RMSD) between two randomly chosen points on
the attractor. In climate models, the saturation timescale is a convenient and effective
measure of predictability (Sheshadri et al., 2021). Clearly, δ must be chosen shorter than
the time to saturation, since a child trajectory ought to take advantage of pre-existing
maxima produced by its parent. To investigate this relationship, the following experi-
ments measure time in terms of fraction of saturation.

For each F4 considered, we ran a moderate-length control simulation x(t) for 0 ≤
t ≤ 1050 (discarding the first 50 as spinup), and measured the RMSD for this simu-
lation. At initialization times 50, 70, 90, ..., 990 (48 in total) we branched a 16-member
ensemble with identical initial conditions x(t) but independent stochastic forcing real-
izations (a convenient feature of stochastic forcing is that errors grow even from perfect
initial conditions, removing dependence on initial perturbation amplitude). We integrated
each member for 15 time units, calculated RMSE as a function of time (separately for
each ensemble), and inverted to find the times tε at which the fraction of saturation ε =RMSE/RMSD
reached a given value. In other words, RMSE(tε) = ε × RMSD. Finally, we take the
average across initializations to get a single value tε for each of several ε values. The to-
tal cost of this experiment is 1.2×104 time units, roughly equal to 1.5 runs of AMS and
much cheaper than the 56-run pooled estimate. Moreover, halving the number of initial-
izations used yields qualitatively similar results.

Fig. 9 shows timeseries of x0(t) (both control and perturbed) and error growth for
two such ensembles from the high and low stochastic forcing cases. The time axis is trun-
cated to 10 days past initialization. The early linear growth of ε vs. tε indicates a steady
decline in relative growth rate, meaning that the perturbations begin to enter the dif-
fusive (sub-exponential) growth regime quite early. This is thanks to stochastic forcing,
which is visible in the top row as the emergence of red members from the shadow of the
control trajectory. As expected, the error growth is much faster for the higher value of
stochastic forcing.

If the optimal δ could be predicted from the error growth rates alone, the TEAMS
algorithm could be calibrated simply and cheaply before being deployed. Fig. 10 shows
the time t3/8 when RMSE reaches a fixed fraction of RMSD (3/8) as compared to the
optimal δ values determined from Fig. 8, as a function of the strength of stochastic forc-
ing. We include results from forcing at wavenumbers m = 1, 4, 7, 10. There is an en-
couraging similarity between the dependence of optimal δ and t3/8 on stochastic forc-
ing strength, suggesting that the fractional saturation time might be useful to provide
an estimate for δ.

Another interesting and less obvious feature is the dependence on wavenumber of
error growth (albeit a weak dependence): medium-length wave forcing (m = 4 and m =
7) drives error to saturation faster than very short (m = 10) or long (m = 1) wave
forcing, which informed our choice of m = 4 throughout the TEAMS experiments. How-
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(a) (b)

(c) (d)

Figure 9. Growth of perturbations in the experiments described in subsection 4.2 for one

representative initialization time t0 = 70 and two values of the stochastic forcing: (a,c) F4 = 3

and (b,d) F4 = 0.25 . (a,b) show x0(t) for the control simulation (black) and 16 simulations

with the same initial condition but different white-noise forcing realizations (red). (c,d) show

Euclidean distance between each ensemble member to the control as a fraction of RMSD versus

time (red), and the fraction of saturation RMSE/RMSD versus the time until each ε value is

reached averaged across all initializations and ensemble members (black), i.e., ε vs. tε. Dots indi-

cate ε = 1/32, 1/16, 1/8, 1/4, 3/8, 1/2, and these same values reflected about 1/2.

ever, the variability due to initial conditions (indicated by ±1σ error bars) tend to ex-
ceed systematic differences between wavenumbers. This variability reflects a distribu-
tion of divergence timescales across the attractor, which was also found be be quite het-
erogeneous in Maiocchi et al. (2024) (there measured by Lyapunov exponents). It also
suggests that the best strategy may be to not fix a single δ, but to allow the algorithm
to adaptively set a δ, or sample from a range, to account for differing divergence timescales
between different initial conditions, and this could be investigated in future work.

5 Conclusions and Outlook

A vexing challenge in climate science is reliably quantifying the probability of ex-
treme weather events, which are fundamentally difficult to characterize because of data
scarcity. Among various competing strategies, rare event algorithms hold several key ad-
vantages, chiefly (i) access to dynamical samples of the events, rather than just return
period curves which extreme value theory might provide, and (ii) more statistical rigor
than storyline-based approaches like “ensemble boosting” (Gessner et al., 2021), thanks
to careful re-weighting of cloned trajectories. Inspired by recent successes of rare event
algorithms on long-lasting heat waves (Ragone et al., 2018) and idealized models of regime
transitions (Lucente, Rolland, et al., 2022; Jacques-Dumas et al., 2023), we have inves-
tigated the ability of a particular algorithm, adaptive multilevel splitting (AMS) to sam-
ple extreme events of a different character: intermittent, short-lived bursts of energy in
the Lorenz-96 model which have some similar characteristics as extreme daily rain or wind
associated with midlatitude cyclones.

Even in this simple model, we have elucidated some key obstacles that hinder rare
event splitting algorithms on sudden, short-lived events, and furthermore taken some steps
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Figure 10. Time t3/8 until the perturbations described in subsection 4.2 reach a fixed fraction

(3/8) of RMSD as a function of stochastic forcing strength Fm for different wavenumbers m. Er-

ror bars are ±1 standard deviation of the distribution over different initial conditions. Optimized

values of δ (determined from the performance metrics in Fig. 8) are shown in the black dashed

line for m = 4.

to overcome them. AMS sets up a sequence of thresholds for an observable of interest
and estimates conditional exceedance probabilities in stages by cloning and perturbing
“successful” ensemble members when they cross a threshold, to generate new “success-
ful” samples. This simple prescription suffers a fatal problem when the events are short-
lived compared to the divergence timescale (how long it takes a perturbation to grow ap-
preciably): a perturbed ensemble member essentially replicates its parent’s success, and
doesn’t develop its own history until after the event is over. Neither the magnitude nor
the diversity of rare event samples is enhanced. To fix this problem, we have drawn in-
spiration from ensemble boosting to apply a perturbation in advance of the rare event
by some lead time δ. But we have also retained rigorous statistics for these “storylines”
by exploiting a more general rare event algorithm, subset simulation (SS), of which AMS
is only a special case. We name the resulting algorithm “trying-early AMS” (TEAMS)
and demonstrate its success in sampling the tails of the rare event distribution more ef-
ficiently than direct numerical simulation can do, despite an extra computational cost
due to rejected samples.

Our study is a proof of concept that suggests a path forward, but with some open
questions and directions for improvement, which we summarize here:

• The most crucial algorithmic parameter is the advance split time, δ, which is equiv-
alent to a proposal distribution width. Our grid search for optimal δ, though not
a scalable solution, demonstrates a relationship with the time over which pertur-
bations grow to a fraction of saturation. An important goal for future work is to
assess this result for other underlying models such as general circulation models
or for other error growth metrics. Given the localized nature of our observable (x20
is the energy at a single longitude site), it is interesting that a global Euclidean
metric correlates with the optimal δ. Weighting the metric more heavily for grid
points near k = 0 might further improve this relationship.

• The weak stochastic forcing limit Fm → 0 is important to confront for climate
models, which may be more practical to perturb just at the splitting time rather
than continuously at every time step, especially if the climate model is not already
equipped with a stochastic subgrid parameterization. In the TEAMS framework,
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this would translate to perturbing a simulation at a lead time δ ahead of the event,
but not at all following times. Perturbing at just one time makes a given pertur-
bation magnitude less powerful—but also opens up interesting possibilities such
as the use of deterministic optimization strategies to more efficiently discover the
most extreme event possible from a given initial condition. For example, some di-
rections of perturbation (singular vectors) grow much faster than others, a fact
which has informed ensemble design in operational weather forecasting (Palmer
& Zanna, 2013), and could be used to further improve the algorithm. Methods
such as conditional nonlinear optimal perturbation (Wang et al., 2020, and ref-
erences therein), generalized stability theory (Farrell & Ioannou, 1996), and large
deviation theory (Dematteis et al., 2018, 2019; Schorlepp et al., 2023) may prove
useful for this task.

• Related to the previous point, it is desirable to have greater efficiency with sam-
ples in order to deploy rare event algorithms at scale. For example, we should not
simply discard rejected samples, but rather learn from their “mistakes” to design
better perturbations. Frameworks like Bayesian optimization and adaptive impor-
tance sampling based on model reduction have been developed for this task, and
have been used in safety assessment for reliability engineering (e.g., Cousins & Sap-
sis, 2014; X. Huang et al., 2016; Mohamad & Sapsis, 2018; Sapsis, 2020; Uribe et
al., 2021; Zhang et al., 2022).

Rare event algorithms represent a new way to allocate computational resources to
where they matter most. To realize their considerable potential for efficiency gains, we
have taken one of the necessary steps to make them flexible enough to target intermit-
tent, localized, transient events that characterize phenomena such as heavy precipita-
tion in complex global climate models. The Lorenz-96 model is an invaluable prototype
as a cheap system that poses similar algorithmic challenges. Forthcoming papers will use
the insight gained here as a stepping stone to more complex and realistic models.
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and should not hesitate to contact J. F. for assistance.
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Supporting Information for “Bringing statistics to storylines: rare event
sampling for sudden, transient extreme events”

Contents

1. Figures S1 to S13

Introduction Figs. S1 and S2 display results for AMS applied to the stochastic L96 model
with a = 0 and F4 = 3, which is really just an array of correlated OU processes with
no advection. Figs. S3-S13 display return level vs. return period plots for all combina-
tions of stochastic forcing level F4 ∈ {3, 1, 0.5, 0.25} and the advance splitting time δ ∈
{0, 0.2, 0.4, ..., 2}, only a subset of which are shown in the main text.
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(a) (b)

Figure S1. Example of a single lineage generated by AMS applied to the the OU process

(L95 with a = 0, F4 = 3), formatted the same as Fig. 4a,b of the main text.

(a) (b) (c)

DNS same 
cost as 
TEAMS

Figure S2. Statistical results of AMS applied to the OU process (L96 with a = 0, F4 = 3)

with N = 128 initial ensemble members and M = 56 runs. Format is the same as Fig. 5a,b,c of

the main text.
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S3. TEAMS algorithm performance at all four noise levels with δ = 0.0
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S4. TEAMS algorithm performance at all four noise levels with δ = 0.2
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S5. TEAMS algorithm performance at all four noise levels with δ = 0.4
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S6. TEAMS algorithm performance at all four noise levels with δ = 0.6
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S7. TEAMS algorithm performance at all four noise levels with δ = 0.8
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(b) (c)(a)

(e) (f)(d)
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Figure S8. TEAMS algorithm performance at all four noise levels with δ = 1.0
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(b) (c)(a)

(e) (f)(d)
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(k) (l)(j)

Figure S9. TEAMS algorithm performance at all four noise levels with δ = 1.2
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(b) (c)(a)

(e) (f)(d)
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(k) (l)(j)

Figure S10. TEAMS algorithm performance at all four noise levels with δ = 1.4
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

Figure S11. TEAMS algorithm performance at all four noise levels with δ = 1.6
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(b) (c)(a)
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(k) (l)(j)

Figure S12. TEAMS algorithm performance at all four noise levels with δ = 1.8
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(b) (c)(a)
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(h) (i)(g)
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Figure S13. TEAMS algorithm performance at all four noise levels with δ = 2.0
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