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Abstract

A recent article by Kidston et al. [8] demonstrates that the length of atmospheric
eddies increases in simulations of future global warming. This thesis expands on
Kidston et al.’s work with additional studies of eddy length in the NCEP2 reanalysis
(a model-data synthesis that reconstructs past atmospheric circulation) and general
circulation models (GCMs) from the Coupled Model Intercomparison Project phase 3.
Eddy lengths are compared to computed values of the Rossby radius and the Rhines
scale, which have been hypothesized to set the eddy length. The GCMs reproduce the
seasonal variation in the eddy lengths seen in the reanalysis. To explore the effect of
latent heating on the eddies, a modification to the static stability is used to calculate
an effective Rossby radius. The effective Rossby radius is an improvement over the
traditional dry Rossby radius in predicting the seasonal cycle of northern hemisphere
eddy length, if the height scale used for calculation of the Rossby radius is the depth
of the free troposphere. There is no improvement if the scale height is used instead of
the free troposphere depth. However, both Rossby radii and the Rhines scale fail to
explain the weaker seasonal cycle in southern hemisphere eddy length. In agreement
with Kidson et al., the GCMs robustly project an increase in eddy length as the
climate warms. The Rossby radii and Rhines scale are also generally projected to
increase. Although it is not possible to state with confidence what process ultimately
controls atmospheric eddy lengths, taken as a whole the results of this study increase
confidence in the projection of future increases in eddy length.

Thesis Supervisor: Paul A. O’Gorman
Title: Assistant Professor
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Chapter 1

Introduction

Transient eddies are the central dynamical feature of the extratropical atmosphere.

The eddies transport heat and moisture poleward and thus play a key role in the

Earth’s climate system [9]. An extensive body of work attempts to develop physical

theories that explain the size of the eddies, which affects key aspects of their behavior

such as propagation velocities and locations of dissipation [8, 22].

The eddies exist because the atmosphere is baroclinically unstable [21]. The

archetypal models of baroclinic instability are those of Charney, Eady and Phillips

[2, 3, 14]. The models demonstrate how certain types of perturbations to a zonally

symmetric flow on an f - or β-plane can result in growing waves in the flow. The

models yield predictions of the characteristic length scales of these waves [13, 22].

For all three, the characteristic length scale is

LR ∼ NH

f
, (1.1)

where LR is referred to as the Rossby radius, N is the buoyancy frequency of the

zonally symmetric flow, H is a relevant height scale, and f an appropriate value of

the Coriolis parameter. The LR of equation 1.1 is then identified with the scale of

atmospheric eddies (e.g., [18]).

It has also been suggested that the eddy length is set by the fundamental physics

of rotating stratified turbulence. Theory predicts that the energy of the turbulent
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flow should cascade to larger spatial scales. If f varies in the rotating system, as it

does for a planet or a β-plane, the inverse cascade can be stopped by the gradient in

f , limiting the size of the eddies to

Lβ ∼
(
vRMS

β

)1/2

. (1.2)

Lβ is referred to as the Rhines scale, vRMS is the RMS velocity of the flow, and β is

an appropriate value of df/dy [16, 22, 23].

Substantial debate exists in the literature on what sets the length scale of atmo-

spheric eddies. Using simulations with a dry idealized GCM, Schneider and Walker

(2006) [18] argue that the Rossby radius and the Rhines scale vary similarly as the

pole-equator temperature gradient, planetary rotation rate and radius, and a convec-

tive lapse rate are adjusted. Both length scales yield reasonable predictions of the

eddy length exhibited by the GCM, and Schneider and Walker further argue that

there is not in fact an inverse energy cascade and so the eddy length is set by the

Rossby radius. Merlis and Schneider (2009) [11] describe linear stability analyses of

the zonal mean flows of many of the simulations presented in [18] and several related

works, strengthening the connection between the growing waves of the baroclinic in-

stability and observed atmospheric eddies by demonstrating that the Rossby radius

also scales with the zonal length scale of the fastest-growing baroclinic waves.

Other studies suggest that the Rhines scale is the constraint on eddy lengths.

Frierson et al. (2006) [6] adjust the amount of water vapor in the atmosphere of a

moist idealized GCM and find that the Rhines scale is the best explanation of the

resulting eddy lengths. Barry et al. (2002) [1] vary the pole-equator temperature

gradient, planetary rotation rate and radius, radiative heating rate, and surface tem-

perature in a moist GCM and calculate the eddy length, Rossby radius, and Rhines

scale for each simulation. In this manner their study is similar to that of Schneider

and Walker. However, Barry et al. find the Rhines scale to correlate better with

the eddy length. The cause of the disagreement is unclear, but may relate to the

substantial differences in the definition of eddy length between the two studies.

16



Furthermore, the idea that the Rossby radius as defined in equation 1.1 deter-

mines the eddy length scale of the real atmosphere suffers from a significant theoret-

ical weakness. The dynamics of the real extratropical atmosphere are significantly

influenced by latent heat release [17], but the baroclinic instability models from which

the Rossby radius derives ignore this phenomenon. Studies of moist baroclinic insta-

bility (e.g.,[4, 5, 24]) suggest the need for modifications to equation 1.1 to include the

effects of latent heating. Frierson et al. attempted to do so by making an ad hoc

adjustment to N , but ultimately concluded that the Rhines scale was superior to this

modified Rossby radius in accounting for the eddy lengths simulated by their GCM.

Any effect of latent heating on eddy lengths may depend on global temperatures,

because of the rapid increase in saturation specific humidity with temperature [17].

Evidence that global warming will affect eddy lengths is provided by Kidston et al.

(2010) [8], who analyze the output of 12 GCMs from the Coupled Model Intercompar-

ison Project phase 3 [10]. Kidston et al. find that under the A2 emissions scenario,

in which CO2 levels reach approximately 820 ppm by 2100, eddy lengths increase in

both hemispheres of each GCM studied. They argue that this process is linked to an

increase in N , and use the NCEP/NCAR reanalysis to show that such an expansion

of the eddies may already be occurring.

Recent work by O’Gorman (2011) [12] provides a path forward on the problem of

modifying the Rossby radius to account for the effects of latent heating. O’Gorman

derives a way to parameterize the latent heating effect with an adjustment to N ,

facilitating its addition to the calculation of the Rossby radius and other atmospheric

dynamical quantities in which N is relevant. O’Gorman assesses the adjustment to

N using simulations with a moist idealized GCM. Eddy lengths are found to increase

with global temperatures, in agreement with Kidston, and the changes are predicted

successfully by changes in the Rossby radius if the Rossby radius is calculated with

the adjusted N . If the standard N is used, changes in the Rossby radius overestimate

changes in the eddy length.

This thesis extends the work of Kidston and O’Gorman by using Rossby radii with

and without the latent heating adjustment and the Rhines scale to analyze the future
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changes in eddy length projected by six of the CMIP3 GCMs. Unlike the idealized

GCMs used in most of the studies described above, the CMIP3 models have seasonal

cycles. This permits calculations of the seasonal variation of the Rossby radii, Rhines

scale, and eddy length in the simulated 20th century climate. Comparisons are made

to the seasonal variations found in the NCEP-DOE Reanalysis 2 [7].

Chapter 2 of the thesis presents precise definitions of the eddy length, Rossby

radius, and Rhines scale and explains how they were calculated from the GCM output

and reanalysis. Chapter 3 reviews O’Gorman [12] to describe how the latent heating

effect is taken into account via an effective static stability and presents details of

the calculation of the effective static stability and the seasonal variation of static

stability parameters. Chapters 4 and 5 present results on the variation of the eddy

length, Rossby radii, and Rhines scale with the seasons and with global warming,

respectively. Finally, conclusions are presented in chapter 6.
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Chapter 2

Eddy Scales

The calculations presented in this thesis are based on the output of six coupled

atmosphere-ocean GCMs (CSIRO-Mk3.5, ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-

CM2.1, INM-CM3.0, and MRI-CGCM2.3.2) from the Coupled Model Intercompari-

son Project phase 3 [10] and the NCEP-DOE Reanalysis 2 [7]. Characteristic values

of the eddy length L, the Rossby radius LR and the Rhines scale Lβ were calculated

for the latitude bands of 30-70 degrees in each hemisphere.

In the following discussion of how the various eddy scales were computed, a clear

distinction must be drawn between zonal means and averages over latitude bands of

finite width. The zonal and time mean of a quantity (·) will be denoted by (·). The

area-weighted time mean over latitudes [φmin, φmax] is then

〈(·)〉 = 1

sinφmax − sinφmin

∫ φmax

φmin

(·) cosφ dφ. (2.1)

2.1 Eddy length

A characteristic eddy length scale is defined using meridional winds at 300 hPa. To

capture the transient eddies, daily-mean winds were filtered using a 13th-order high-

pass Butterworth filter with a six-day cutoff to produce eddy meridional winds v′(φ, χ)

where φ is the latitude and χ is the longitude. At each latitude, the v′(φ, χ) were

Fourier transformed and squared to compute the energy in each zonal wave num-

19



ber and then time averaged to create a time-averaged eddy kinetic energy spectrum

Ṽ 2(φ, k) where k is the zonal wavenumber.

At every latitude each zonal wavenumber can be associated with a local zonal

wavelength

Γ(φ, k) =
2πa cosφ

k
, (2.2)

where a is the radius of the Earth. An eddy length is then computed over the full

latitude band of integration by taking an energy- and area-weighted mean of the local

zonal wavelengths

L =
〈∑kmax

k=1 Γ(φ, k)Ṽ 2(φ, k)〉
〈∑kmax

k=1 Ṽ 2(φ, k)〉
. (2.3)

2.2 Rossby radius

As discussed in the introduction, the Rossby radius is a characteristic length scale that

emerges from the models of baroclinic instability of Charney, Eady, and Phillips [2, 3,

13, 14, 22]. It is convenient to express the terms on the right hand side of equation 1.1

in pressure coordinates, and similarly to Merlis and Schneider [11] and O’Gorman [12]

the Rossby radius LR will be defined

LR = 2π
〈Np∆p〉

f
, (2.4)

where Np is a static stability parameter

Np =

(
− 1

ρθ

∂θ

∂p

)1/2

, (2.5)

∆p is a relevant height scale in units of pressure, and f is an appropriate value of

the Coriolis parameter. θ is the potential temperature and ρ is the density of the air,

respectively.

As in Kidston et al. [8] and O’Gorman [12], Np is evaluated in the lower tro-

posphere (850-600 hPa) using zonal- and time-mean temperature and geopotential

height fields. ∂θ/∂p was calculated using a finite difference between 850 and 600
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hPa, while ρ and θ are density-weighted vertical means. Aside from the convenience

of consistency with previous studies, the 850-600 hPa region is a reasonable choice

of evaluation level because it is a region where the growing baroclinic waves char-

acterized by the Rossby radius have relatively large amplitudes [11]. There is some

uncertainty about how to evaluate ∆p. The Eady model of baroclinic instability fea-

tures fixed walls at the top and bottom, and the upper wall can be identified with the

tropopause [22]. ∆p is then the free troposphere depth. The tropopause is diagnosed

from temperature and relative humidity data using the WMO tropopause definition

as the lowest level at which the lapse rate drops to 2 K km−1 and an algorithm similar

to that given in [15]. (For computational simplicity, the WMO definition that the

mean lapse rate between a putative tropopause and any point within 2 km above it

not exceed 2 K km−1 has been slightly altered to require that the lapse rate at every

level within 2 km above a putative tropopause be less than 2 K km−1.) The free

troposphere is assumed to begin at 850 hPa instead of the surface, to exclude the

planetary boundary layer, and ∆p is calculated as the difference between 850 hPa

and the tropopause pressure. The issue of the vertical scale in the Charney model

is more complex, but in one limiting case the vertical scale is the scale height [13].

In this case, it can be shown that ∆p is equal to the mean value of the pressure in

the levels being used to determine Np. For the Phillips model, the height scale is the

depth of the fluid, which can again be identified with the free troposphere depth [22].

The latitude for the evaluation of f was determined by identifying the maximum

in the time-mean eddy meridional temperature transport

MTTeddy = 2πav′(φ, χ)T ′(φ, χ) cosφ, (2.6)

where T ′(φ, χ) is the eddy temperature calculated by filtering daily-mean tempera-

ture fields with the same Butterworth filter used to determine v′(φ, χ). To evaluate

equation 2.6, v′(φ, χ) and T ′(φ, χ) were computed at 850 hPa. Some calculations were
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also done with f evaluated at a latitude φMTT given by

φMTT =
〈φ v′(φ, χ)T ′(φ, χ)〉
〈v′(φ, χ)T ′(φ, χ)〉

, (2.7)

where again v′(φ, χ) and T ′(φ, χ) were evaluated at 850 hPa.

To evaluate equation 2.4, an area-weighted mean value of the numerator 〈Np∆p〉

is computed over the 30-70 degree integration region and then divided by f evaluated

at the latitude with the maximum value of MTTeddy or at φMTT.

2.3 Rhines scale

The Rhines scale [16, 22, 23] is defined by

Lβ =
(〈v′2〉)1/4

(β)1/2
, (2.8)

where 〈v′2〉 is a time and spatial mean over the region in question of the eddy kinetic

energy v′2(φ, χ) at 300 hPa and β is evaluated at some appropriate latitude. β is

evaluated at the latitude of the maximum in

EKE = v′2(φ, χ) cosφ, (2.9)

where EKE is proportional to the area-weighted eddy kinetic energy.
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Chapter 3

Effective Static Stability

O’Gorman’s addition [12] of the effects of latent heat release to large-scale dry-

atmosphere dynamical theories, such as baroclinic instability problems, is accom-

plished by replacing the traditional dry static stability where it appears in such the-

ories with an appropriately-defined effective static stability. This chapter reviews

the derivation of the effective static stability and analyzes the seasonal cycle of an

asymmetry parameter λ that is invoked in the derivation. It then discusses the sea-

sonal cycles of the dry static stability parameter Np and its moist counterpart Np
eff

and concludes by formally presenting the definition of an eddy scale LReff , a Rossby

radius evaluated using the effective static stability.

3.1 Brief derivation

The full derivation of the effective static stability is given in [12] and will not be

reiterated here. In summary, it involves consideration of the changes in dry potential

temperature θ and equivalent potential temperature θ∗ of a saturated air parcel. If

diabatic heating and cooling are ignored, θ∗ will be conserved following the parcel’s

motion and thus
Dθ

Dt
= H(−ω)ω

∂θ

∂p

∣∣∣∣∣
θ∗

= ω↑ ∂θ

∂p

∣∣∣∣∣
θ∗
, (3.1)
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where H(·) denotes the Heaviside step function, ω = Dp/Dt is the vertical pressure

velocity, ω↑ = H(−ω)ω, and the θ∗ subscript on the partial derivative indicates that

the partial derivative is taken at constant θ∗. The Heaviside step function appears

because condensation and latent heat release are being approximated as occurring

always and only when the parcel ascends.

For purposes of this derivation, eddy quantities will be defined as departures from

the zonal mean and denoted (·)′. Denoting a zonal mean at fixed time by (·), it can

thus be shown that
∂θ′

∂t
= −ω′∂θ

∂p
+ ω↑′ ∂θ

∂p

∣∣∣∣∣∣
θ∗

, (3.2)

if the partial derivatives of θ′ with respect to pressure are set to zero. It is easy to

see that the first term of this equation is associated with the advection of dry air

through the point at which the equation is evaluated, while the second term comes

from latent heat release in rising air. In a dry atmosphere, this second term would

disappear.

The effective disappearance of the second term of equation 3.2 in the real moist

atmosphere can be achieved by folding it into the first term. This is accomplished by

writing

ω↑′ = λω′ + ε, (3.3)

where λ is a constant that is regressed for using ω′ and ω↑′ taken from GCM output

or reanalysis. Then, taking ω↑′ ≈ λω′, equation 3.2 can be rewritten

∂θ′

∂t
= ω′

−∂θ

∂p
+ λ

∂θ

∂p

∣∣∣∣∣∣
θ∗

 . (3.4)

The quantity in brackets in equation 3.4 is defined as the effective static stability

− ∂θ

∂p

∣∣∣∣∣∣
eff

= −∂θ

∂p
+ λ

∂θ

∂p

∣∣∣∣∣∣
θ∗

. (3.5)

λ is related to the up-down asymmetry of the eddy vertical velocity field, so it will

be referred to as an asymmetry parameter.
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When equation 3.5 is substituted into equation 3.4, equation 3.4 acquires the same

functional form as the dry-atmosphere version of equation 3.2. Thus the effects of

latent heating can be parameterized by substituting −∂θ/∂p|eff for −∂θ/∂p wherever

the latter appears. Because saturated air moving upwards is warmed by latent heat

release, ∂θ/∂p|θ∗ < 0 and so the effect of latent heating is to reduce the effective

static stability of the atmosphere relative to the dry value.

3.2 Seasonal cycle of asymmetry parameter λ

The value of the effective static stability as a conceptual tool for analyzing moist

atmospheric circulations is partially dependent on λ remaining relatively constant

with the seasonal cycle and with global climate change. Although O’Gorman [12]

notes that some previous works on moist baroclinic instability ([4, 5, 24]) imply λ → 1

with the increasing specific humidity that would occur with global warming, idealized

GCM simulations presented in that study nevertheless suggest a λ largely independent

of temperatures.

Using the output of the idealized GCM, O’Gorman [12] calculated average values

of λ over the full areal and vertical extent of the extratropical troposphere. They

changed by just 0.02 (from 0.59 to 0.61) as the GCM’s global mean surface temper-

ature was increased from 270 to 316 K. However, the idealized GCM has simplified

parameterizations, a global mixed layer ocean as the lower boundary, and no seasonal

or diurnal cycles. The constancy of λ in more realistic models of the climate system

and the real world as represented in NCEP2 is thus worth investigating.

Evaluation of λ requires ω data at high temporal resolution. The monthly-mean

values archived in the CMIP3 dataset are inadequate for this purpose, so λ was

evaluated only for NCEP2, using 4x daily ω data for 1981-2000. It can be shown that

at a single time, latitude, and pressure level

λ =
ωω↑ − ωω↑

ω2 − ω
2

, (3.6)
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and for simplicity the time-mean λ is evaluated using the approximate equation

λ ≈ ωω↑ − ωω↑

ω2 − ω2
. (3.7)

After computing λ as a function of latitude and pressure for each month, monthly

regional mean values 〈λ〉 over 30-70 degrees in each hemisphere were calculated using

λ values at 850, 700, and 600 hPa. Several additional calculations also took mass-

weighted depth averages of λ over 1000-300, 1000-200, and 1000-100 hPa, for more

direct comparability to the idealized GCM results. The resulting seasonal cycles

of λ are presented in Fig. 3-1. Although the amplitudes of the seasonal cycles in

these hemispherically-averaged λ values are comparable to the change in the idealized

GCM’s annual mean λ over a very large range of global temperatures, it can be shown

that these variations are still small enough to approximate λ in all seasons and both

regions by the average of the two regional annual mean values of λ at 700 hPa. It

is interesting to note that λ values peak during the winter and are minimized during

the summer. This is the opposite of what would occur if the regionally-averaged λ

values were increasing functions of regional-mean temperatures, as one might expect

based on the temperature dependence of λ documented in [12].

3.3 Seasonal cycle of static stability parameters

Because λ is apparently adequately stable over the seasonal cycle and with a changing

climate, the effective static stability can be readily used to parameterize the effect of

latent heating on atmospheric eddies. As a complement to the traditional dry static

stability parameter Np defined in equation 2.5, it is possible to define an effective

static stability parameter

Np
eff =

(
− 1

ρθ

∂θ

∂p

∣∣∣∣∣
eff

)1/2

=

(
− 1

ρθ

[
∂θ

∂p
− λ

∂θ

∂p

∣∣∣∣∣
θ∗

])1/2

, (3.8)

where the zonal means at fixed time in equation 3.5 have been replaced by zonal and

time means.
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Figure 3-1: The seasonal cycles of λ computed using 30-70 degrees in each hemisphere
and various levels of the atmosphere. The underlying 4x daily ω data was taken from
the 1981-2000 subset of the NCEP2 reanalysis. Clear seasonal cycles are present
for all methods of λ evaluation, although depth averaging tends to reduce the cycle
amplitude. Values of λ were not available at 1000 hPa for every latitude. Although
the depth averages list 1000 hPa as the bottom of the integration region for both
hemispheres, the integration extended only as far down as 925 hPa in the northern
hemisphere. In the southern hemisphere, 1000 hPa λ values were available for 30-50
degrees S in most months. At 70 degrees S, λ was unavailable at 925 hPa and the
vertical integration was stopped at 850 hPa.
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To investigate the importance of the latent heating effect, 〈Np〉 and 〈Np
eff〉 were

computed for each calendar month and GCM/reanalysis using data from latitudes 30-

70 degrees in each hemisphere and years 1981-2000. Rather than analyzing each of

the six CMIP3 GCMs individually, the monthly values for each GCM were averaged

to form multimodel monthly means. The NCEP2 reanalysis was not included in the

means and was studied separately.

The seasonal cycles of 〈Np〉 and 〈Np
eff〉 are plotted in Fig. 3-2. The multimodel

mean and NCEP2 seasonal cycles are similar in nearly every respect. In both hemi-

spheres, the effective static stability parameter is clearly smaller than its dry counter-

part. In the northern hemisphere, the inclusion of the latent heating effect substan-

tially increases the amplitude of the seasonal cycle in both absolute and fractional

senses and alters its phase. In contrast, the absolute amplitude of the southern hemi-

sphere seasonal cycle is reduced. The substantial differences between 〈Np〉 and 〈Np
eff〉

suggest a significant influence of latent heat release on the behavior of the midlatitude

atmosphere.

3.4 Effective Rossby radius

Np
eff can be used to calculate an effective Rossby radius, defined in analogy to equa-

tion 2.4 as

LReff = 2π
〈Np

eff∆p〉
f

. (3.9)

As in the definition of the dry Rossby radius (equation 2.4), ρ, θ, and the pressure

derivatives of potential temperature in equation 3.8 were evaluated using data from

850-600 hPa. λ was evaluated at 700 hPa. The latitude of f evaluation was found

using the same methods as for LR. Equation 3.9 was evaluated by finding 〈Np
eff∆p〉

over 30-70 degrees in the hemisphere of interest, the same integration region used for

the eddy scales described in chapter 2.
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Figure 3-2: 〈Np〉 and 〈Np
eff〉 are displayed for both hemispheres in each panel. Solid

lines indicate quantities evaluated using 30-70 degrees N, while dashed lines indicate
quantities evaluated using 30-70 degrees S. In both hemispheres the effective static
stability is reduced substantially relative to the dry static stability. 〈Np〉 and 〈Np

eff〉
were calculated using temperature and geopotential height fields from 850-600 hPa,
and λ was evaluated at 700 hPa.
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Chapter 4

Results–Seasonal Cycle

The studies reviewed in chapter 1 analyze eddy scales in idealized GCMs in which

parameters are varied, or changes in annual mean eddy lengths in more realistic GCMs

and reanalysis. None of the idealized GCMs included a seasonal cycle. Accordingly,

analysis of the seasonal variability of the eddy scales described in chapters 2 and 3 may

provide additional information about the physical causes of observed and modeled

eddy lengths. The northern and southern hemispheres will be discussed separately,

because of substantial qualitative differences in both the character of the eddy length

seasonal cycles and the success of the various Rossby radii and the Rhines scale in

predicting the cycles.

As in chapter 3, a mean value of each eddy scale was determined for each calendar

month and GCM/reanalysis using data from 1981-2000. The monthly values for each

GCM were averaged into multimodel monthly means, while the NCEP2 results were

kept separate.

The LR, LReff , and Lβ described in chapters 2 and 3 can be thought of as predic-

tions of the eddy length L. However, the underlying theories predict the existence

of unstable waves of a range of wavelengths and so cannot be interpreted as yielding

particular exact values for L. Accordingly, the Rossby radii and Rhines scale sea-

sonal cycles were all rescaled for the best fit to the L seasonal cycle before making

any comparisons.

For analytical purposes, it was assumed that the actual eddy length L and a
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theoretical characteristic length scale Lx, where Lx is one of the Rossby radii or the

Rhines scale, were related by a rescaling constant c such that L = cLx. It can be

shown that the least-squares best-fit value of c is given by

c =

∑12
i=1 L

iLi
x∑12

i=1(L
i
x)

2
, (4.1)

where i indexes over months. c was evaluated separately for each Lx and hemisphere.

4.1 Northern hemisphere

The seasonal cycles of eddy length, various Rossby radii, and the Rhines scale for

the northern hemisphere are displayed in Figs. 4-1 and 4-2. The Rossby radii and

Rhines scale have been rescaled for the best fit to the eddy length seasonal cycle

as described above. The multimodel mean of the GCM eddy lengths exhibits a

distinct seasonal cycle, with the eddies at their longest in the northern hemisphere

winter. The multimodel mean eddy length seasonal cycle compares favorably with

the eddy length seasonal cycle in the NCEP2 reanalysis, and indeed the qualitative

relationships among all seasonal cycles plotted are basically the same for both the

multimodel mean and NCEP2. This suggests a remarkable degree of success by the

GCMs in reproducing observed seasonal variations in atmospheric eddy activity.

In Fig. 4-1, the seasonal cycles of both LReff and Lβ are qualitatively quite similar

to the L seasonal cycle. The amplitude of the LReff cycles is somewhat too large,

although this overestimate is reduced by the use of φMTT instead of the latitude of

the maximum in MTTeddy for the evaluation of f . In contrast, the amplitude of the

Lβ seasonal cycle is too small. Lβ is also notably too constant in January-April.

Agreement of the LR seasonal cycles with the L seasonal cycle is less impressive,

particularly if the φMTT method of selecting the f evaluation latitude is used.

Fig. 4-2 displays a number of the same seasonal cycles as Fig. 4-1 but shows

seasonal cycles of LR and LReff with ∆p identified as the scale height of the atmosphere

instead of the free troposphere depth. Pursuant to the discussion in section 2.2, ∆p
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is taken as 725 hPa. However, this choice does not actually matter because since ∆p

does not change with the seasons, it is essentially an arbitrary constant factor whose

effects will be eliminated by the rescaling that is applied before plotting.

The principal conclusion to be drawn from Fig. 4-2 is that the use of the scale

height in place of the free troposphere depth as the value of ∆p in Rossby radius

calculations increases the amplitude of the rescaled seasonal cycle. In contrast to the

results displayed in Fig. 4-1, this choice results in LR being a comparable or better

fit to the eddy length seasonal cycle than LReff .

4.2 Southern hemisphere

Figs. 4-3 and 4-4 display eddy length, Rossby radii, and Rhines scale seasonal cycles

for the southern hemisphere. Both the multimodel mean and NCEP2 seasonal cycles

are again similar, although the cycles themselves are strikingly different from their

northern hemisphere counterparts. The annual mean eddy length is noticeably larger,

and its seasonal cycle amplitude is smaller. Additionally, the eddy length seasonal

cycle is no longer generally sinusoidal in shape.

Unlike in the northern hemisphere, none of the Rossby radii or Rhines scale sea-

sonal cycles appear to succeed in explaining the eddy length seasonal cycle. Although

the rescaled Rossby radius and Rhines scale cycles have reasonable amplitudes, they

are not able to reproduce the January-February minima and September-October max-

ima that characterize the eddy length seasonal cycle. The choice of the free tropo-

sphere depth or the scale height for ∆p makes little difference to the Rossby radii

seasonal cycles.

4.3 Causes of northern hemisphere seasonal cycle

To study the causes of the seasonal cycle in eddy length, the seasonal cycles of the

dry and effective Rossby radii plotted in Figs. 4-1 and 4-2 were decomposed into their

components. Only results from the northern hemisphere are presented, as the failure
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Figure 4-1: Seasonal cycles of eddy length, various dry and effective Rossby radii,
and the Rhines scale over 30-70 degrees N during 1981-2000. The Rossby radii la-
beled (max) had f evaluated at the latitude of the maximum in MTTeddy defined
in equation 2.6. Rossby radii labeled (mean) had f evaluated at φMTT as defined in
equation 2.7. MTTeddy and φMTT were evaluated at 850 hPa, and the free troposphere
depth was used as ∆p. For the Rhines scale, β was evaluated at the latitude of the
maximum in EKE (equation 2.9).

34



2500

3000

3500

4000

4500

Le
ng

th
 s

ca
le

 (
km

)

Multimodel Mean

 

 

L
L

Reff
 (WMO)

L
Reff

 (H)

L
R

 (WMO)

L
R

 (H)

J F M A M J J A S O N D
2500

3000

3500

4000

4500
NCEP2

Month

Le
ng

th
 s

ca
le

 (
km

)

Figure 4-2: Seasonal cycles of eddy length and various dry and effective Rossby radii
over 30-70 degrees N during 1981-2000. The Rossby radii labeled (WMO) had the
height scale ∆p in equation 2.4 or 3.9 defined as the free troposphere depth. Rossby
radii labeled (H) had ∆p identified as the scale height. In all cases f was calculated
at the latitude of the maximum in MTTeddy, evaluated at 850 hPa.
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Figure 4-3: Seasonal cycles of eddy length, various dry and effective Rossby radii,
and the Rhines scale over 30-70 degrees S during 1981-2000. The Rossby radii labeled
(max) had f evaluated at the latitude of the maximum in MTTeddy. Rossby radii
labeled (mean) had f evaluated at φMTT. Both MTTeddy and φMTT were calculated
at 850 hPa, and the free troposphere depth was used as ∆p. For the Rhines scale, β
was evaluated at the latitude of the maximum in EKE.
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Figure 4-4: Seasonal cycles of eddy length and various dry and effective Rossby radii
over 30-70 degrees S during 1981-2000. The Rossby radii labeled (WMO) had the
height scale ∆p defined as the free troposphere depth, while Rossby radii labeled (H)
had ∆p identified as the scale height. For all cases f was calculated at the latitude
of the maximum in MTTeddy. MTTeddy was evaluated at 850 hPa.
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of any Rossby radius seasonal cycle to predict the eddy length seasonal cycle in the

southern hemisphere suggests that little is to be learned about the seasonal variation

of southern hemisphere eddies by studying corresponding Rossby radii.

Referring to equation 2.4, the dry Rossby radius in any given month i is denoted

by

LRi = 2π
〈Np∆p〉i

fi
= 2π

〈Np〉i〈∆p〉i + 〈Npa(φ)∆pa(φ)〉i
fi

, (4.2)

where the departure of a quantity (·) from its regional mean value 〈(·)〉 is denoted by

(·)a.

Because Np, ∆p, and f are all in different units of measure, the monthly variations

of these quantities must be written in a nondimensional form to meaningfully compare

the contributions of changes in each to the changes in LR. If for a quantity (·) a

monthly anomaly for month i is defined

δ(·)i = (·)i − (̂·), (4.3)

where (̂·) denotes the annual mean of (·), equation 4.2 can be rewritten

LRi = 2π
[ ̂〈Np〉+ δ〈Np〉i][ ̂〈∆p〉+ δ〈∆p〉i]

f̂ [1 + δfi/f̂ ]
, (4.4)

where it has been assumed that 〈Npa(φ)∆pa(φ)〉i << 〈Np〉i〈∆p〉i and so the second

term in the numerator of equation 4.2 can be dropped.

By additionally assuming that
(
1 + δfi/f̂

)−1
≈ 1−δfi/f̂ , expanding equation 4.4,

and dropping all terms with more than one δ(·)i it can be shown that

δLRi

L̂R

=
δ〈Np〉î〈Np〉

+
δ〈∆p〉î〈∆p〉

− δfi

f̂
, (4.5)

in which all quantities appear in the desired nondimensional form. Equation 4.5 is of

course valid for effective Rossby radii as well, when LR is replaced by LReff and Np

by Np
eff .

Figs. 4-5 and 4-6 show both sides of equation 4.5 along with each individual
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term on the right side of the equation for both dry and effective Rossby radii. The

good match between the normalized Rossby radii seasonal cycles and the sum of the

seasonal cycles of the components suggests that the approximations made in deriving

equation 4.5 are good ones. In view of the results displayed in Figs. 4-1 and 4-2, it

is not surprising that very similar results are obtained for both the multimodel mean

and NCEP2.

As was previously shown in chapter 3, the effective static stability parameter

〈Np
eff〉i exhibits a clear seasonal cycle with the maximum in January and the minimum

in July. In contrast, the dry static stability parameter 〈Np〉i has a fractionally much

smaller seasonal cycle with maxima in November or December and minima in May

or June. The troposphere depth is maximized in August and minimized in February,

while the latitude of the maximum inMTTeddy reaches its northern extreme in August

and is farthest south in February or March.

The troposphere depth and f evaluation latitude seasonal cycles are of similar

amplitude and phased so as to have a tendency to cancel each other out. Because

〈∆p〉i is time-independent when ∆p is identified as the scale height of the atmo-

sphere, δ〈∆p〉i/ ̂〈∆p〉 = 0 and the cancellation effect disappears. Since −δfi/〈̂f〉 varies

roughly in phase with 〈Np
eff〉i and is considerably larger than the 〈Np〉i seasonal cycle,

the fractional amplitude of rescaled Rossby radius seasonal cycles with ∆p identified

as the scale height is larger than when ∆p is identified as the free troposphere depth.

This is consistent with Fig. 4-2.

Finally, it appears that the relatively noisier character of the NCEP2 seasonal

cycles as compared to their multimodel mean counterparts, clearly visible in Figs. 4-1

and 4-2, derives mainly from noise in the seasonal cycle of the f evaluation latitude.

The relative suppression of this noise in the multimodel mean likely results from the

average taken over six GCMs.
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Figure 4-5: Normalized seasonal cycles of LReff , its components according to equa-
tion 4.5, and their sum. f was evaluated at the latitude of the maximum in MTTeddy.

Note that the curve associated with the variations of f is actually −δfi/f̂ (the August
minimum in −δfi/f̂ is when the latitude of evaluation of f is at its northern extreme
and f is maximized). MTTeddy was evaluated at 850 hPa. Hats have been dropped
from the text in the legend.
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Figure 4-6: Normalized seasonal cycles of LR, its components, and their sum. Note
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eff cycle in
Fig. 4-5. f was calculated at the latitude of the maximum in MTTeddy and MTTeddy

was evaluated at 850 hPa.
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Chapter 5

Results–Global Warming

According to Kidston et al. [8], CMIP3 GCMs robustly project an increase in atmo-

spheric eddy lengths over the 21st century. To confirm and further understand this

result, annual mean values of the various eddy scales were computed for each of the

six GCMs for 1981-2000 and 2081-2100. The GCMs were run for a number of possible

emissions scenarios for the 21st century. Only the moderate A1B scenario, in which

CO2 concentrations reach approximately 550 ppm by 2100, is considered here [10].

The annual means were used to compute fractional increases

δLx

Lx

=
L21
x − L20

x

L20
x

, (5.1)

where L20
x and L21

x denote 1981-2000 and 2081-2100 annual mean eddy scales and δ(·)

now represents the difference between 2081-2100 and 1981-2000 annual means of a

quantity (·), instead of a monthly anomaly.

5.1 Multimodel mean

The multimodel mean increases and multimodel mean increases per K of rise in the

global mean surface temperature are listed in Table 5.1, along with the multimodel

standard deviation to characterize the scatter among the different GCMs. The mul-

timodel mean values of all but one of the eddy scales computed are found to increase
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Table 5.1: Multimodel mean fractional increases and fractional increases per K of
global mean surface temperature increase are listed for various eddy scales. The
increases are calculated using the differences between the 2081-2100 and 1981-2000
means of each eddy scale. For the eddy scale increase per K of temperature increase,
the temperature increase is calculated as the difference between the 2081-2100 and
1981-2000 means. The intermodel scatter (one standard deviation) is also given for
each quantity. In the first column, (maxMTT) denotes evaluation of f at the lati-
tude of the maximum in MTTeddy and use of the free troposphere depth to define
∆p. (meanMTT) indicates evaluation of f at the latitude φMTT, again with the free
troposphere depth used to define ∆p. Eddy scales marked (H) had f evaluated at
the maximum of MTTeddy but used the scale height as ∆p. (maxEKE) indicates
evaluation of β at the latitude of the maximum in EKE. MTTeddy and φMTT were
evaluated at 850 hPa, while EKE was evaluated using winds at 300 hPa.

Northern Southern
Length scale hemisphere increase hemisphere increase

% % K−1 % % K−1

L 2.1± 0.7 0.78± 0.26 4.0± 1.4 1.50± 0.49
LR (maxMTT) 3.8± 2.0 1.47± 0.83 4.6± 1.5 1.73± 0.53
LR (meanMTT) 5.3± 0.9 2.02± 0.42 6.0± 1.4 2.27± 0.52
LR (H) 1.3± 1.9 0.54± 0.73 2.4± 1.1 0.91± 0.38
LReff (maxMTT) 1.2± 2.0 0.49± 0.78 4.1± 2.2 1.54± 0.80
LReff (meanMTT) 2.7± 0.8 1.02± 0.41 5.5± 2.1 2.07± 0.82
LReff (H) −1.4± 2.0 −0.46± 0.71 1.8± 1.8 0.69± 0.65
Lβ (maxEKE) 1.6± 1.0 0.59± 0.42 2.4± 1.5 0.89± 0.55

between 1981-2000 and 2081-2100. However, in a number of cases the positive value

of the increase is within one standard deviation of zero. (The sole decline is also

within one standard deviation of zero.)

The multimodel mean eddy scale increases per K of temperature increase are also

positive in all but one case, and generally at least one standard deviation above zero.

In addition, the multimodel mean of every eddy scale exhibits a larger fractional in-

crease (or smaller fractional decrease) in the southern hemisphere than in the northern

hemisphere. But for some individual models and eddy scales, fractional increases are

larger in the northern hemisphere.
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5.2 Individual GCMs

To further investigate the modeled increases in eddy scales, fractional increases in

L are plotted against fractional increases in the various LR, LReff , and Lβ for each

GCM and hemisphere in Figs. 5-1, 5-2, and 5-3. The eddy length and Rhines scale

are found to increase for all models and hemispheres, as do the dry Rossby radii for

all but one combination of model, hemisphere, and f evaluation latitude/∆p. The

effective Rossby radii results are more complex, with the choice of the scale height

rather than the free troposphere depth for ∆p clearly reducing values of δLReff/LReff .

For four of the six GCMs, northern hemisphere values of LReff calculated with the

scale height as ∆p are in fact projected to decline over the 21st century.

Although the changes are positive for most models, hemispheres, and eddy scales,

they nevertheless vary considerably among GCMs. Using a method similar to that in

[8], if it is assumed that the fractional increase in eddy length δL/L for each model is

perfectly explained by the fractional increase in one of the other eddy scales δLx/Lx,

the points (δLx/Lx, δL/L) for all six GCMs should fall on the line δL/L = δLx/Lx.

Accordingly, analysis of the intermodel scatter in values of the fractional increases in

the eddy length, the Rossby radii, and the Rhines scale could yield insight into the

causes of the modeled eddy length increase.

Inspection of Figs. 5-1, 5-2, and 5-3 indicates that the simple ideal of a clear

δL/L = δLx/Lx for a single Lx does not describe the behavior of the GCMs. For

all of the Lx studied, the southern hemisphere values of δL/L do generally increase

with increasing δLx/Lx. However, δL/L can be systematically underestimated (as

by δLReff/LReff with f at the maximum in MTTeddy and the scale height as ∆p) or

overestimated (as by δLR/LR with f evaluated at φMTT and the free troposphere

depth as ∆p). This roughly monotonic relationship between δL/L and δLx/Lx does

not carry over to the northern hemisphere. Instead, (δLx/Lx, δL/L) points form

clumps or spread out over larger ranges in δLx/Lx than in δL/L.

To quantify the quality of the fit of a set of (δLx/Lx, δL/L) points to a hypothe-
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Figure 5-1: Scatterplots of fractional changes in eddy length L compared to frac-
tional changes in the dry Rossby radii LR with f evaluated at the latitude of the
maximum in MTTeddy (maxMTT, upper left panel) or at the characteristic latitude
φMTT (meanMTT, lower left panel). For both dry Rossby radii, ∆p was identified as
the free troposphere depth. The upper right panel displays the fractional change in
eddy length L compared to the fractional change in the Rhines scale Lβ with β eval-
uated at the latitude of the maximum in EKE. MTTeddy and φMTT were evaluated
at 850 hPa, and EKE was calculated using winds at 300 hPa.
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Figure 5-2: Scatterplots of fractional changes in eddy length L compared to fractional
changes in the effective Rossby radii LReff with f evaluated at the latitude of the
maximum in MTTeddy (maxMTT, upper panel) or at the characteristic latitude φMTT

(meanMTT, lower panel). MTTeddy and φMTT were calculated at 850 hPa, and in
both cases the free troposphere depth was used as ∆p.
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Figure 5-3: Scatterplots of fractional changes in eddy length L compared to fractional
changes in LR and LReff with f evaluated at the latitude of the maximum in MTTeddy.
Unlike in Figs. 5-1 and 5-2, ∆p was identified as the scale height. MTTeddy was
evaluated at 850 hPa.
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sized line δL/L = δLx/Lx, an error parameter E will be defined

E =

 1

n

n∑
i=1

(δL
L

)i

−
(
δLx

Lx

)i
2


1/2

, (5.2)

where i indexes over the n (δLx/Lx, δL/L) points. E is the RMS value of the difference

between an actual eddy length increase δL/L and the increase of another eddy scale

δLx/Lx. δLx/Lx is regarded as a prediction of δL/L, and so lower values of E indicate

a more successful prediction. E can be calculated for (δLx/Lx, δL/L) values from a

single hemisphere, or for both hemispheres simultaneously. In the former case, i is

indexing over the different GCMs and so n = 6. In the latter case, i indexes over

both GCMs and hemispheres and thus n = 12.

E was computed separately in each hemisphere and for both hemispheres together,

and the results are displayed in Table 5.2. The patterns of E values are different in

each hemisphere. The lowest value of E in the southern hemisphere is associated with

one of the dry Rossby radii, but both LR and LReff with f evaluated at the latitude

of the maximum in MTTeddy and the free troposphere depth as ∆p are substantially

better fits than the other four Rossby radii. Evidently the southern hemisphere results

are more sensitive to the choices of f evaluation latitude and ∆p than to the choice

of dry or effective static stability parameter. In the northern hemisphere and the

global mean, two of the three versions of LReff yield lower values of E than their LR

counterparts. But when the scale height is used for ∆p, LR is a better fit than LReff

and the value of E for the northern hemisphere LReff is the largest value of E in either

hemisphere.

In view of the complex results described above, it must be concluded that diagnosis

of the changes in dry and effective Rossby radii and the Rhines scale does not supply

an unambiguous explanation of the cause of the modeled increase in eddy length. If

the eddy length is indeed set by a characteristic scale of baroclinic instability, changes

in LReff should supply an explanation of eddy length changes that is superior to the

explanation provided by changes in LR. This is because, as discussed in chapter 3,
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the former quantity is a better representation of the relevant physics.

While this hypothesized superiority is not clearly established, it can at least be

reconciled with the analysis presented. Although the change in southern hemisphere

eddy lengths was best explained by changes in one of the dry Rossby radii, the

relative sensitivity of the ES values to the methods of selecting f and ∆p suggests

that the changes in Np and Np
eff are very similar in the southern hemisphere. This

possibility is consistent with LReff , with f evaluated at the maximum in MTTeddy and

the free troposphere depth as ∆p, being the quantity that is truly physically relevant

in determining the southern hemisphere eddy length.

In the northern hemisphere, if the free troposphere depth is taken as the correct

choice of ∆p the EN values for LReff are consistently lower than those for LR. This

is also consistent with the eddy length being set by LReff with f evaluated at the

maximum in MTTeddy and the free troposphere depth as ∆p. However, the single

lowest value of EN is in fact associated with LReff with f evaluated at φMTT. If ∆p is

actually the scale height, LR is a better fit than LReff in both hemispheres. In neither

hemisphere is it possible to dismiss Lβ as the control on eddy length.
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Table 5.2: Values of the error parameter E defined in equation 5.2 are listed for each
hemisphere individually and both combined. (maxMTT) denotes evaluation of f at
the latitude of the maximum in MTTeddy, while (meanMTT) indicates evaluation of
f at the latitude φMTT. ∆p was taken as the free troposphere depth for both the
(maxMTT) and (meanMTT) cases. For the (H) cases, f was again evaluated at the
latitude of the maximum in MTTeddy but the scale height was used as ∆p. (maxEKE)
indicates β evaluation at the latitude of the maximum in EKE. MTTeddy and φMTT

were calculated at 850 hPa, while EKE was calculated using 300 hPa winds.

Eddy scale Lx EN ES EB

(Northern (Southern (Both
hemisphere) hemisphere) hemispheres)

LR (maxMTT) 0.027 0.009 0.020
LR (meanMTT) 0.034 0.022 0.028
LR (H) 0.021 0.017 0.019
LReff (maxMTT) 0.022 0.011 0.017
LReff (meanMTT) 0.011 0.019 0.015
LReff (H) 0.040 0.023 0.032
Lβ (maxEKE) 0.016 0.018 0.017
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Chapter 6

Conclusion

This thesis presents an analysis of the variations in atmospheric eddy length exhibited

by six GCMs and the NCEP2 reanalysis. The seasonal cycle of eddy length in the

20th century climate is determined and compared with the seasonal cycles in other

length scales hypothesized to control the eddy length, including a recently-developed

modification of the Rossby radius that attempts to account for the influence of latent

heating on the dynamics of the eddies. The latent heating is parameterized as a

modification to the static stability, to create a new effective static stability. The

modification depends in part on the value of a parameter λ, which characterizes

the asymmetry in vertical wind velocity fields. The value of λ is found not to vary

significantly with the seasons, making it easy to calculate the effective static stability.

GCM-simulated seasonal cycles of the eddy length and other eddy scales are simi-

lar to those seen in the NCEP2 reanalysis. The GCMs are also used to study changes

in annual mean eddy scales with global warming, and are found to project an increase

in the eddy length. The increase in eddy lengths is seen in both hemispheres of all

six GCMs.

In the northern hemisphere, eddy lengths peak in the winter and are minimized

during the summer. This qualitative behavior is reproduced by both the effective

Rossby radius LReff , which incorporates the effects of latent heating, and the Rhines

scale Lβ. However, the Rhines scale is too constant during the winter.

The traditional dry Rossby radius LR, which neglects latent heating, is a weaker
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explanation of the northern hemisphere eddy length seasonal cycle if ∆p is taken as

the free troposphere depth. Although LR is smaller in summer than in winter, its

seasonality is less than that of the eddies. The substantial difference between the

seasonal cycles of LR and the effective Rossby radius LReff , which incorporates the

latent heating effect, results from the seasonal cycle of the effective static stability

parameter 〈Np
eff〉 having a much larger amplitude than the dry static stability param-

eter 〈Np〉. The annual mean value of 〈Np
eff〉 is also significantly lower than the annual

mean 〈Np〉.

Although the author is unaware of any previous work directly addressing the

seasonal cycle of the eddy length or other relevant eddy scales, Valdes and Hoskins

(1988) [21] conducted linear stability analyses of the seasonally varying mean flow

of the Earth’s atmosphere. Plots of the growth rates of waves of different zonal

wavenumbers (their Figs. 2 and 5) suggest that the maximum in the growth rate

occurs at slightly lower zonal wavenumber (longer zonal wavelength) in the northern

hemisphere winter. Valdes and Hoskins made no attempt to incorporate latent heating

in their study. If the result of Merlis and Schneider [11] is accepted that the length

scale of the most rapidly growing linear wave is explained by the Rossby radius

is accepted, the Valdes and Hoskins results imply that the northern hemisphere dry

Rossby radius should be longer in winter than in summer. Such a seasonal dependence

is indeed found in the present study.

The southern hemisphere seasonal cycle results are more difficult to understand

and have not been satisfactorily explained. The eddy length seasonal cycles observed

in the reanalysis and simulated by the GCMs are in reasonable agreement, suggesting

that the GCMs correctly represent whatever processes set the eddy length, but no

Rossby radius or Rhines scale seasonal cycle reproduces the eddy length seasonal

cycle.

While a conclusive explanation of this behavior is not currently available, one

possibility will be briefly described. The Valdes and Hoskins study [21] explored the

effect of topography on the instability by comparing linear stability analyses in which

the Earth’s surface was taken as flat to analyses with zonally-averaged orography. In
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the case with orography, the growth rate maximum of the linear waves moves to a

larger zonal wavelength in the southern hemisphere winter. This is consistent with

the seasonality of the southern hemisphere eddy length as determined in the present

work, but inconsistent with the the seasonality of the multimodel mean dry Rossby

radii. (The NCEP2 results are more ambiguous, as shown in Figs. 4-3 and 4-4.)

One possible interpretation of this state of affairs is that the relationship between

the (dry) Rossby radius and the zonal wavelength of (dry) growing linear waves found

in the idealized GCM of Merlis and Schneider [11] breaks down in the southern hemi-

sphere of the real Earth and more realistic GCMs. If it is then posited that the zonal

wavelength of the fastest growing wave in a dry linear stability analysis explains the

eddy lengths seen in the atmosphere and in moist GCMs, it may be possible to cor-

rectly predict the seasonality of the southern hemisphere eddy length. This scenario

does not explain why the results of a dry stability analysis would be valid in the

moist atmosphere. But the seasonality of both 〈Np〉 and 〈Np
eff〉 is much weaker in the

southern hemisphere than in the northern hemisphere (Fig. 3-2), so the difference be-

tween the two static stability parameters may get lost in the proportionality constant

relating the wavelength of the most rapidly growing linear wave to the eddy length.

A possible source of the breakdown in the relationship between the linearly most

unstable wave and the eddy length is suggested by the Phillips model of baroclinic

instability (J. Kidston, pers. comm.). The Phillips model exhibits a dependence

of the growth rate of baroclinic waves not only on the Rossby radius but also on

the vertical shear of the flow. Increasing vertical shear results in an increase in the

wavelength of the most unstable wave [22]. In the atmosphere, the midlatitude jets

are strongest in the winter, which corresponds to an increase in vertical shear [9].

Taking either the dry or the effective Rossby radius as an initial estimate of the

scale of the most unstable linear waves in the atmosphere, this suggests that an

improved estimate of the scale of the waves would revise the winter values upward

and the summer values downward. Inspection of Figs. 4-3 and 4-4 suggests that

such a correction would result in better agreement between the seasonal cycles of the

estimated scale of the fastest growing linear wave and the eddy length, consistent with
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the hypothesis that the eddy length is set by the scale of the fastest growing linear

wave. However, the same correction applied to the northern hemisphere seasonal

cycle of the effective Rossby radius (to bring it closer to the seasonal cycle of the

zonal wavelength of the fastest growing linear wave) would worsen its agreement with

the eddy length seasonal cycle.

Finally, annual means of the eddy length, Rossby radii, and Rhines scale were

calculated for each GCM for the years 1981-2000 and 2081-2100. As the climate

warms, eddy lengths are found to increase in every GCM and hemisphere. This is

consistent with the results of Kidston et al., even though the GCM experiments in the

present study had weaker radiative forcing than in Kidston et al. [8, 10]. The eddy

length increased more in the southern hemisphere than in the northern hemisphere for

every GCM but CSIRO-Mk3.5, a pattern that also exists in Kidston et al.’s analyses

of the six GCMs used in this study.

The various dry and effective Rossby radii and the Rhines scale were also found

to generally increase with global warming. The most prominent exception to this

trend was the northern hemisphere effective Rossby radius evaluated with ∆p as the

scale height, which declined for four of the six GCMs. The fractional changes in

the Rossby radii and Rhines scale can be construed as predictions of the fractional

change in the eddy length, and using this idea a method of quantitatively assessing

the correctness of the predictions was presented. The results of this assessment do

not clearly identify a single eddy scale as having unique success in the predicting the

changes in eddy length, so exactly which eddy scale (if any of them) sets the eddy

length is still unclear. However, the success of the GCMs in reproducing the eddy

length seasonal cycle of the NCEP2 reanalysis and the fact that Rossby radii still

generally increase over the 21st century when latent heating is taken into account

increases confidence in Kidston et al.’s finding that eddy lengths are likely to increase

with global warming.

Several extensions of the present work are possible. First, an attempt could be

made to incorporate additional CMIP3 GCMs in the analysis. Output from more

than 20 GCMs was contributed to the CMIP3 archive. Not all of them have the
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necessary data available, but an exhaustive search of the archive to ensure that all

GCMs with adequate data are included in the analysis has not been performed.

Second, the availability of the new CMIP5 archive presents several opportunities

for analyses not possible with the CMIP3 dataset. Daily mean values of ω are to

be archived for some of the CMIP5 experiments, permitting direct calculation of

λ and facilitating studies of possible future changes [19]. Additionally, the CMIP5

experimental program includes simulations of the last glacial maximum and the mid-

Holocene [20]. In conjunction with the simulations of future warming, these could

be used to study the variability of eddy length across a broader range of climates.

However, the eddy length and the Rhines scale would need to be calculated from

six-hourly instantaneous winds instead of the daily-mean winds used in the present

work [19].
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