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Supplementary Note 1

Here we show that the RF parameterization performs well in respecting physical con-

straints. This good performance arises because the constraints are respected by the training

data and the RF predictions are averages over subsets of the training data1. In particular,

the RF parameterization always predicts non-negative surface precipitation (Supplemen-

tary Figure 3). Similarly, in the remainder of this section we show that the RF parameteri-

zation conserves energy in the absence of external forcing (i.e., in the absence of radiative

heating and surface fluxes of hL).

RF-diff automatically respects energy conservation in the absence of external forcing

since it predicts the turbulent diffusivity rather than the diffusive tendencies. To check

energy conservation for RF-tend, we integrate the evolution equation for hL (equation

1 in the methods section) in the vertical with density weighting, and then consider the

contributions to the resulting equation that come from RF-tend (denoted with a superscript

subgrid) to give an energy-conservation residual:

residual =

∫ ∞
0

ρ0

(
∂hL

∂t

)subgrid

no−rad

dz + LpP
subgrid
tot (z = 0) + LnS

subgrid(z = 0). (S1)

Here
(
∂hL
∂t

)subgrid

no−rad
is the subgrid tendency of hL but excluding the contribution from ra-

diative heating which is an external forcing. This tendency was evaluated by training a

new RF-tend that predicts the radiative heating tendency and the sum of other tendencies
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of hL as separate outputs. This RF-tend performed similarly to our default RF-tend in all

other regards. In deriving equation S1, we have neglected subgrid correlations between

Lp and Ptot and between Ln and S, and as a result the residual will not be exactly zero

even for the true subgrid tendencies. In addition, in evaluating the residual, the column

energy change due to subgrid surface precipitation and sedimentation (LpP
subgrid
tot (z =

0) + LnS
subgrid(z = 0)) was approximated to be Lp(P

subgrid
tot (z = 0) + Ssubgrid(z = 0))

so that we could evaluate it using equation 7 in the methods section. This approximation

leads to a small error to the extent that there is surface sedimentation.

The distribution of the energy-conservation residual for the true subgrid tendencies

is shown in Supplementary Figure 2a and for the RF-predicted subgrid tendencies in Sup-

plementary Figure 2b. In general, the residuals are very small, and the distribution of the

residuals is similar for the true subgrid tendencies and the RF-predicted subgrid tenden-

cies. The difference between the true and the RF-predicted residuals for each column was

also calculated, and its distribution is shown in Supplementary Figure 2c.

Supplementary Figure 2b demonstrates that the RF parameterization respects en-

ergy conservation to a high degree of accuracy (less than 2% of the data has residu-

als that are larger in amplitude than 1W m−2). The root mean square error in energy

conservation is 0.35W m−2 which is much smaller than the root mean square value of
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64.76W m−2 for the vertical integral of the predicted energy tendencies. The mean bias

error is 0.11W m−2. We note that a similar mean bias error is found in the calculation of

the energy-conservation residual from the true subgrid tendencies, and both are likely a

result of the approximations we used in the calculation of the energy conservation residual

rather than a violation of energy conservation (the mean bias error found in Supplementary

Figure 2c is 0.0001W m−2). The root mean square error of 0.35W m−2 is substantially

smaller than a reported value of 92W m−2 in a previous study that used a NN to learn from

a quasi-global simulation2 with the caveat that the metric of errors in energy conservation

in that study also included errors in predicted radiative heating and surface fluxes. We note

also that energy conservation for a NN parameterization can be enforced by including it as

a constraint in the NN architecture3.
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Supplementary Note 2

Here we describe an alternative RF parameterization approach in which qp is not used as

a variable. This alternative RF parameterization leads to stable simulations when imple-

mented in SAM, and it gives similarly accurate results to the default approach for mean

precipitation, but less accurate results for extreme precipitation in midlatitudes (Supple-

mentary Figure 4). Since the alternative RF parameterization does not take qp as an input,

SAM in this case does not include qp as a prognostic variable. Such a parameterization

could be potentially very useful since qp is a variable that changes on short time scales and

therefore limits the size of the time step at coarse resolution. Furthermore, many climate

models do not use qp as a prognostic variable, and using an ML parameterization in these

models requires a parameterization that does not use qp as an input. Note that we haven’t

yet tested this parameterization with much larger time steps because turbulent diffusion as

implemented in SAM also limits the time step.

The equations for the prognostic water and energy variables in SAM are described

in equations 1-3 in the methods section. We define a new prognostic energy variable (HL)

that does not include the precipitating water (qp):

HL = cpT + gz − Lcqc − Lsqi. (S2)
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This can be written in terms of the original energy variable hL as

HL = hL + Lpqp (S3)

where, Lp = Lc + Lf(1 − ωp) and ωp is the partition function for precipitation which

depends only on temperature in SAM4. In the following, we account for vertical variations

of Lp in the vertical but neglect the smaller variations in the horizontal and in time. Taking

the derivative with respect to time of equation S3 gives

∂HL

∂t
=
∂hL

∂t
+ Lp

∂qp

∂t
. (S4)

Substituting equations 1 and 3 from the methods section into equation S4, we get a prog-

nostic equation for HL:

∂HL

∂t
= − 1

ρ0

∂

∂xi
(ρ0uiHL)−

1

ρ0

∂

∂z
(LnS) + Lp

(
∂qp

∂t

)
mic

+

(
∂hL

∂t

)
rad

− 1

ρ0

∂FHLi

∂xi
+

1

ρ0

∂Lp

∂z
(ρ0wqp + Fqpz − Ptot) (S5)

where FHLi = FhLi + LpFqpi and the last term on the right hand side results from heating

from phase changes of precipitation.

Our aim is to make a parameterization for coarse-resolution simulations that does

not include qp. Therefore we assume that at coarse resolution we can neglect the hori-

zontal fluxes of qp and the time derivative of qp in equation 3 from the methods section.
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Integrating this equation vertically over the column and neglecting surface diffusive fluxes

of qp then gives an expression for the surface precipitation rate:

Ptot(z = 0) = −
∫ ∞

0

(
∂qp

∂t

)
mic

dz. (S6)

The RF parameterization without qp is similar in most respects to the RF param-

eterization with qp, but some changes are needed. First, RF-tend does not use qp as a

feature or predict its tendency as an output, and it predicts the tendency of HL rather

than the tendency of hL. Thus, the features for RF-tend are X = (T, qT, |y|), and the

outputs are y = (Hsubg−tend
L , qsubg−tend

T ). RF-diff is changed to predict the subgrid sur-

face flux of HL instead of hL. Second, RF-tend in this version predicts for Hsubg−tend
L

the subgrid vertical advection and subgrid sedimentation terms added to the total value of

Lp

(
∂qp
∂t

)
mic

+
(
∂hL
∂t

)
rad

+ 1
ρ0

∂Lp

∂z
(ρ0wqp + Fqpz − Ptot) in equation S5. Third, we do not

apply the RF tendency of qT due to subgrid vertical advection and sedimentation above

11.8km to avoid a feedback that lead to a severe change in the global circulation. (This

is likely to be a similar issue to an instability that occurred in a previous study on ML

parameterization that also did not use qp as a prognotic variable and in which this insta-

bility was dealt with by not including certain upper-level variables as features5.) To avoid

over-fitting the results presented here, we chose the same upper-level cutoff for these qT

tendencies (11.8km) as was also used for radiative heating. We tested different upper-level
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cutoffs (11km, 9.5km) and different combinations of cutoff levels (different cutoff levels

for each process) and found that all these choices led to simulations with qualitatively

similar results.

When implementing the alternative RF parameterization in SAM, we remove qp as a

prognostic variable and change from hL to HL as a prognostic variable. We diagnose sur-

face precipitation using equation S6 (plus any surface sedimentation). The approximations

used in deriving equation S6 can result in negative instantaneous surface precipitation in

rare cases. However, the surface precipitation averaged over 3 hours in the SAM simula-

tions with this RF parameterization is negative less than 1% of the time and the negative

values are smaller in magnitude than 0.2mm day−1.
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Supplementary Figure 1: Mean true outputs of random forest parameterization. The

time- and zonal-mean for different true outputs of the random forest parameterization at

x8: (a) subgrid tendency of qT, (b) subgrid tendency of hL, (c) subgrid tendency of qp, (d)

D, (e) subgrid surface flux of qT, and (f) subgrid surface flux of hL.
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Supplementary Figure 2: Distribution of energy-conservation residuals. Equation S1

is applied to samples in the test dataset at x8 for the (a) true subgrid tendencies, (b) subgrid

tendencies predicted by the random forest parameterization, and (c) the difference between

the true and predicted subgrid tendencies. The bin size is 0.01Wm−2.
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Supplementary Figure 3: Offline performance for surface precipitation. Scatter plot

of true instantaneous surface precipitation coarse-grained to x8 versus the random forest

(RF) prediction. The RF-predicted precipitation is calculated as the sum of the resolved

precipitation and the subgrid correction. A random subset of 10,000 samples from the test

set are shown for clarity. The black dashed line is the one-to-one line. We verified that the

RF prediction gives non-negative precipitation values for all the 972, 360 test samples.
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Supplementary Figure 4: Mean and extreme precipitation in simulation with the al-

ternative random forest-parameterization. The simulation with the alternative random

forest parameterization (Supplementary Note 2) does not use the precipitating water (qp)

as a variable. Shown are (a) mean precipitation and (b) 99.9th percentile of 3-hour pre-

cipitation at each latitude from the hi-res simulation (blue), x8-RF simulation without qp

(orange), and x8 simulation (green).
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Supplementary Figure 5: Offline comparison of parameterizations at a common grid

spacing. Offline results for the subgrid tendency of qT: (a-c) true mean, (d-f) true standard

deviation, (g-i) root mean square error for the random forest (RF) prediction, and (j-l) co-

efficient of determination (R2) for the RF prediction. Results are shown for x4 (a,d,g,j), the

subgrid tendency calculated and predicted at x4 and then coarse-grained to x32 (b,e,h,k),

and x32 (c,f,i,l). Results shown in this figure are based on the alternative test dataset (see

methods). Colorbar is saturated in panels f and g.
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Supplementary Figure 6: Extreme precipitation for simulations with different hori-

zontal grid spacing. Extreme precipitation as a function of latitude as measured by the

99.9th percentile of 3-hourly precipitation for: (a) x4, (b) x8, (c) x16 and (d) x32. Re-

sults are shown for the hi-res simulation (blue) and the coarse-resolution simulation with

the random forest parameterization (orange). The precipitation rates for the hi-res sim-

ulation have been coarse-grained to the appropriate grid spacing prior to calculating the

percentiles6. The coefficient of determination for each of the grid spacings is given above

each panel.
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Supplementary Figure 7: Online performance when excluding latitude bands during

the training process. Zonal- and time-mean of (a, c, e, g) the zonal wind at 11.2km

and (b, d, f, h) the meridional wind at 11.2km. (a,b) The hi-res (green) and x8 (blue

dash-dotted) simulations. (c-h) Simulations with x8-RFs (black dash-dotted) in which the

training process excludes in both hemispheres the latitude bands (c,d) 5.1◦ − 15.5◦, (e,f)

34.5◦ − 44.9◦ and (g,h) 60.5◦ − 70.8◦. For comparison the results for x8-RF without any

latitudes excluded in training are plotted in orange in all panels. Grey bars indicate latitude

bands that where excluded during the training.
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Supplementary Figure 8: Hyperparameter tuning for random forests. Coefficient of

determination (R2) for RF-tend (panels a-c, R2 calculated for qsubg−tend
T ) and RF-diff (d-f,

R2 calculated for diffusivity) as evaluated on the training dataset (green) and validation

dataset (red) for x8 and different hyperparameter values: (a,d) minimum samples in each

leaf, (b,e) number of trees in the forest, and (c,f) number of training samples. The hyper-

parameters that are used for both random forests (RFs) when implemented in SAM are 20

minimum samples in each leaf, 10 trees in the forest and 5, 000, 000 training samples for

the x4, x8, and x16 simulations. The hyperparameters that are used for both RFs in the

x32 simulations are 7 minimum samples in each leaf, 10 trees in the forest and 1, 969, 020

training samples. S16
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Supplementary Figure 9: Offline performance of random forest parameterization.

The offline performance measured by the coefficient of determination (R2) at x8 for: (a)

subgrid tendency of qT, (b) subgrid tendency of hL, (c) subgrid tendency of qp, (d) D, (e)

subgrid surface flux of qT, and (f) subgrid surface flux of hL. Results are based on the

samples from the test dataset. R2 is only shown where the variance is at least 0.1% of the

mean variance over all latitudes and levels.
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Supplementary Figure 10: Standard deviation of true outputs for random forest pa-

rameterization. The standard deviation of true outputs at x8: (a) subgrid tendency of qT,

(b) subgrid tendency of hL, (c) subgrid tendency of qp, (d) D, (e) subgrid surface flux of

qT, and (f) subgrid surface flux of hL.
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Supplementary Figure 11: Vertical profiles of the standard deviation of outputs for

different coarse graining factors. The standard deviation of true (red) and random forest-

predicted (green) subgrid tendency of qT for different coarse-graining factors: (a) x4, (b)

x8, (c) x16, and (d) x32. Results are evaluated based on the test dataset.
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x8-RF x8

Eddy kinetic energy (m2 s−2) 26.3 (0.97) 54.5 (0.88)

Zonal wind (m s−1) 2.2 (0.98) 4.5 (0.87)

Meridional wind (m s−1) 0.2 (0.87) 0.6 (-0.01)

Non-precipitating water (g kg−1) 0.1 (0.99) 0.4 (0.97)

Supplementary Table 1: Online performance with and without random forest param-

eterization. Online performance as measured by root mean square error (R2 in paren-

thesis) of zonal- and time-mean variables for the coarse-resolution simulations with the

random forest parameterization (x8-RF) and without the random forest parameterization

(x8) as compared to the target hi-res simulation. The eddy kinetic energy is defined with

respect to the zonal and time mean.
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qsubg−tend
T hsubg−tend

L qsubg−tend
p D qsurf−flux

T hsurf−flux
L

x4 0.56 0.31 0.73 0.72 0.30 0.29

x8 0.80 0.48 0.88 0.84 0.48 0.44

x8-no-|y| 0.79 0.48 0.88 0.84 0.47 0.42

x16 0.90 0.64 0.93 0.93 0.60 0.57

x32 0.95 0.75 0.96 0.96 0.78 0.76

Supplementary Table 2: Offline performance of random forest parameterizations as

measured by R2. The offline performance is given for different coarse-graining factors

and different outputs of the random forests. For x8-no-|y|, the distance from equator was

not used as a feature. For the tendencies and turbulent diffusivity, all levels used are

included when calculating R2. All results are based on the test dataset.
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qsubg−tend
T hsubg−tend

L qsubg−tend
p D qsurf−flux

T hsurf−flux
L

10−8× 10−5× 10−8× 10−6× 10−3×

kg kg−1s−1 K s−1 kg kg−1 s−1 m2 s−1 kg m−2 s−1 K kg m−2 s−1

x4 2.50 3.65 1.23 15.27 1.76 1.36

x8 1.64 2.27 0.94 9.88 1.68 1.35

x8-no-|y| 1.65 2.28 0.94 10.02 1.69 1.37

x16 1.22 1.54 0.83 6.64 1.76 1.52

x32 0.94 1.10 0.72 4.28 1.69 1.58

Supplementary Table 3: Offline performance of random forest parameterizations as

measured by root mean square error. The offline performance is given for different

coarse-graining factors and different outputs of the random forests. For x8-no-|y|, the dis-

tance from equator was not used as a feature. For the tendencies and turbulent diffusivity,

all levels used are included when calculating root mean square error. All results are based

on the test dataset.
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qsubg−tend
T hsubg−tend

L qsubg−tend
p

10−8 kg kg−1s−1 10−5 K s−1 10−8 kg kg−1 s−1

x4 2.57 (0.55) 3.79 (0.29) 1.28 (0.71)

x4→x32 0.49 (0.93) 0.39 (0.82) 0.21 (0.95)

x32 0.97 (0.95) 1.16 (0.73) 0.74 (0.96)

Supplementary Table 4: Offline comparison of random forest parameterizations at a

common grid spacing. Offline performance as measured by root mean square error (R2

values in brackets) for different outputs of RF-tend for x4, coarse graining of the subgrid

tendencies calculated and predicted at x4 to x32 grid spacing (x4→x32), and x32. Results

in this table are based on the alternative test dataset (see methods).
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