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Introduction

Here we describe the layer-wise relevance propagation rules that we use (Text S1),

how we calculate the instantaneous precipitation rate (Text S2), how we calculate the

convective available potential energy (Text S3), and how we calculate other measures for

convective and symmetric instabilities (Text S4). Figure S1-S14 show supporting figures

for the main text.
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Text S1. Layer-wise relevance propagation rules

The general relevance propagation rule is as follows (Montavon et al., 2019):

Rj =
∑
k

aj · (wjk + γw+
jk)

ϵ+
∑

0,j′ a
′
j · (wj′k + γw+

j′k)
Rk, (1)

where R stands for the relevance, j and k are the neurons in two consecutive layers, with j

indexing a layer closer to the input layer and k indexing a layer closer to the output layer,

aj is the value propagated forward by neuron j (activated by ReLU), wjk is the weight

that connects neuron j to k, and w+
jk is the same as wjk but only includes positive weights.

The sum over j′ is over all neurons in the layer indexed by j but also including an extra

neuron with index 0 representing the bias. When back-propagating the relevance from

the first hidden layer to the input layer, a different propagation rule is applied (Montavon

et al., 2017), and the relevance is calculated as:

Rj =
∑
k

w2
jk∑

j′ w
2
j′k

Rk, (2)

where j indexes the input in the input layer, and k indexes the neuron in the first hidden

layer. There are two tunable parameters in LRP, namely, ϵ and γ, which reduce the noise

and favors positive weights, respectively. We present the LRP results when both ϵ and

γ set to zero for simplicity, but we verified that the results presented are not sensitive to

different choices of the parameters ϵ and γ (Figure S11).

Text S2. Calculation of instantaneous precipitation rate

Following Yuval, O’Gorman, and Hill (2021), the instantaneous precipitation rate is

estimated as:

Ptot(z = 0) =
∫ ∞

0
ρ0

(
∂qp
∂t

)
micro

dz, (3)
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where Ptot(z = 0) is the total precipitation rate at the surface (including all phases) and

(∂qp/∂t)micro is the tendency of the precipitating water mixing ratio. We use this approach

for the neural-network parameterization which does not make a separate prediction of the

surface precipitation. We also use this approach to calculate the “true” instantaneous

precipitation on the coarse grid by using the coarse-grained (∂qp/∂t)micro from the hi-res

simulation. This was necessary because only 3-hourly averaged precipitation was stored

as simulation output. In both cases, we only integrate over the bottom 30 vertical levels

from 0 to 13.4 km which is the height range of the neural-network outputs.

Text S3. Convective available potential energy (CAPE)

Following Muller, O’Gorman, and Back (2011), we calculate CAPE (with any convective

inhibition removed) as:

CAPE =
∫ zLZB

0
g
[
Tp − Te

Te

+
(
Rv

Rd

− 1
)
(qv,p − qv,e)− (qc,p − qc,e)− (qi,p − qi,e)

]
dz, (4)

where zLZB is the level of zero buoyancy, g is the gravitational acceleration, Te is the

temperature of the environment, Tp is the temperature of the parcel following pseudo-

adiabatic ascent, Rv and Rd are the gas constants for water vapor and dry air, respectively,

q is the mixing ratio where subscript v stands for vapor, c for cloud liquid, i for ice, e for

environment, and p for parcel.

Text S4. Quantification of symmetric and convective instabilities

To provide measures of upright convective and symmetric instability, we first calculate

the saturation moist static energy (MSE∗) as:

MSE∗ = cpT + gz + Lq∗v , (5)
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where cp is the specific heat of air at constant pressure, T is the absolute temperature, g

is the gravitational acceleration, z is the height, q∗v is the saturation vapor mixing ratio,

and L = Lc + Lf (1 − ωn) with Lc the latent heat of condensation, Lf the latent heat of

fusion, and ωn the phase partition function for non-precipitating water in SAM. MSE∗ is

conserved in SAM for saturated moist-adiabatic processes in the absence of melting and

freezing of cloud condensates and precipitation.

We diagnose conditional instability for upright convection at a given level when

∂MSE∗/∂z < 0. Similarly, we diagnose conditional symmetric instability when the satu-

ration moist potential vorticity MPV∗ is negative (Korty & Schneider, 2007). We modify

MPV∗ to use MSE∗ and the anelastic reference density profile as follows:

MPV∗ =
sign(f)

cpρ0(z)
(∇× v + f ẑ) · ∇MSE∗, (6)

where ρ0(z) is the reference density profile, v is the three-dimensional velocity, and f is

the Coriolis parameter on the equatorial β-plane. By multiplying MPV∗ with the sign

of f , the atmosphere is conditionally symmetrically unstable when MPV∗ < 0 in both

hemispheres. Bands of increased stability are evident near the melting lines in Figures S8

and S9, and this is related to melting and freezing of precipitation and condensate.
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Figure S1. Similar to Figure 2, but also showing results for a different train/test split of the

data. The bars without hatches are the same as the bars in Figure 2 (trained on 50% of the data

and tested on 40% of the data), and the bars with hatches indicate more of the data is used for

training (trained on 80% of the data and tested on 10% of the data). The results show that NN

performance is not hampered by training on a smaller portion of data.
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Figure S2. Loss (mean-squared error) for the training (blue) and validation (orange) sets

at each epoch for the NNs used in Figure 2: (a) the single-column parameterization (NN1D),

(b) the non-local parameterization (NN3D), (c) the single-column parameterization with local

w as an additional feature (NN1D+w), and (d) the single-column parameterization with local

horizontal wind divergence δ as an additional feature (NN1D+δ). Losses are plotted for the

average of the batch at the end of each epoch. Learning rate is plotted in gray for each batch.

The learning rate scheduler cycles through minimum and maximum learning rates once over each

epoch. The maximum and minimum learning rates are reduced by a factor of 10 after training

for 7 epochs.
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Figure S3. Similar to Figure 2, but also showing R2 values when the mean at each vertical

level is first removed. The dashed bars are the same as the bars in Figure 2, and the colored bars

indicate R2 values when the mean at each vertical level is first removed.
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Figure S4. The 99.9th percentile of the instantaneous surface precipitation rate coarse-

grained from the high-resolution simulation (gray dashed line), and from NNs with different

input feature combinations: a single-column parameterization (NN1D; blue), a single-column

parameterization with an additional 1D vertical velocity input (NN1D+w; yellow), a single-

column parameterization with an additional 1D wind divergence input (NN1D+δ; green), and

a non-local parameterization (NN3D; red). NN1D underestimates the extreme precipitation by

up to 20% at the mid-latitudes, while NN3D substantially improves the extreme precipitation in

this region, and NN3D+w improves the extreme precipitation at all latitudes.
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Figure S5. The coefficient of determination (R2) of the (a) tendency of the precipitating

water mixing ratio due to microphysical processes ((∂qp/∂t)micro) and (b) meridional momentum

flux due to vertical advection ((v)subg−flux
adv ), from single-column parameterizations (NN1D), non-

local parameterizations (NN3D) and single-column parameterizations with w as additional input

(NN1D+w). Different architectures are considered: 1 hidden layer and 64 neurons per layer

(1L,64N); 3 hidden layers and 128 neurons per layer (3L,128N); 8 hidden layers and 256 neurons

per layer (8L,256N). The number of trainable parameters associated with each neural network

architecture is shown on top of each bar. NN3D and NN1D+w with lower complexity (1L,64N)

can significantly outperform NN1D with higher complexity (8L,256N), while using 87–97 % fewer

trainable parameters.
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Figure S6. Similar to Figure 4, but based on improvements in predicting (v)subg−flux
adv .
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Figure S7. Similar to Figure 5, but based on the improvement in predicting (v)subg−flux
adv .
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Figure S8. Different measures of instability based on the cases with largest/little improvement

when predicting (∂qp/∂t)micro using non-local parameterization compared to local parameteriza-

tion. (a-c) The saturation potential vorticity (which is a measure of conditional symmetric

instability) and (d-f) the vertical derivative of the moist static energy (which is a measure

of conditional instability to upright convection) as a function of height and meridional distance.

These measures of instability are calculated from the high resolution data for the 300 mid-latitude

cases that (a,d) have the largest improvements when the non-local parameterization (NN3D) is

used, (b,e) have little improvement when NN3D is used, and (c,f) for the difference between

the cases with largest and little improvement. See Section 3.2 for details of how the groups of

cases are chosen. Averages are taken in longitude over three coarse columns and over the cases

in question. Magenta lines show the edges of the coarse columns. An increased band of static

stability is evident near 4 – 5 km due to the melting level. Both instability measures suggest

that the atmosphere is overall less stable in cases with largest improvements, especially below 4

km.
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Figure S9. Similar to Figure S8, but based on the improvement in predicting (v)subg−flux

adv .
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Figure S10. Global R2 values for NNs using input features of T, qT , u, v versus the number of

non-local grid boxes used as inputs, ranging from 1×1 (local parameterization) up to 7×7 non-

local grid boxes. To be consistent in the number of training/testing samples between NNs with

different level of non-locality, we exclude the three outermost columns of data in each snapshot.

Therefore, each snapshot has 2,520 samples instead of 2,752 samples as was used for results in

other figures.
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Figure S11. Similar to Figure 6a, but for different ϵ and γ values used to calculate relevance.

Equation 1 in the supplement shows how ϵ and γ enter into the calculation of the relevance.

Larger ϵ values tend to reduce noise in relevance, and larger γ values favor positive contributions

from neurons. This figure shows that the exact relevance score can be slightly different using

various parameters, but the overall pattern remains the same.
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Figure S12. Similar to Figure 4 but for the tropical cases when predicting (∂qp/∂t)micro.

Unlike the mid-latitude cases, cloud shapes in the cases with and without improvement do not

obviously differ.
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Figure S13. Similar to Figure 5, but for tropical cases when predicting (∂qp/∂t)micro. Cases

with improvement have slightly lower CAPE than cases without improvement, suggesting the

atmosphere is more stable to convection, which is opposite compared to the mid-latitudes.



X - 18 WANG, YUVAL, AND O’GORMAN: NON-LOCAL PARAMETERIZATION

x

y

192 km

a) b)

Figure S14. Similar to Figure 6, but for tropical cases. The exact relevance values are

different, but the overall patterns are similar, suggesting that similar information is being used.
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