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Understanding the regional pattern of projected
future changes in extreme precipitation
S. Pfahl1*, P. A. O’Gorman2 and E. M. Fischer1

Changes in extreme precipitation are among the most impact-
relevant consequences of climate warming1, yet regional
projections remain uncertain due to natural variability2 and
model deficiencies in relevant physical processes3,4. To better
understand changes in extreme precipitation, they may be
decomposed into contributions from atmospheric thermody-
namics and dynamics5–7, but these are typically diagnosedwith
spatially aggregated data8,9 or using a statistical approach
that is not valid at all locations10,11. Here we decompose the
forced response of daily regional scale extreme precipitation
in climate-model simulations into thermodynamic anddynamic
contributionsusinga robustphysicaldiagnostic8.Weshowthat
thermodynamics alone would lead to a spatially homogeneous
fractional increase, which is consistent across models and
dominates the sign of the change inmost regions. However, the
dynamic contribution modifies regional responses, amplifying
increases, for instance, in the Asian monsoon region, but
weakening them across the Mediterranean, South Africa and
Australia. Over subtropical oceans, the dynamic contribution
is strong enough to cause robust regional decreases in extreme
precipitation, which may partly result from a poleward circula-
tion shift. The dynamic contribution is key to reducing uncer-
tainties in future projections of regional extreme precipitation.

Climate models project a general intensification of extreme pre-
cipitation events during the twenty-first century on continental
to global spatial scales2,8,12,13, and this general large-scale ampli-
fication is consistent with observed trends in extreme precipita-
tion14–16. To first order, the simulated enhancement of extreme pre-
cipitation can be attributed to the increasing atmospheric moisture
content in a warming climate5,6, which approximately follows the
Clausius–Clapeyron equation. Other thermodynamic and dynamic
factors also influence its magnitude—in particular, changes in the
temperature lapse rate, in vertical wind velocities and in the tem-
perature anomaly when the extreme events occur8,9.

On regional scales, the change in extreme precipitation in a
warming climate can differ substantially from the global-scale
increase12,17. Such regional differences can be partly due to natural
variability2. Nevertheless, the simulated forced response to global
warming, the long-term response in the absence of internal vari-
ability, also exhibits regions with little change, and even substan-
tial areas with decreases in extreme precipitation, in particular in
the subtropics12,17. To understand the physical mechanisms caus-
ing these regional differences, previous studies have attempted to
decompose the regional signal into thermodynamic and dynamic
contributions using statistical methods10,11, which rely on the empir-
ical correlation of precipitation amount and vertical wind velocity
at 500 hPa. Such statistical methods are not applicable for regions

in which the correlation of precipitation with the vertical velocity at
500 hPa is weak10. Some of the problematic regions for the statistical
approach, such as the subtropics, are where the simulated change
in extreme precipitation differs most prominently from the global-
scale increase.

In this study, we apply a physical scaling diagnostic, which has
so far been used for studying aggregated changes in precipitation
extremes on large scales8,9, to decompose the forced regional change
in extreme precipitation in climate simulations from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) for the period
1950–2100 into thermodynamic and dynamic contributions. This
scaling relates the precipitation amount during an extreme event,
in our case the annual maximum daily precipitation Pe at each
model grid point (often referred to as the Rx1day index), to
the corresponding vertical pressure velocity ωe and the vertical
derivative of the saturation specific humidity qs at constant
saturation equivalent potential temperature θ∗:

Pe∼−

{
ωe

dqs
dp

∣∣∣∣∣
θ∗

}
(1)

Here {.} indicates a mass-weighted vertical integral over the
troposphere. This scaling relation can be derived assuming a moist-
adiabatic, saturated ascent of air parcels8 or, for the tropics, using
an energy budget approach that does not require an assumption of
large-scale saturated ascent18. The right-hand side of equation (1)
is an estimate of the column integrated net condensation rate, and
in general a precipitation efficiency must be included to convert
the scaling to an equality; this efficiency factor is important for
convective precipitation extremes on shorter timescales and smaller
space scales than considered here19. In this study, we use daily
mean temperature and vertical velocity profiles on pressure levels
at the location and on the day of the annual maximum daily
precipitation from 22CMIP5models to evaluate the right-hand side
of equation (1) (see Methods).

Testing the suitability of the diagnostic estimate with CMIP5
models (Fig. 1) reveals that the scaling relationship (equation (1))
very accurately reproduces the actually simulated multi-model
mean spatial pattern of annual maximum precipitation (Rx1day)
in the present-day reference period 1981–2000 (spatial correlation
of 0.99, root mean square difference of 5mmd−1). The scaling
overestimates the simulated precipitation amount in some dry
regions in the subtropics and underestimates it in moist regions in
the tropics and over the ocean, as well as in regions of complex
orography, such as along the west coast of North and South
America (Supplementary Fig. 1), which may be related to either the
approximations made in deriving the scaling or to not taking the
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Figure 1 | Present-day precipitation extremes and scaling. a,b, Multi-model mean annual maximum precipitation Rx1day (in mm d−1) (a) and precipitation
extremes scaling (equation (1), in mm d−1) (b), both averaged over the period 1981–2000.
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Figure 2 | Forced changes in precipitation extremes and scaling. a,b, Multi-model mean fractional changes in annual maximum precipitation Rx1day (a)
and precipitation extremes scaling (b) per K global warming (in % K−1) derived from a linear regression for the period 1950–2100. Stippling indicates that
at least 80% of the models agree on the sign of change. A robust increase in Rx1day is found for 82% of the global land areas, and models do not agree on
the sign of the change for the remaining 18%. c, Di�erence between fractional changes in the scaling and Rx1day.

precipitation efficiency factor into account. The agreement between
spatial patterns of simulated Rx1day and scaling is also very good
for individual models (spatial correlation> 0.94 in all models), and
when considering seasonal instead of annual precipitation maxima
(Supplementary Fig. 2).

To investigate simulated changes in heavy precipitation using the
scaling diagnostic, we first quantify the multi-model mean forced
change of Rx1day over the period 1950–2100 through a linear
regression of Rx1day against global mean temperature (Fig. 2a).
Consistent with previous studies12,17, precipitation extremes are
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Figure 3 | Changes in thermodynamic scaling and e�ects of changes in vertical winds. a, Multi-model mean fractional changes in thermodynamic scaling
in which the vertical velocity ωe is kept constant (it is replaced with its mean value over the period 1950–2100). b, Di�erence between changes in full
scaling and changes in thermodynamic scaling (full minus thermodynamic). Note that the maxima in the Pacific are above 60% K−1. c, Multi-model mean
fractional changes in vertically integrated saturation specific humidity qs conditioned on the occurrence of extreme precipitation. d, Multi-model mean
fractional changes in vertically averaged vertical velocity ωe conditioned on the occurrence of extreme precipitation (with negative values indicating
stronger ascent). Note that changes of ωe in the lower troposphere (for example, on 700 hPa) follow a similar pattern. Stippling indicates that at least 80%
of the models agree on the sign of signal. For comparison, present-day patterns of qs and ωe are shown in Supplementary Fig. 11.

projected to intensify with global warming in most extratropical
regions and in the deep tropics, with maximum intensification rates
in the tropical Pacific and the Asian monsoon region. In contrast,
there are subtropical regions with little change or even decreases.
Again, the scaling relationship captures this spatial pattern very
well (Fig. 2b, spatial correlation of 0.96), including the regions of
decreases in precipitation extremes in the subtropics. Differences
between forced changes in Rx1day and in the scaling (Fig. 2c) are
largest in some subtropical areas, the tropical Pacific and over the
ice sheets (the scaling is not expected to yield accurate results over
the ice sheets, seeMethods). Correlations of spatial patterns between
changes in Rx1day and the scaling in individual models are still high
(>0.8, see Supplementary Fig. 3), although the differences in the
correlation coefficient between the models are slightly larger than
for present-day means.

Given this remarkably accurate reproduction of the spatial pat-
terns of present-day Rx1day and its forced change, the scaling
relationship cannowbeused to decompose this change into thermo-
dynamic and dynamic contributions. To this end, a thermodynamic

scaling is considered that also uses equation (1), but neglects time
variations in the vertical velocity associated with the extreme pre-
cipitation (at each location, ωe is replaced by its temporal average
over the entire period). Forced changes in this thermodynamic
scaling are consistently positive (mostly between 4 and 8%K−1)
and spatially relatively homogeneous, with moderate regional am-
plification in the Northern Hemisphere subtropics and at high
latitudes (Fig. 3a). A similar spatial pattern is found for projected
changes in the vertically integrated saturation specific humidity qs
conditioned on the occurrence of precipitation extremes, albeit with
enhanced rates of increase (Fig. 3c). There are smaller increases in
near-surface saturation specific humidity (often used to represent
Clausius–Clapeyron scaling7) conditioned on the occurrence of
precipitation extremes as found previously8, but, compared to the
thermodynamic scaling, these changes show a more pronounced
land–sea contrast due to amplified surface warming over land
(Supplementary Fig. 4a). This near-surface enhancement over land
compared to ocean is reduced but not eliminated when actual
specific humidity is used, because of a reduction in near-surface
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Figure 4 | Uncertainty of changes in full and thermodynamic scaling. a,b, Absolute uncertainty of fractional changes in full precipitation extremes
scaling (a) and fractional changes in thermodynamic scaling with constant vertical velocity ωe (b), quantified as the standard deviation of the regression
coe�cients across models. Note the nonlinear scale. A similar di�erence between full and thermodynamic scaling is found for relative uncertainties
(Supplementary Fig. 13).

land relative humidity (Supplementary Fig. 4b). The missing land–
sea contrast in the thermodynamic scaling points to the fact that
humidity changes at more elevated levels are most important for
precipitation extremes, because of the weighting by the vertical
profile of ωe in equation (1) (refs 7,8,18). (The saturation specific
humidity at 850 hPa does not exhibit such a land–sea contrast either;
not shown). Increases in vertically integrated saturation specific
humidity conditioned on the occurrence of precipitation extremes
(Fig. 3c) are smaller than the annual-mean increases in some regions
(Supplementary Fig. 5a), which can be explained by a shift of
the seasonality of precipitation extremes towards the cold season
(Supplementary Fig. 6a).

Although the thermodynamic response captures much of the
forced response of heavy precipitation (Rx1day) in certain regions,
such as the land regions in the northern mid to high latitudes, it
does not explain the forced response pattern over most of the globe.
Hence, variations in vertical winds are crucial for capturing the
spatial pattern of Rx1day changes. Differences between changes in
full and thermodynamic scaling (Fig. 3b) indicate regions where
such variations in ωe are particularly relevant, and thereby pro-
vide an estimate of the dynamic contribution. Increasing ascent
velocities enhance precipitation extremes in the central Pacific and
Southeast Asia. Reduced upward winds offset some of the increase
of extreme precipitation intensities expected from thermodynamics
in the Mediterranean region, including northern Africa and the
Middle East, in Central America, Southern Africa, Australia as well
as over the northern North Atlantic, and are even strong enough to
robustly reverse the full response over parts of the subtropical oceans
(compare Figs 2a and 3b). Broadly similar results are obtained when
seasonal instead of annual precipitation maxima are considered
(Supplementary Figs 7 and 8). However, the fraction of land areas
with robust increases in Rx1day is smaller for seasonal compared
to annual extremes, which is due to a more widespread reduction
of ascent velocities, in particular over Europe and North America
in boreal summer (Supplementary Fig. 8d). The estimate of the
dynamic contribution to changes in annual maximum precipitation
(see again Fig. 3b) is consistent with the spatial pattern obtained
when considering changes in vertically averaged ωe during precip-
itation extremes (Fig. 3d). These changes in conditioned vertical
velocities are distinctively different in spatial pattern from changes
in annual mean ω (Supplementary Fig. 5b), and this difference is

not explained by the seasonality of precipitation extremes or changes
therein (Supplementary Figs 6b and 9).

To understand these regional changes in the dynamics of pre-
cipitation extremes, regionally relevant mechanisms and weather
systems have to be taken into account. The dynamically induced
decreases in precipitation extremes over the subtropical oceans
(Figs 2a and 3b) can partly be explained by poleward shifts of the
present-day pattern of ωe in the subtropics (Supplementary Figs 10
and 11b), related to a general expansion of the Hadley cells20. But
poleward shifts seem to explain only roughly half of the dynamical
contribution, and the direct radiative response to increasing CO2
may also contribute, as has been found previously for subtropical
decreases inmean precipitation21. The decrease in upward velocities
during precipitation extremes in the northern and southern parts
of the North Atlantic storm track region, where most precipitation
extremes are associated with extratropical cyclones22, is consistent
with the projected meridional contraction of the winter storm track
and reduced cyclone frequencies around Iceland and in the broader
Mediterranean region23. Also changes in cyclone intensities can play
an important role—for example, in theMediterranean24. In the deep
tropics, the general dynamical amplification of extreme precipita-
tion relates to an increase in upward motion and convection in a
latitude band about the equator25. In particular, the increase in the
tropical Pacific is consistentwith an eastward shift of ENSO-induced
rainfall26 and a weakening of the Walker circulation27. The dynam-
ical intensification of extreme precipitation in the Indian monsoon
region may be related to changes in the dynamics of mesoscale
monsoon depressions, but it is unclear whether these systems are
well represented in CMIP5 models with their coarse spatial reso-
lution28. A comprehensive representation of extreme-precipitation-
producing weather systems, such as monsoon depressions, may
require higher model resolution, particularly in the tropics4. Finally,
we note that changes in dynamics and thermodynamics of precip-
itation extremes are not independent of each other, but physically
coupled, for example, through changes in moist static stability.

Uncertainties of changes in Rx1day (Supplementary Fig. 12)
and the full precipitation extremes scaling (Fig. 4a) are largest over
the subtropics and tropics, consistent with previous studies that
have found large uncertainties for model projections of tropical
precipitation extremes13,29. By comparison, uncertainties of changes
in the thermodynamic scaling are generally small (Fig. 4b). Thus,

4

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate3287
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE3287 LETTERS
the influence of thermodynamic changes on extreme precipitation,
which dominates the sign of heavy precipitation changes over most
land areas, is remarkably robust. However, we demonstrate that,
particularly over the subtropics, tropics and oceans, the dynamic
contribution strongly modifies the heavy precipitation intensi-
fication and regionally even reverses the signal. Those changes
in atmospheric dynamics are also the dominant source of the
uncertainty in projections of heavy precipitation (see again Fig. 4),
which is consistent with uncertainty quantifications for regional
projections in general30. Importantly, despite the large uncertainties
in the amplitude of the change in precipitation extremes in the
tropics (Supplementary Fig. 12), the spatial pattern of the sign of
the changes in precipitation extremes is relatively robust across
models (Fig. 2a).

The scaling approach applied here can provide crucial insights
into regional model differences and potentially model biases, which
could be disentangled into thermodynamic and dynamic bias con-
tributions given a reliable reference data set. Such a separation into
thermodynamic and dynamic contributions could inform model
development, and may be useful for potential model constraints
or weightings in multi-model projections of precipitation extremes.
This separation could also inform alternative approaches in extreme
event attribution that aim at disentangling the dynamic and ther-
modynamic signals31. By successfully providing a physically based
quantification of the role of circulation for future changes in regional
extreme precipitation, this study motivates further research into
changes in the associated circulations, particularly in regions where
the dynamic contribution is large and robust in sign. Reducing
potential errors in the representation of the mechanisms underlying
such dynamical changes in climate models will ultimately lead to
more robust regional projections of precipitation extremes that are
vital for many adaptation decisions.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
CMIP5 model data and analysis. Climate-model output from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive is analysed, using all models that
provide the required data for the historical period 1950–2005 and the RCP8.5
scenario simulation covering 2006–2100. Daily accumulated surface precipitation,
daily mean temperature and vertical wind velocity on all available vertical pressure
levels, daily mean temperature and specific humidity at 2m above ground as well as
monthly mean surface pressure are extracted from the CMIP5 database. These data
are available from 22 models, 4 of which provide data from several initial condition
ensemble members (see Supplementary Table 1). Note that the 2-metre
temperature and humidity fields are not available from the CMCC-CESM,
CMCC-CM, CMCC-CMS, FGOALS-g2, MPI-ESM-LR and MPI-ESM-MRmodels.
The analysis is performed on each model’s native grid, and the resulting fields are
interpolated on a 1◦×1◦ geographical grid for the calculation of multi-model
ensemble means and uncertainties. Different initial condition members of the same
model are treated separately and are given a reduced weight when calculating
multi-model averages and standard deviations (such that each model contributes
equally to the multi-model mean, independent of the number of its ensemble
members). At each model grid point, the annual maximum daily precipitation
Rx1day is determined for each year of the analysis period 1950–2100. Vertical
profiles of daily average temperature and vertical wind on pressure levels at the
location and on the day of this maximum precipitation are used as input for the
scaling analysis. On each level, qs is calculated from a modified Tetens formula32
with interpolation of the saturation vapour pressure between the ice and liquid
phase in a temperature range between−23 ◦C and 0 ◦C. The vertical integral is
performed over all tropospheric levels with ascent (ωe<0). The troposphere is
defined as all pressure levels below the highest level with a lapse rate of 2 K km−1
and below 50 hPa. This definition of the tropopause does not yield reasonable
results over Greenland and Antarctica, where the atmosphere is generally very
stable, and the results are thus less reliable. In these regions, all levels below 50 hPa
are used. Note that, in contrast to ref. 8, we use the vertical velocity on pressure
levels from the model output rather than having to compute it from the continuity
equation, since ωe output is directly available from the models.

Following ref. 17, the forced response of annual maximum precipitation and the
corresponding scaling to global warming is estimated by calculating linear
regressions of the relative change at each grid point (with respect to the mean in the
historical period 1950–2005) against global mean near-surface temperature of the
respective model, using annual data for the entire analysis period 1950–2100. In
general, this yields more robust results than evaluating differences in multi-decadal
means17. When analysing seasonal instead of annual precipitation maxima
(Supplementary Figs 7 and 8), some models simulate very low precipitation
amounts at certain grid points in the subtropics, which leads to spurious relative
changes. Such grid points (where the seasonal maximum precipitation averaged
over the historical reference period is smaller than 0.2mm) are not taken into
account in the multi-model mean.

The agreement of spatial patterns of precipitation extremes and the
precipitation extremes scaling, as well as of changes therein, is measured using
area-weighted spatial correlation coefficients and root mean square differences. To
obtain weighted correlation coefficients, the weighted covariance cov(x, y; w) of
two vectors x and y with spatial weights w is calculated as

cov
(
x,y;w

)
=

∑
iwi (xi− x̄)

(
yi− ȳ

)∑
iwi

(2)

where x̄ and ȳ denote the weighted means of x and y, respectively. Note that
regression coefficients can become very large at specific grid points where the
historical mean is close to 0. Such grid points are removed before calculating spatial
correlations using a threshold of± 100%K−1; the fraction of points that are
omitted is always smaller than 1%. The uncertainty of a signal in the multi-model
ensemble is quantified as the local standard deviation across models, and the
relative uncertainty as the ratio of this standard deviation to the absolute value of
the multi-model mean change.

Comparison with observation-based data. To evaluate the representation of
annual maximum precipitation in the CMIP5 climate models, we use data from the
Global Precipitation Climatology Project (GPCP) One-Degree Daily (1DD)
dataset33 for the period 1997–2014. This dataset contains precipitation estimates
from a combination of multiple satellite observations, which over land are adjusted

based on monthly rain gauge measurements. To obtain a spatial resolution that is
comparable to the CMIP5 models, the data are regridded from the original
one-degree resolution to a 2◦× 2◦ grid by averaging over adjacent grid points. The
annual maximum precipitation from this dataset is shown in Supplementary
Fig. 14. Over land, spatial pattern and absolute values of this observation-based
estimate of Rx1day agree reasonably well with the CMIP5 multi-model mean
(Fig. 1a), with some regional differences, for example, over Anatolia and the Indian
monsoon region. Over the oceans, CMIP5 values are generally biased high
compared to GPCP, and there are larger differences in spatial patterns over the
tropical Indian Ocean and the tropical Pacific (where several CMIP5 models have a
‘double ITCZ’ bias34). Furthermore, there is an apparent discontinuity in the
observational estimate at 40◦ latitude, where the GPCP primary data source and
algorithm change. In general, this model-data comparison should be interpreted
with care due to the substantial uncertainties associated with estimates of extreme
precipitation from gridded observational data35. Over the ocean, where GPCP data
are not constrained by surface measurements, these uncertainties are even larger
than over land.

To test the scaling relationship based on data with larger observational
constraints than the CMIP5 simulations, we use ERA-Interim reanalyses36 for the
period 1979–2015. Daily mean temperature and vertical pressure velocity on model
levels as well as surface pressure and precipitation from the reanalysis are regridded
to the same 2◦×2◦ grid as used for the GPCP analysis by averaging over adjacent
grid points (with an original grid spacing of 1◦). Note that ERA-Interim
precipitation is a forecast product and, to exclude potential effects of model
spin-up, forecast steps larger than 6 h are used here. Daily precipitation amounts
are obtained by combining data from different forecasts (the accumulated
precipitation between forecast hours 12 and 18 from the forecast started at 12 UTC
on the previous day, between hours 6 and 18 from the 00 UTC forecast and
between hours 6 and 12 from the 12 UTC forecast). Annual maximum
precipitation is determined at each grid point and in each year, and the scaling
analysis (equation (1)) is applied in the same way as for the CMIP5 data. As shown
in Supplementary Fig. 15a, Rx1day from ERA-Interim is similar to the CMIP5
multi-model mean (Fig. 1a) in many regions, but does not suffer from a ‘double
ITCZ’ bias over the Pacific and is closer to the GPCP satellite estimates over the
Indian Ocean, western Pacific and Maritime Continent (where CMIP5 models
simulate excessively large Rx1day values). The precipitation extreme scaling
(Supplementary Fig. 15b) very accurately reproduces the spatial pattern of
ERA-Interim Rx1day, but overestimates precipitation amounts in dry regions and
underestimates them in moist regions. This is very similar to the CMIP5 results,
and further supports the suitability of the scaling approach for studying spatial
patterns of extreme precipitation.

A scaling analysis based on ERA-Interim data is not able to reproduce the
GPCP annual precipitation maxima, but this is not because of problems with the
scaling methodology: the scaling is able to reproduce the average of precipitation
amounts from the ERA-interim reforecasts on the days of GPCP annual maxima,
but the ERA-Interim reforecasts underestimate the GPCP precipitation amounts on
those days (not shown).

Data availability. CMIP5 model output is available from the Earth System Grid
Federation (ESGF) Peer-to-Peer system (https://esgf-node.llnl.gov/projects/cmip5).
GPCP precipitation data are available from the NASA Global Precipitation
Analysis website (https://precip.gsfc.nasa.gov). ERA-Interim data are available from
the ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets).
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