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Abstract

We conduct a geographically and temporally disaggregated empirical analysis
of civil conflict at the sub-national level in Africa over the period 1997-2006. Our
units of observation are cells of 1 degree of latitude by 1 degree of longitude. We
exploit within-year variation in the timing of weather shocks and in the growing
season of different crops, as well as spatial variation in crop cover, to construct an
original measure of shocks that are relevant for agricultural production. Employing
a new draught index we show that negative climate shocks which occur during the
growing season of the main crops cultivated in the cell have a sizeable effect on
conflict incidence. This effect is persistent over time and to a lesser extent in space.
We also use state-of-the-art spatial econometric techniques to test for the presence
of temporal and spatial spillovers in conflict, and we find both to be sizeable and
highly statistically significant. Exploiting variation in the type of conflict episode,
we find that the impact of climate shocks on conflict is particularly significant
when focusing on outcomes such a rebel recruitment.
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1 Introduction

Sub- Saharian Africa is both the world’s poorest region and the region which has
experienced, in the past 60 years, the most armed conflicts, the majority of which are
civil conflicts (Blattman and Miguel, 2010). Poverty and internal conflict appear to be
tightly linked throughout the world: the correlation between low per capita incomes and
higher propensities for internal war is one of the most robust empirical relationships in
the literature. In the past decade, it has become increasingly clear that understanding
the causes and consequences of civil conflict should have a prominent place in the
development economics agenda. A major focus in the empirical research on conflict
has been the role of economic fluctuations in shaping conflict risk. The relationship
between weather shocks and civil conflict was first highlighted by Miguel et al. (2004),
who detected a reduced form negative relationship between rainfall shocks and conflict
incidence. The link between climate and conflict has attracted considerable attention
ever since, further motivated by accumulating evidence on the potentially disruptive
effects of climate change.

We attempt at making a step further in understanding the relationship between
climate shocks and civil conflict by taking the analysis to a different scale. We conduct
a geographically disaggregated analysis which takes as units of observation 100 x 100
km subnational "cells", and we estimate the incidence of conflict in a cell as a function
of climate shocks and a number of other covariates both in the cell and in neighbor-
ing areas, plus a “lag” in space and time of the endogenous variable. Our approach
contributes to the existing literature in three directions.

The first is methodological. We disaggregate the level of analysis both in space
and time, constructing a cell-year panel with a rich set of georeferenced covariates.
This disaggregated level of observation allows us to take a closer look at a number
of geographic covariates, which have been claimed to be predictors of conflict but
which have so far been measured at an arguably wrong scale. More importantly, it
enables us to detect previously neglected within-year and within-country patterns. Our
disaggregated approach is accompanied by a careful modelling of spatial dependence
and thorough state-of-the-art spatial econometrics techniques which have seldom been
applied in economics. In particular, we estimate a model that includes spatially and
temporally autoregressive terms to account for the fact that conflict may be persistent
over time, and that both the covariates and the presence of conflict may be correlated
across space. As we explain in the next section, this poses a number of challenges for
estimation and constitutes an original contribution to the empirical conflict literature,
and one which is particularly crucial when dealing with highly disaggregated data.

The second contribution is that we look at climate indexed within the year. Be-
cause the main channel linking climate shocks and conflict operates through shocks to



agricultural incomes, we attempt to isolate the component of annual climate variability
which is relevant for agriculture. In other words, instead of using climate indicators
aggregated over the whole year (e.g., average yearly rainfall), we construct specific indi-
cators for climatic conditions during the growing season, which is when crops are most
sensitive to unfavorable conditions. This is a data intensive process as it requires a
number of steps: identifying the main crops cultivated in each cell; finding the growing
season of this crops (which varies across cells); and matching this information with
high frequency climate data. In other words, we exploit both within-year variation in
the timing of weather shocks as well as spatial variation in crop cover to construct an
original measure of agriculture-relevant weather shocks. Once we isolate the impact of
the weather shock component which effectively affects local agriculture, we find evi-
dence that this is what drives the overall observed local negative relationship between
conflict episodes and weather.

A third contribution relates to the climate indicator we employ. While most of
the conflict literature so far has focused on precipitation, we use a multiscalar drought
index that accounts for the fact that the impact of rainfall on the growing cycle of a
plant depends on the extent to which water can be retained by the soil. This in turn
depends on the characteristics of the soil and on the extent to which sunshine induces
evaporation. The climate indicator we use in our benchmark specification, the Stan-
dardized Precipitation-Evapotranspiration Index (SPEI) , has been recently developed
by Vicente-Serrano et al. (2010) and considers the joint effects of precipitation, po-
tential evaporation and temperature. We also explore robustness to using traditional
measures of precipitation and temperature.

Our main results can be summarized as follows. We find evidence of a local-level
negative relationship between civil conflict episodes and agriculture-relevant weather
shocks. In particular, we consider a new draught index (the Standardized Precipitation-
Evapotranspiration Index, SPEI) which improves upon crude rainfall measures and
provides a better measure of the effective amount of moisture received by the soil. We
show that "effective rainfall" as captured by SPEI has a negative impact on conflict
incidence only when occurring in the growing season months of the main crops culti-
vated in the area. This effect is sizeable: a one standard deviation negative shock in
SPEI induces an approximate 5 percentage point increase in local conflict incidence in
the subsequent year and a 3 percentage point in the year after that.

We show that crude, individually taken weather indicators such as precipitation
and temperature are not strong predictors of conflict at such high spatial resolution.
Moreover, even controlling for rainfall and temperature as such, SPEI retains signifi-
cance, suggesting that location-specific geographic factors interact in crucial ways with
climatological phenomena.

Our innovative econometric approach allows us to investigate also patterns of prop-
agation of conflict in time and space. Conflict appears very clustered in space, and our



estimation results suggest that this is partly driven by direct spillovers. The magnitude
of the effect of conflict in another cell is found to decrease with the distance of the cell
from the one under consideration, as one would expect. Conflict persistence in time
appears to be even more relevant, as highlighted by a large, robust autoregressive com-
ponent. Overall this seems to suggest that small, one-time shocks can have potential
far-reaching effects through conflict’s propensity to propagate.

Drawing upon the rich disaggregation of conflict events of the ACLED dataset, we
can also look at individual types of conflict episodes to have a better understanding
of the channels of causation. We find that agriculture-relevant weather shocks impact
mostly non-violent activities carried out by rebels, which include recruitment and the
establishment of headquarters. This is consistent with theories which emphasize fluc-
tuations in the "opportunity cost" of joining a civil conflict as important predictors of
conflict onset. Finally, the scale of our study also allows us to take a closer look at the
relationship between time-invariant local characteristics — such as mineral endowments
and terrain ruggedness — without encountering in the “ecological fallacy” most of the
cross country literature runs into.! We find that terrain ruggedness and the presence
of mineral resources are strong local conflict predictors.

Our work is mostly related to two strands of the literature: that on civil conflict
determinants and that on climate and development.

The idea that economic shocks affect civil conflict dates back to the "greed" ad
"grievance" models of Collier and Hoeffler (1998). Based on Herschell and Grossman’s
(1991) theoretical model of insurrections, Collier and Hoeffler emphasized an opportu-
nity cost channel linking economic conditions with conflict onset: when income is low,
the opportunity cost of joining a rebellion is lower, leading to increased likelihood of
conflict. However, there could also be a "greed" effect positively linking conflict likeli-
hood and economic conditions, as the potential benefits from insurgency also increase
during economic upturns. The relative effectiveness of fighting technology for rebels
vs. the government is also believed to affect the cost of insurgency; this leads to the
prediction that conflict should be more prevalent in areas characterized by the presence
of closed terrain to provide "safe havens" for insurgents. More recently, Dal Bo & Dal
Bo (2004) develop a model in which positive shocks to labor intensive industries dimin-
ish conflict, while positive shocks to capital intensive industries increase it. Chassang
and Padro-i-Miquel (2009) develop a theoretical model which predicts higher conflict
likelihood following an economic shock, through the channel of lower opportunity cost
of fighting; the key is that transient economic shocks increase the immediate incentives
to fight but not the discounted present value of victory.

'The so called "ecological fallacy" derives from the fact that inference about the nature of individual
or local level relationships is drawn only from aggregate statistics for the countries to which those
individuals or localities belong.



Based on these theoretical channels, a vast empirical literature has blossomed, fo-
cusing on factors such as natural resources, terrain ruggedness, ethnic fractionalization
and economic shocks as conflict catalysts. Most first generation quantitative stud-
ies consisted of cross country regressions focusing on explanatory variables related to
“greed” and “grievance” (Fearon and Laitin, 2003), whereas recent contributions have
started to look at more local factors (Buhaug et al., 2011; Besley and Reynal-Querol,
2012). A large body of literature has focused on weather driven economic shocks and
civil conflict. Miguel et al. (2004) were the first to highlight a relationship between
rainfall driven economic shocks and conflict incidence in Sub Saharan Africa. Recently,
a number of papers (Ciccone, 2011; Jensen, Sandholt and Gleditsch, 2009) have recon-
sidered the link between rainfall and conflict, indicating that mean-reverting properties
and the spatial correlation in rainfall have not been taken into account. This suggests
that the relationship between conflict and weather shocks deserves to be more carefully
evaluated, in particular it has been argued that "uncovering an effect of rainfall on civil
conflict will require using more disaggregated data" (Ciccone, 2011).

A second strand of the literature related to our work is that on climate and develop-
ment. Motivated by the debate on the economic consequences of global warming, recent
studies have looked at the impact of temperature on economic activity. Dell, Jones and
Olken (2012) find that higher temperatures substantially reduce economic growth in
poor countries, while Schlenker and Lobell (2010) highlight the negative impact of cli-
mate change on African agriculture. Some of these studies have also moved beyond the
conventional country-year framework by looking at within-year weather fluctuations:
Burgess et al. (2011) study how weather shocks impact mortality in India by looking
at high frequency variations in rainfall and temperature and conclude that only shocks
occurring after the monsoon are relevant. Kudamatsu, Persson and Stromberg (2011)
explore a similar question with African data and conclude that weather shocks had a
significant impact on child mortality through the channels of malaria and malnutrition.

The remainder of the paper is organized as follows. In section 2 we present our
econometric methodology. In section 3 we document our data sources and dataset
construction, and we provide some descriptive statistics on the variables of interest. In
Section 4 we discuss the econometric evidence at the cross-sectional (cross-cell) level;
while in section 5 we conduct the main analysis exploiting both cross-sectional and
time variation, and focusing on climatic shocks.

2 Methodology

We construct a dataset which has the structure of a raster grid: the cross-sectional units
of observations are subnational “cells” of 1 degree of latitude x 1 degree of longitude,
whose sides are placed in correspondence of integer values of latitude and longitude.



At these latitudes, 1 degree corresponds on average to approximately 110 km. This
“grid” approach is followed, among others, by Buhaug and Rgd (2006), Dell (2011)
and Alesina, Michalopoulos and Papaioannou (2012). An alternative way to conduct
a subnational analysis would be to consider administrative units. However, the way in
which a country is split into administrative units is in itself the outcome of a political
decision: it may take into account both geographical and demographic features of the
territory which could all be arguably determinants of conflict themselves, or jointly
determined with it. The supposed advantage of using administrative units is that data
on income, population or inequality are often available at the administrative level;
however, such variables are almost inevitably endogenous to conflict and incorporating
them in a conflict regression is at least problematic. Our approach is one which takes as
unit of observation an entity whose borders are truly exogenous to conflict, by ideally
superimposing a grid of equally-sized cells on the territory of interest.?

The bulk of our empirical analysis is conducted at the cell/year level. Our main
dependent variable is ANY EVENT, a binary measure of conflict incidence indicating
whether the cell has experienced a conflict-related episode - of any of the categories
included in the ACLED dataset - over the course of the year. In order to investigate
the local level relationship between climate and conflict incidence we estimate three
models. Consider a panel of N cells indexed by ¢, and T years indexed by t. Denote
with C a generic climate indicator (e.g., precipitation) and with GS _C' the climate
indicator measured in the cell-specific growing season (see below). Let X be a vector
of controls with no time variation - such as terrain characteristics, and v and p denote
year and country fixed effects, respectively. Model I takes the following form:

2 2
ANY EVENT iy = a+ Y BiCerk+ > BuGS_Cepk+0Xe+7,+ i +ecis (1)
k=0 k=0

where c denotes the cell, ¢ the country and ¢ the year. This specification is essentially
the transposition of state-of-the-art cross country conflict regression equations - a la
Ciccone (2011) - at a high spatial resolution.

Our dependent variable is binary and several conflict regressions in the literature
using a binary dependent variable resort to logit estimators. However, we prefer to
conduct the estimation by OLS, thus fitting an unrestricted linear probability model.
The reason is twofold. On the one hand, this can be easily integrated with state-of-the-
art spatial econometrics techniques, which so far have not been explicitly developed for

2One potential difficulty arising when such units of observations are used is the so-called “Modifiable
Aeral Unit Problem” (MAUP). We address this issue in section 5.



limited dependent variables. On the other hand, it has been argued that when dealing
with “rare events”, such as wars, logit and probit may yield biased estimates (King
and Zeng, 2001).

One key feature of our data is spatial correlation. Most empirical work in the
conflict literature implicitly assumes that observations are independent across space,
and thus does not take spatial correlation nor spatial dependence into account. When
dealing with georeferenced, cross-sectional data with potential spatial dependence the
majority of the development literature conducts OLS estimation with Conley (1999)
standard errors, which are robust to spatial dependence of unknown form in the error
term (e.g., Dell, 2010). We estimate model I by OLS and we apply such a correction to
our standard errors, following the procedure of Hsiang (2010) and adjusting standard
errors for both spatial and serial correlation.

This is appropriate in cases in which spatial correlation is present in the error term
("spatial error model"), however it does not address the issue of how to explicitly
model spatial dependence in the process itself. We expect spatial correlation to be
present both in the georeferenced covariates — for example, mineral deposit presence
or climatological events — and in conflict itself, through direct cross-cell spillovers. A
simple way of controlling for spatial correlation in the covariates is to include spatial
lags of the variables of interest, just as in time series it is common to include temporal
lags. In spatial econometrics the structure of spatial dependence between observations
is defined through a symmetric weighting matrix W, and the spatial lag of a given
variable is obtained multiplying the matrix W by the vector of observations. Let C}
and GS _C; be N-dimensional vectors of climate observations in year ¢, and let X be
the matrix of cell-level controls. We estimate Model II:

2 2
ANY EVENT ciy = a+ Y BiCopi+ Y BopGS_Copp+06Xc+pit  (2)
k=0 k=0
2 2
D T0uW Crop+ > O W -GS _Crp + AW - X + W - pi+ 7, + ey
k=0 k=0

This is a spatial Durbin model (Anselin, 1998) in which we let conflict in one cell
depend on covariates observed not only in the cell itself, but also in the neighboring
cells. Since the structure of spatial dependence cannot be directly estimated but can
only be assumed, the choice of the weighting matrix is always a crucial issue. Spatial
econometricians recommend to base one’s decision on the underlying context and to
conduct a sensitivity analysis to different choices of matrices (Pluember and Neumayer,



2010). A popular choice is that of a binary contiguity matrix in which a weight of 1 is
assigned to cells surrounding the cell of interest - within a given distance cutoff -, and
a weight of 0 to other cells. Our benchmark connectivity matrix is a binary matrix
with distance cutoff set to 290 km. Because 290 km is the radius of the circle drawn
around the cell’s center, and each cell is a square with sides of approximately 110 km,
this connectivity matrix implies that we effectively consider as neighbors of a given cell
the 8 bordering cells plus those immediately adjacent to them. In section 5 we discuss
our choice of the weighting matrix and we conduct a sensitivity analysis to different
spatial matrices.

Following a common procedure in the spatial econometrics literature, we row-
standardize the connectivity matrix W . The coefficients on the spatial lags should
thus be interpreted as the effect of the average of a given variable in the neighborhood
of each cell. This model has the advantage of simplicity, since including spatial lags of
the independent variables is straightforward and poses no particular econometric con-
cerns. Standard errors are corrected for spatial and temporal correlation & la Hsiang
(2010).

However, we expect spatial correlation to be present not only in the covariates, but
also in conflict itself. Allowing for spatial autocorrelation in the dependent variable,
in order to capture direct conflict spillovers, is more problematic than allowing for
spatial correlation in the controls due to an obvious simultaneity problem. Part of
the observed spatial correlation in conflict location is to be attributed to the fact that
conflict determinants are spatially correlated themselves; part of it, on the other hand,
is to be attributed to direct contagion effects. Disentangling these two effects is in
general difficult, as it is a version of the well-known reflection problem (Manski, 1993).
Models allowing for spatial dependence in the dependent variable are known as spatial
autoregressive models. They have been mostly developed for cross-sectional models,
and have only recently been extended to panel data (LeSage & Pace, 2009; Elhorst,
2010 among others). These models are estimated with maximum likelihood or GMM
techniques and tend to be computationally intensive.

A further complication arises in our context, since in addition to spatial autocorre-
lation we expect the process of conflict to be autocorrelated in time as well. To fully
incorporate both sources of autocorrelation we estimate Model III:

ANY EVENT,;; = $ANY EVENT.;, 1 + pW - ANY EVENT + (3)

2 2
a+ > BipCepi+ Y BopGS_ Copp+ 06X+ pit
k=0 k=0



2 2
+> 0uW - Crp+ > W -GS _Copg + AW - X + W - p
k=0 k=0

+7¢ + Ecyit-

This is a dynamic, spatially autoregressive Durbin model (Elhorst, 2010) in which
we let conflict in one cell depend on lagged conflict in the cell itself, on contempora-
neous conflict in the neighboring cells, on covariates in the cell itself and on covariates
in the neighboring cells. To our knowledge, this is the first time a spatio-temporal
autoregressive model is applied in the empirical conflict literature.

An obvious identification challenge is posed by the endogeneity of the first two re-
gressors, which requires these models to be estimated either by GMM or maximum
likelihood. We use the routines developed by Hughes (2012), which are based on quasi-
maximum likelihood techniques described in Elhorst (2009) and Parent and LeSage
(2009). In particular, we fit a random effects model estimated applying the full maxi-
mum likelihood method described in Parent and Le Sage (2009), which treats the value
of the dependent variable for the initial time period as exogenous and uses the data
for t=2...T in the estimation (see appendix note 1 for details). Standard errors are
clustered by cell.

Note that the impact of a covariate X in a given cell on the independent variable Y
in that same cell is not entirely captured by the 8 parameter estimates in equation (3):
there is also an additional feedback effect due to the fact that each X affects through
A the Y'’s of neighboring cells too, which in turn affect the Y of the cell itself through
the spatially autoregressive term. The impact as estimated by the coefficient plus this
feedback effect compose what is known as the "direct effect". On the other hand,
indirect effects estimates measure the impact of changing an independent variable in a
particular unit on the dependent variable of all other units (LeSage and Pace, 2009).
Total effects are the sum of direct and indirect effects. Both these effects can be
computed rearranging the equation for Model III (see appendix note 2 for details). We
report direct and total effects in all of our main specifications.

The explicit inclusion of spatially and temporally autoregressive terms represents
an innovation of our paper in the empirical literature on conflict, and one which is
particularly crucial when dealing with highly disaggregated data. Neglecting spatial
patterns has the potential of introducing a serious bias in one’s estimates. A detailed
review of the problems posed by spatial dependence and the possible approaches to
solve them is provided by Franzese and Hays (2004, 2006). One possibility is to simply
ignore the explicit spatial autoregressive component and estimate the model via plain,
non-spatial OLS. This leads to omitted variable bias: the impact of location-specific
factors tends to be overestimated as interdependency effects are neglected. Thus, if



we limited our analysis to model I, we might worry that the local impact of climate is
driven simply by the fact that conflict is clustered in space and so are climate shocks.
A possibility is to explicitly include the spatial autoregressive component and estimate
the model via OLS: estimates will suffer simultaneity bias, as the spatial lag will be
endogenous. The analyses will be biased in the opposite direction: in the typical case
of positive interdependence and positive covariance of spatial lag and exogenous regres-
sors, one would overestimate the interdependence effects and underestimate contextual
(cell-specific) effects. This discussion suggests that inference from studies which do
not address spatial dependence at all should be taken with caution, especially when
considering data at higher geographic resolutions.

Since our focus is on within-country variation in the incidence of conflict, our spec-
ification of choice includes country fixed effects?, so as to account for long-run aspects
of the political, economic or social structure of the states in our sample, as well as
for state-level geographic features (e.g. country size). According to Besley and Pers-
son (2008) “this gets around one of the key worries in the literature, namely that it
is unobserved characteristics of institutions, culture and economic structure that are
primarily responsible for civil war” and ensures that estimation results are not driven
by unmeasured features of states. Through the inclusion of year fixed effects we control
for global trends in conflict incidence as well as climate.

As a preliminary step to our panel analysis, we collapse our cell-year panel to
create a time-invariant measure of conflict prevalence in a given cell. Our aim is that
of investigating cross-sectional relationships with various local terrain characteristics.
Our dependent variable capturing average conflict incidence over time is the fraction
of years in the sample in which the cell has experienced at least one conflict event.
The aim of the cross-sectional analysis is to highlight geographic correlates of conflict
exploiting the high spatial resolution of the dataset to detect these patterns at the
appropriate scale. Again, we estimate three models:

ANY EVENT.; = o+ 6Xe+ p; + e (4)

ANY EVENT . ; = a+ 00X+ AW - X +W - p+e.; (5)
which are estimated by OLS with Conley errors, and

ANY EVENT.; =a+ oW - ANY EVENT 40X+ \W - X +W - u+e.;  (6)

estimated by maximum likelihood with errors clustered by cell.

3For the purposes of defining country fixed effects, each cell in the dataset is uniquely assigned to a
country. Cells shared among more than one country are assigned to the country which has the largest
share of the cell’s territory; a "shared" dummy for those cells is also included among the controls.
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3 Data

3.1 Sources and dataset construction

We bring together high-frequency, georeferenced data from a variety of sources and con-
struct a dataset which covers 36 African countries over the period 1960-2006, including
information on individual conflict episodes and on a large number of geo-climatic char-
acteristics. In particular, we collect detailed data on agricultural land cover, ethnic
groups distribution, terrain characteristics and the location of mineral resources, and
match it with data on crop calendars as well as climate indicators like precipitation
and temperature. The structure of the dataset is that of a raster grid: the cross-
sectional units of observations are subnational “cells” of 1 degree of latitude x 1 degree
of longitude, whose sides are placed in correspondence of integer values of latitude and
longitude.

In our panel analysis we focus on a smaller, balanced panel of 33 countries® over
the period 1997-2006. The reason is manifold: first, this panel includes only the more
recent and presumably more accurate conflict events coded in ACLED - see below.
Second, this sample does not include civil conflicts related to independence from colonial
powers, which are much less likely to be driven by local economic shocks. Finally, and
most importantly, this is the largest balanced panel possible with our data. Spatial
econometrics techniques have been developed for balanced panels only® (Elhorst, 2009;
Hughes, 2012). A map of the cells included in the balanced panel is provided in the
appendix (figure A1l). Appendix table A1l shows that our benchmark model I and model
II specifications yield similar results in the full sample versus the balanced panel, thus
limiting the concern of selection.

Conflict events

Data on civil conflict episodes over the period 1960-2010 are drawn from the PRIO/Uppsala
Armed Conflict Location and Event (ACLED) dataset in its fall 2010 version. We com-
bine the first version of ACLED released in 2008, which covered 8 Central African
countries (Angola, Burundi, Congo, DRC, Liberia, Rwanda, Sierra Leone and Uganda)
over the period 1960-2006, with the new version (released in fall 2010) which covers
almost the whole continent over the period 1997-2010.

This is the most recent and detailed conflict dataset developed by PRIO/Uppsala.
It codes exact locations, in terms of latitude and longitude, dates, and additional

4These countries are: Algeria, Angola, Benin, Burkina Faso, Cameroon, Central African Republic,
Chad, Congo, Cote d’Ivoire, Rep. Dem. of the Congo, Equitorial Guinea, Ethiopia, Gabon, Ghana,
Guinea, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria,
Rwanda, Senegal, Sierra Leone, Sudan, Tanzania, Togo, Zambia, Zimbabwe.

®The main conceptual difficulty is that with unbalanced panels the spatial weighting matrix would
no longer be time invariant, and there would be a degrees of freedom problem.
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characteristics of a wide range of conflict-related events in states affected by civil war.
Civil conflict episodes are defined broadly, to include not only battles with more than
25 casualties (the standard PRIO threshold) but all kinds of activity involving rebels,
such as recruitment or the establishment of headquarters.

In most of our analysis we use a broad indicator of conflict incidence, that is, a
dummy equal to one if at least one conflict event of any type occurred in a given cell
in a given year (ANY EVENT). We also consider a breakdown of conflict events into
different types, i.e. battles, violence against civilians, riots and rebel recruitment, to
test if our explanatory variables have a differential impact on these different outcomes.

Note that not all of the cells within the African grid correspond to countries which
are coded in the ACLED dataset; many cells do not even correspond to land, but to
the ocean. The criterion for including a cell in our dataset is the following: we include
only those cells which contain a portion of territory of a country ever included in the
ACLED dataset, i.e. included either in the “old ACLED” or in the “new ACLED?”.

Crop cover data

Data on the geographical distribution of agricultural crops is drawn from the M3-
Crops Data by Monfreda et al. (2008), a detailed raster dataset at the 5 arc minutes x
5 arc minutes resolution (about 9.2 km by 9.2 km at the equator) including 137 crops.
For each 57x5” cell in the raster and each of the 137 crops included, Monfreda et al.
report harvested area in hectars. We aggregate the harvested area variable at the lower
resolution of our dataset, i.e. 1 degree x 1 degree, and we employ it to rank the crops
cultivated in each cell. We identify the main crop for each cell of our dataset as the crop
with the largest harvested area in the cell; we thus obtain 30 different “main crops”
in our full sample. In a similar way, we identify the second and third most cultivated
crop.

Natural resources

In an effort to collect georeferenced data on as many natural resources as possible,
data on the location of mineral resources are drawn from a combination of the Min-
eral Resource Data System (MRDS) prepared by the United States Geological Survey
(USGS) and of the PRIO/Uppsala datasets Gemdata, Petrodata and Diadata. We
have identified 85 types of mineral commodities present in the countries of our dataset,
including precious metals, industrial metals, oil and gems.®

Specifically, the list includes: aluminum, amber, aquamarine, asbestos, barium, barite, bentonite,
beryl, beryllium, bismuth, bromine, calcium, chromium, clay, cobalt, coltan, copper, diamond, di-
atomite, emerald, feldspar, fluorine, and, fluorite, fuller’s, earth, garnet, garnet, gold, goshenite,
graphite, halite, heliodor, iridium, iron, jadeite, lapis-lazu, lead, lithium, magnesite, manganese, mar-
ble, metal, mica, moganite, molybdenum, nephrite, nickel, oil, opal, osmium, palladium, pearl, periodit,
PGE, phosphates, platinum, potassium, quartz, REE, rhodium, ruby, ruthenium, sapphire, silica, sil-
ver, sodium, spinel, stone, strontium, sulfur, talc, tantalum, thorium, tin, titanium, topaz, tourmaline,
tungsten, uranium, vanadium, vermiculite, zinc, zirconium.
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PRIO natural resources datasets were compiled through an intensive literature
search of academic databases and journals, national geological survey reports and in-
dustry databases and reports, and as a result they tend to be more comprehensive
and reliable than USGS. However, although likely to underreport mineral occurrences,
USGS data are the only comprehensive, georeferenced data source for mineral com-
modities available to the general public.

In the present analysis we employ a coarse indicator for the presence of any mineral
in the cell. In ongoing work we are exploring the differential impact of gemstones, oil
and other types of minerals, as well as the time-varying impact of these resources in
relation to changes in their prices.

Ethnic groups

Data on ethnic groups are drawn from the new University of Zurich “Geo-referencing
of Ethnic Groups” (GREG) dataset. The latter relies on maps and data drawn from
the classical Soviet Atlas Narodov Mira and employs geographic information systems
to represent group territories as polygons. We used the maps available in the GREG
data and combined them with our raster grid to measure the extent of ethnic diversity
in each cell. As a proxy for ethnic grievances, we compute a cell-level Ethno-Linguistic
Fractionalization (ELF) index, based on the shares of inhabited territory attributed to
different ethnic groups in each cell.

Infrastructure and geography

Data on the location of roads are drawn from the Global GIS Atlas Developed by
the U.S. Geological Survey, a digital atlas of the world at a nominal scale of 1:1 million.
These data have no time variation and report only the roads known in year 2000. To
mitigate measurement error and selection concerns, we use as a proxy for road density
a dummy for the presence in the cell of at least one road of primary use.

The remaining cross-sectional geographic information are coded from the Yale G-
FEcon Gridded Output dataset, from which our dataset inherits the "grid" structure
and the 1 degree by 1 degree resolution.

To investigate at the disaggregated scale the relationship between mountainous ter-
rain and conflict, wee include two different measures: one is the average elevation in
the cell and one is the standard deviation of elevation, denoted as "roughness"; both
are measured in meters. In the conflict literature terrain ruggedness has received con-
siderable attention, starting from Fearon and Laitin (2003); their proxy for elevation
is the share of "mountainous" terrain over a country’s surface. This is a poor measure
for various reasons: first, it is a measure of elevation, and not of slope: as a result, ac-
cording to this measure, a plateau would count as "rugged" terrain due to its elevation,
even though it does not display characteristics favorable to rebel warfare. Secondly,
and perhaps most importantly, being expressed as a proportion of the country’s terri-
tory, it is arguably measured at the wrong scale: unless the rebels indeed operate on
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the mountainous share of the country, the magnitude of this share should not matter.
Our measure should be an improvement on both grounds.

We also include the distance from the closest navigable river - measured in km from
the cell’s midpoint - to capture the strategic importance of the location.

Climate data

Our main climate indicator is the Standardized Precipitation-Evapotranspiration
Index (SPEI), a recently developed multiscalar drought index (Vicente-Serrano et al.,
2010). This is a departure from most conflict literature, which so far has focused on
precipitation as the main climate indicator. One of the concerns with precipitation as
such is that it might not be an accurate measure of climate shocks impacting agriculture,
since the impact of rainfall on the growing cycle of a plant depends also on the extent
to which water can be retained by the soil. This in turn depends on a variety of
factors: the characteristics of the soil itself, the slope, the extent to which sunshine
induces evaporation, wind exposure. This information is incorporated in Potential
Evapotranspiration (PET), which is defined as the amount of water that could be
evaporated and transpired if there were sufficient water available. A way to take into
account the different soil’s ability to retain rainfall moisture is to consider a measure
of precipitation corrected by PET. The Standardized Precipitation-Evapotranspiration
Index (SPEI) considers the joint effects of precipitation, PET and temperature, thus
representing an improved alternative to the widely used Palmer Draught Index. SPEI
is available at a monthly frequency and at a spatial resolution of 0.5 degrees x 0.5
degrees, providing temporal coverage for the period 1901-2006. SPEI will be our main
explanatory variable of interest for what concerns climate, because it encompasses
all the above mentioned features of climate and of the terrain which are relevant for
agricultural production.

The SPEI index is expressed in units of standard deviation from the average based
on the available period (1901-2006). The data is fitted to a normal distribution and
normalized to a flexible multiple time scale such as 1, 4-,6-,12-,24- 48- months etc. A
short - say 4 months - time scale reflects short- and medium-term moisture conditions
and thus provides a seasonal estimation of precipitation as it is relevant for agriculture.
For this reason we use SPEI at a 4 months time scale.”

We also consider precipitation and temperature individually. We draw monthly
precipitation data at a resolution of 1 degree by 1 degree for years 1960-2007 from
the Global Precipitation Climatology Project (GPCP). We employ the World Climate
Research Programme Global Climate Observing System GPCP Total Precipitation
dataset, at the resolution of our grid, 1 degree x 1 degree. The dataset is available
through the International Research Institute for Climate and Society at Columbia Uni-
versity.

TOur results are robust to different time scales too - available upon request.
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Temperature data are drawn from the CRU TS3.0 dataset prepared by the Climatic
Research Unit at the University of East Anglia. CRU TS3.0 is a high-resolution gridded
dataset reporting monthly temperatures at a resolution of 0.5x0.5 for the period 1901-
2006. In order to capture the relevance of the most extreme temperature values (see
e.g. Burgess et al. 2011), we construct a “temperature deviation” variable as follows:
for each cell we compute the historic average over the sample 1960-2006 of the monthly
daily mean temperature; then for each month we take the absolute deviation of the
monthly daily mean temperature from this historic average; finally we average this
monthly measure over the year.

Crop calendars and crop-specific climate shocks

A key feature of our analysis is that we do not confine our measurement of climate
indicators to aggregates over the year, but we try to identify periods during the year
during which climatic conditions impact agricultural production the most. In particu-
lar, we construct specific indicators for climatic conditions during the growing season,
which is when crops are most sensitive to unfavorable conditions. To retrieve the grow-
ing season of the first three crops (ranked by harvested area) cultivated in each cell we
rely on crop calendars drawn from a variety of sources.

As a primary source we use the Global Monthly Irrigated and Rainfed Crop Areas
around the year 2000 (MIRCA 2000), prepared by the Physical Geography Department
of the Goethe Universitit Frankfurt am Main. This is a dataset of monthly growing
seasons of 26 irrigated and rainfed crops at different latitudes and longitudes, with a
spatial resolution of 5 arc-minutes by 5 arc-minutes. It is our preferred source given
that it disaggregates by irrigated and rainfed crops - which we focus on - , and given
its high spatial resolution.

For the crops and cells not covered by MIRCA, we turn to two complementary
sources, which both report crop calendars at the country level. The first are those
generated with the FAO Food security and Early warning Network for Information
eXchange Workstation (FENIX) Crop Calendar tool. The FENIX tool indicates for
various crops and countries the planting and harvesting season. We define the growing
season as the months comprised between planting and harvesting. Our second source
are the FAO Seeds and Plant Genetic Resources Crop Calendars.

We construct measures of crop-specific climate shocks by matching our monthly
climate data with the calendars of the main crops cultivated in each cell, thus creating
cell-specific measures of “relevant” climatic conditions.

Our benchmark indicator of climate shock, denoted as SPEI Shock Growing Season,
captures low SPEI episodes occurring during the growing season of the main crop of
a given cell. It is defined at the cell-year level as follows: in a given year, consider
the growing season months of the main crop; take the number of consecutive growing
season months in which SPEI was below its mean by more than one standard deviation;
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express this measure as a fraction of the number of growing season months.® The
value of SPEI Shock Growing Season thus ranges between 0 and 1, with 0 denoting a
“good” year in which never during the growing season of the main crop SPEI assumed
abnormally low values, and 1 denoting a “bad” year in which the entire growing season
witnessed abnormally low values of SPEI. We also consider a more extreme version of
this measure in which the relevant spells are ones in which SPEI is below its mean by
2 standard deviations.

For different climate indicators - rainfall, SPEI and temperature absolute deviation
- we also define "Growing Season-adjusted indicators" constructed as follows: we com-
pute monthly interactions between a “growing season” dummy and the monthly climate
indicator, and we average these monthly interactions over the year. This amounts to
computing a weighted average of monthly rainfall, SPEI or temperature absolute devi-
ation assigning a weight 0 to months outside the growing season of the main crop.

Finally, we construct a version of the above interaction measures using information
not only on the main crop, but on the three first crops present in each cell. The monthly
interactions between the climate indicator and growing season dummies are computed
as above, separately for each of the three first crops present in the cell; then for each
month a weighted average of the three interactions is computed, weighting each crop by
its share of harvested area in the cell; and finally these monthly weighted interactions
are averaged over the year.

3.2 Descriptive statistics

Descriptive statistics are reported in table 1. Panel A reports statistics at the cell level
for the cross-sectional estimates we will perform in table 2; Panel B instead reports
statistics at the cell/year level for the balanced panel used in the rest of the analysis.

[Insert Table 1]

Cell level incidence of conflict is very high: the average cell in our sample has
experienced conflict episodes for 17% of the years in our full panel, which means 1.7
years for countries covered throughout 1960-2006. The territory in our sample appears
to be mineral rich, as about 20% of the cells have at least one mineral deposit, and on
average moderately elevated, with an average elevation of about 300 meters. Ethnic
fractionalization also appears to be high, with an average cell-level ELF index of 23%.
We include among our cross-sectional controls a "shared" dummy for cells which do

®In case there are more than one consecutive spell of low SPEI during the growing season in a given
year, we consider the longest spell. Our results are robust to considering instead the first spell in the
year. Note that SPEI is already expressed as standard deviations form the cell’s historic mean over the
whole available period 1901-2006. For the purposes of defining our variable, we re-normalize it based
on the mean over our sample period, which is slightly lower than the historic mean.
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not belong entirely to one country, but contain a country border; these cells are about
29% of our sample. The dummy "border", on the other hand, identifies cells whose
edge coincides with a state border (about 4% of our sample).

[Insert Figures 1 to 5]

In figures 1-5 we map some of our key variables, to have a sense of the within-country
variation in our covariates. Figure 1 shows cell-level conflict prevalence. Conflict ap-
pears to be clustered in space, and in particular the Rwanda — Burundi conflict cluster
is very apparent. Overall, areas in the tropical belt appear to have experienced more
conflict, which could induce a positive spurious correlation between rainfall levels and
conflict incidence. Figure 2 plots average rainfall levels, which as expected are higher
at the tropics and display a strong spatial correlation. Figure 3 plots the average SPEI
index. Although it also appears to be spatially clustered, it displays much more local
variation than rainfall, suggesting it might be a better explanatory variable. The plot
substantiates the claim that, although correlated with rainfall, SPEI is indeed a richer
indicator. Figure 4 shows the historic mean of the absolute temperature deviation.
Temperature variability appears to be either very high or very low; areas around the
equator appear as the most stable ones temperature wise.” Finally, in figure 5 each
cell is associated to a color corresponding to the main crop cultivated in the cell. The
map shows that a wide range of crops are cultivated in our sample, and there seems
to be considerable variation in their spatial distribution. This suggests that focusing
on the growing season of one crop “representative” of the whole Sub-Saharan African
continent would provide a very limited picture of the true cultivation pattern. Indeed
we can derive significant variation across cells and across months in climate measures
thanks to variation in the growing seasons of different crops.

4 Empirical results: cross section

In this section we explore the empirical determinants of civil conflict starting with
time invariant characteristics such as geography and location of mineral deposits. Our
interest in conducting this type of analysis hinges on two factors. First, despite the
limitations of cross-sectional inference, the high level of spatial resolution of our data
limits the concerns related to state-wide unobservable determinants of conflict and
allow us to pin down the relationship between each factor and the location in which
conflict occurs with more confidence. Second, the data exhibits spatial dependence, in
the sense that geographic features in a given cell will likely not only affect the cell itself

In the Appendix we report, for comparison, figures 2, 3, and 4 constructed considering climate
indicators in a given year (2000) rather than their sample average.
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but also neighboring cells. This is something that we can test and that potentially
yields interesting insights on the interdependence among neighboring locations in the
diffusion of conflict.

[Insert Table 2]

Our cross-sectional evidence is presented in table 2. The table reports OLS coef-
ficients and standard errors in parentheses corrected for spatial dependence following
Conley (1999). The dependent variable captures average conflict incidence and is the
fraction of years during the sample period in which the cell has experienced at least
one conflict event. The mean and standard deviation of this variable are, respectively,
.17 and .25.

In columns 1 and 2 we consider “own” characteristics of the cell (Model I), in
columns 3 and 4 we also include characteristics of the neighboring cells (Model II) and
in columns 5 and 6 (Model III) we estimate a spatial lag model in which we further
include a spatially autoregressive component to capture direct conflict spillovers across
neighbors. Neighbors are defined according to our benchmark weight matrix as cells
whose midpoints lie within 290 km from the midpoint of the own cell. Columns 1, 3
and 5 report the coefficients of a purely cross-sectional regression without area fixed
effects. In columns 2, 4 and 6 we instead include country fixed effects (and their spatial
lags, for columns 4 and 6). The specifications that include country fixed effects are
our preferred ones because our focus is on within-country variation in the incidence of
conflict, and by including country fixed effects we account for time-invariant aspects
of the political, economic or social structure of the states in our sample, as well as for
state-level geographic features, e.g. country size.

Let us consider first own characteristics of the cell. The first set of controls we
include measure geo-administrative characteristics: Shared is a dummy for whether a
cell belongs to more than one country, and Border is a dummy for whether a cell’s
side is tangent to a country border (the two are mutually exclusive). The idea is that
cells which are at the border with other countries may be more likely to experience
conflict. The coefficient for Shared is positive and consistent with this hypothesis in all
specifications, and significant in models II and III. The Border coefficient on the other
hand is statistically indistinguishable from 0. The third control listed in the table,
Area, measures the area of the cell corresponding to land, to account for coastal cells
which correspond mostly to sea. The coefficient of this variable is zero in virtually all
specifications. We next move to geographic characteristics of the terrain. The first,
FElevation, measures the average altitude of the cell (in mt.). Its coefficient is negative
but mostly statistically insignificant. More interesting is the variable Rough, which is
the standard deviation of elevation in the cell, and thus captures the roughness of the
terrain. This variable is strongly and significantly correlated with conflict incidence.
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A one-standard deviation increase in roughness increases conflict incidence by .04 in
column 6 - our preferred specification, that is approximately 1/4 of the mean of the
dependent variable. This confirms a relationship which has been previously highlighted
in cross country studies, starting with Fearon and Laitin (2003), and which is usually
attributed to the fact that impervious areas provide safe havens for rebels.

We next consider the variable Distance from river. This is the minimum distance
(in km) of the centroid of the cell from a navigable river. The negative coefficient of
this variable in columns 1 and 2 suggests that areas further away from navigable rivers
tend to experience less conflict. This could depend on the fact that these areas are
more controlled by local governments or simply less prosperous in the long run, so that
they are less appealing for predation purposes. This is also consistent with findings by
Gleditsch et al.(2006), who note that the presence of a shared river basin is associated
to higher conflict risk. Notice however that this variable is no longer significant when
we include neighbors’ characteristics.

Transport infrastructure plays a significant role, as confirmed by the coefficient of
the variable Road, which is a dummy equal to one if the cell contains at least one road
of “primary use” (as defined by the Global GIS Atlas). The coefficient of this variable
is around .10 across the various specifications, remaining highly significant in all cases.
The magnitude of the effect suggests that the presence of a road in the cell increases
the fraction of years with conflict by about one fourth of a standard deviation. One
possible interpretation is that areas served by main roads are easier to reach for the
purpose of attacks. Another interpretation is again that the long terms benefits of
capturing those areas are higher compared to areas not covered by main roads.

We next turn to some of the channels more widely explored in the cross country
literature. The first is linked to the literature on ethnic fractionalization. We compute
an equivalent of the ELF index in which we use, rather than population shares of
different ethnic groups, the relative territory shares occupied by each group as reported
by the GREG dataset, after having normalized these shares by the total inhabited land
in each cell. This is a proxy for the degree of ethnic diversity in the cell, which may
be associated with “grievance” motives for conflict. The average cell in our sample has
2 ethnic groups, with an ELF of 0.23. The coefficient of this variable is positive and
significant at the 10 percent level in the first two columns, but this effect is no longer
distinguishable from 0 once spatial covariates are included.

The second channel is linked to the natural resource curse. The variable Minerals
is a dummy equal to one if the cell contains at least one mineral deposit (20 percent of
the cells in our sample have at least one such deposit). Ceteris paribus, the presence
of minerals in the cell is associated with a significantly higher incidence of conflict, in
the order of about 30% of the mean of the dependent variable. This coefficient is very
stable in terms of size and significance across specifications. The effect of this variable
can be explained in two (non-mutually exclusive) ways. On the one hand, there can be
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“oreed” motives, as competing forces may try to capture territory that promises high
revenue from mineral extraction. On the other hand, control over mineral resources
yields a flow of cash revenue that rebels and government can use to finance their military
activities.'?

Let us now turn to the neighbor’s characteristics, represented by the spatial lags
of the covariates considered above. Most neighbors’ characteristics are statistically
insignificant, suggesting, in general, that the impact of the geographic characteristics
discussed above is a strictly local one. However the impact of neighboring Roads and
Shared cells appears to have the opposite sign compared to their impact in the own cell.
This is probably driven by the fact that these two variables are negatively correlated in
space, so that own road or border presence is negatively correlated with the presence
of a major road or a border in the neighborhood.

Finally, let us consider conflict spillovers. The autoregressive term in columns 5 and
6 appears highly significant and large. To gauge the magnitude of the effects consider
the following. Because we row-standardize the weighting matrix, the regressor W - Y
goes from 0 to 1 when each and every neighboring cell experiences a conflict event.
If the number of neighbors is N, then the effect of conflict in one neighboring cell is
given by the estimated coefficient @ reported in the table multiplied by 1/N. Based
on this, our estimates in column 6 imply that after controlling for own and neighbor’s
characteristics, conflict in all neighboring cells makes it 53 percentage points more likely
to observe conflict in the cell itself. Given that each cell has on average 17 neighbors
according to our benchmark weighting matrix, this amounts to roughly 3 percentage
points higher conflict prevalence for each neighbor in conflict. Note that, however, this
analysis employs a definition of conflict prevalence with no time variation: this should
only be taken as suggestive evidence that conflict spillovers in space are relevant, as
only the panel analysis can provide adequate estimates of both temporal and spatial
spillovers.

It is however interesting to note that the addition of the spatial autoregressive term
does not radically modify the significance or magnitude of the covariates estimated in
the non-autoregressive model. This indicates that there is indeed some spatial correla-
tion in conflict prevalence which is explained by spatial correlation in covariates alone.
A comparison between direct effects and parameter estimates in Model III seems to
suggest that feedback effects - from own cell’s characteristics to neighboring conflict
and back to own conflict - are limited.

10 According to the theoretical literature there is a third, indirect channel through which mineral-
wealth can fuel conflict, i.e., by increasing rent-seeking and corruption phenomena, which weaken states
and their ability to effectively govern and maintain security. This third effect, though, is not captured
at the scale of our study, as it is mediated through a country’s institutions (which in our study are
partly controlled for by the inclusion of country dummies).
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Overall, our cross-sectional analysis suggests that geography characteristics have a
strictly local effect, especially terrain ruggedness and presence of mineral endowments,
and that cross-cells conflict spillovers are potentially very relevant.

5 Empirical results: panel

We next turn to the analysis of climatic factors as determinants of conflict. For this
purpose we exploit the rich temporal dimension of the data and conduct the analysis at
the cell/year level. Our dependent variable becomes ANY EVENT,, a dummy equal to
one if the cell experienced at least one conflict event during year t. We consider three
models: a non-spatial, static model (Model I), in which we include climate shocks in
the own cell only; a non-autoregressive, spatial static model (Model II), in which we
consider climate shocks both in the own and neighboring cells; and a fully spatial,
dynamic Durbin model (Model III) in which we also include two autoregressive terms:
a spatial lag of the dependent variable, to capture contemporaneous conflict spillovers
over space, and a temporal lag, capturing temporal conflict persistence in the own cell.
The first two models are estimated by OLS, with standard errors corrected for spatial
and temporal correlation, while the third model is estimated by MLE. All regressions
include country and year fixed effects, plus the controls listed in table 2; models II and
IIT include the spatial lags of controls and country fixed effects; these coefficients are
not reported for ease of exposition.

We will first present our benchmark specification, in which we highlight the rela-
tionship between cell specific weather shocks and conflict, accounting for spatial depen-
dence. We then consider two critical issues arising in spatial econometrics: the choice
of the weighting matrix and the choice of scale. We then turn to alternative climate
indicators, and finally we attempt an analysis disaggregated by type of conflict event.

[Insert Table 3]

Table 3 contains our main results on the effects of climate on civil conflict. The
regressor of interest is SPEI Shock Growing Season, defined as the fraction of the
main crop’s growing season during which SPEI was below its cell-level mean by one
standard deviation. As explained in section 4, the SPEI index considers the joint
effects of precipitation, potential evapotranspiration and temperature, higher values of
this index corresponding to higher levels of “effective”rainfall. In our specifications we
also control for standalone SPEI, which in this specification captures the impact of
SPEI in months outside the growing season of the main crop. The first and second
temporal lag are included for all climate indicators.

In column I SPEI Shock Growing Season displays a strong, highly significant cor-
relation with conflict, both contemporaneous and in its two temporal lags, indicating
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that spells of low SPEI during the growing season are associated to more conflict.
The impact of the standalone SPEI variable is also positive and significant. This is
likely to be driven by the fact that high levels of SPEI outside the growing season are
not beneficial for crops, which for example might rot. The specification in column 1,
however, fails to take into account spatial and temporal correlation; this could create
omitted variable bias. We then turn to model II (column 2), which addresses the issue
of spatial correlation in the covariates by including spatial lags of all the independent
variables. In this specification, the only own cell climate indicator which remains sig-
nificant is SPEI Shock Growing Season, in its first and second temporal lag. This is
consistent with the idea that climatic conditions during the growing season are those
which matter the most for agriculture. Conflict responds with a one and two year lag,
which is consistent with the kind of temporal persistence highlighted in cross country
studies. Contemporaneous SPEI Shock Growing Season in the neighborhood is also
significantly associated with more conflict.

Although Model II controls for climatic conditions in the surrounding cells, it might
still suffer omitted variable bias from not including autoregressive components of the
dependent variable. We address this issue in column 3 (Model III). First note that,
as expected, including autoregressive components tends to reduce the magnitude and
significance of the coefficients estimated in Model II. However, the coefficients of the
first and second lag of SPEI Shock Growing Season in the own cell retain significance.
A spell of SPEI below one standard deviation throughout the whole growing season is
associated to a 6 percentage point increase in conflict likelihood in the subsequent year,
and a 4 percentage point one in the year following that; this is roughly 1/3 and 1/4 of
the dependent variable’s mean. Put in other terms, a one standard deviation increase
in our measure of "relevant rainfall" induces an increase in conflict likelihood of 5 and
3 percentage points in the first and second subsequent years - a sizeable effect.

Direct conflict spillovers, both in time and space, appear to be very significant.
Conflict in the own cell is associated to a 31 percentage point increase in the probabil-
ity of experiencing conflict the following year. Contemporaneous conflict in all of the
neighboring cells induces a 45 percentage point increase in the probability of experi-
encing conflict in the cell itself. Given that according to our definition of contiguity
matrix the average cell in our sample has 17 neighbors, this means that conflict in
each of these neighbors induces a 2.5 percentage point increase in the probability of
conflict in the average cell itself. Overall it seems that temporal persistence within
cell is more relevant than contemporaneous spatial spillovers across cells. We will be
able to address this more comprehensively in the next section, in which we explore the
sensitivity of these estimates to different choices of spatial weighting matrix.

[Insert Table 4]

Just as in time series the structure of temporal dependence is assumed by the
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researcher and cannot be estimated, so is the structure of spatial dependence - en-
compassed by the spatial weighting matrix - in spatial econometrics. Plumper and
Neumayer (2010) warn that some datasets are very sensitive to functional form specifi-
cation of the weighting matrix, and recommend that a sensitivity analysis be included
in empirical work using spatial econometrics. The most popular choices for spatial
weighting matrix are binary contiguity matrices, as our benchmark, or matrices based
on the inverse geographic distance, typically squared. Table 4 reproposes the speci-
fication of column 3 in table 3, estimated using different kinds of spatial matrix. In
columns 1, 2 and 3 we estimate our model using binary contiguity matrices with differ-
ent distance cutoffs: 190, 450 and 600 km. A 190 km distance cutoff implies that we
are potentially considering as a cell’s neighbors the 8 adjacent cells. Increasing the dis-
tance cutoff to 290 km we add another circle of adjacent cells, and increasing it further
to 450 we add yet another circle. Finally, with a cutoff of 600 km, we are considering
a large, approximately circular area around the reference cell. With distance cutoffs
of 190, 450 and 600 km the average number of neighbors for each cell is respectively
7, 41 and 74. In columns 4, 5 and 6 we turn to inverse quadratic distance matrices,
again specifying different cutoffs past which the spatial dependence is assumed to be
0. The main difference with respect to binary weight matrices is that observations
lying further away are weighted less than observations closer to the reference cell. We
include distance cutoffs of 290, 450 and 600 km.!! We have also repeated the analysis
with linear distance based matrices, and found that results are very similar to those
obtained with squared distance (results available upon request). All of our matrices are
row standardized.

It is interesting to note that using different weighting matrices the magnitude and
significance of our covariates of interest is minimally altered. In particular the co-
efficient of SPEI Growing Season Main Crop in its first temporal lag appears to be
remarkably stable across specifications, and so does the temporal autoregressive co-
efficient. This is an important robustness check for our main result. On the other
hand, as expected, the choice of weighting matrix does affect the coefficients of the
spatially lagged variables. In particular, the spatial autoregressive coefficient is most
significantly affected by changes in the definition of neighborhoods, increasing in mag-
nitude as we increase the distance cutoff. This is partly driven by a mechanical effect:
as we increase the size of neighborhoods, we increase the number of neighbors. Recall
that the regressor W - Y goes from 0 to 1 only when all neighboring cells experience
a conflict event. For a cell with IV neighbors, the effect of conflict in one neighboring
cell is given by the estimated coefficient on W - Y reported in the table multiplied by
1/N.

"¥We do not include the 190 km cutoff since at this cutoff all neighboring cells are roughly at the
same distance from the reference cell.
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Consider the coefficients of the spatially autoregressive term in the case of binary
weight matrices, i.e. columns 1 to 3. If we normalize them by the average number of
neighbors under each weighting scheme, we obtain respectively 0.05 (190 km), 0.01 (450
km) and 0.008 (600 km). This reveals that as we broaden the definition of neighbors,
the contribution of each individual neighbor becomes smaller. This is intuitive: as
we add neighbors further away from the cell, and presumably with a smaller absolute
impact on conflict in the reference cell, the impact of the average neighbor is driven
down. The calculation of the effect per neighbor in the case of inverse distance based
weighting matrices is less straightforward but the same intuition applies.

Overall this analysis seems to suggest that own effects are considerably stable as we
change the definition of weighting matrix. Since our focus is on the local dimensions of
conflict, we choose as our benchmark matrix one with a reasonably restrictive definition
of neighbors. Moreover, we prefer the simplicity of a binary weighting matrix, which
makes the coefficient of spatial lags easier to interpret.

Another critical specification issue arising when dealing with spatial data is the
so-called Modifiable Aeral Unit Problem (MAUP), a well-know phenomenon in spatial
analysis. It is defined as "a problem arising from the imposition of artificial units of
spatial reporting on continuous geographical phenomenon resulting in the generation
of artificial spatial patterns" (Heywood et al., 1998). The MAUP consists of two
components: one is a scale problem, which is the variation in numerical results occurring
due to number of zones used in analysis, and hence the possibility of obtaining different
results for different resolutions; the other is an aggregation problem or zonation effect,
which refers to which zoning scheme is used at a given level of aggregation. Although
not eliminable, this problem is mitigated when the units of observations are equal-sized
cells rather than administrative units of different sizes: at that point, the zonation
effect will be minimal, even though a scale effect nevertheless exists. Despite the lack
of general solutions, a simple strategy to deal with the problem, is to undertake the
analysis at multiple scales or zones. In table 5 we repeat our analysis for larger scales
of aggregation: 2 by 2 and 3 by 3 degrees cells.

[Insert Table 5]

First we construct "macro-cells" of 2 by 2 degrees composed by aggregating 4 of our
1 by 1 original cells. This new, lower-resolution grid can be constructed in 4 different
ways depending on where the "macro-cells" are centered. We run our benchmark table
3 specification in each of these 4 possible grids. We use a binary contiguity matrix with
a 390 km cutoff, so that each macro-cell’s neighborhood is formed by the 8 adjacent
macro-cells. In table 5a we report the average coefficients and average standard errors
obtained from running our Model I and Model ITI benchmark in the four different grids.
We also report the standard deviation of each estimated coefficient across the four grids,
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to have a sense of how sensitive the results are to the centering of the macro-cells. We
repeat this kind of analysis for an even lower resolution, by constructing a panel of 3
by 3 degrees cells. In this case the new grid can be centered in 9 possible ways. Table
5b reports the results of the analysis in those 9 panels. The binary contiguity matrix
in this case has a cutoff of 490 km, so that each macro-cell’s neighborhood is formed
by the 8 adjacent macro-cells.

The analysis highlights the following patters. First, the centering of the grid does
not seem to affect the results in a very significant way, as shown by the low standard
deviation of the estimated coefficients across grids. This indicates that the zonation
effect is limited when using the "grid" approach. This is an important robustness check
which we can conduct at these lower resolutions and not with our original 1 by 1 cells
- in that case the grid cannot be re-centered due to constraints in data availability.
Secondly, changing the resolution does not affect the sign of the relevant parameter
estimates, but affects the magnitude: the coefficients of own cell covariates appear to
increase in magnitude as the resolution decreases. This effect is documented in the
MAUP literature (Fotheringham and Wong, 1991; Amrhein, 1995): the correlation
coefficient for variables of absolute measurement typically increases when areal units
are aggregated contiguously. The reason is that the aggregation process involves a
smoothing effect, by averaging the relevant variables, so that the variation of a variable
tends to decrease as aggregation increases. When the variances of X and Y variables
decrease, the correlation coefficient will increase if the covariance between X and Y is
relatively stable. Finally, the statistical significance of the relevant covariates tends to
decrease at lower resolutions - this is especially apparent in Model III estimates. This
is likely driven by lack of power, as the number of observations decreases.

We next turn to other potential indicators of climate conditions that have been
employed in the cross country literature.

[Insert tables 6a and 6b]

The first is a crude measure of rainfall, measured in logs, and the second is Tem-
perature Absolute Deviation, which is the absolute deviation of the temperature from
the historical mean for the cell. For each of these two climate indicators, we compute a
"Growing Season Indicator" obtained by averaging the monthly values of the variable
only over the growing season of the main crop. Table 6a reports Model I, IT and 111
specifications in which we include both the standalone climate measure and the corre-
sponding growing season indicator for rainfall (cols. 1 to 3) and temperature (cols. 4
to 6).

In column 1 the coefficients on rainfall are actually positive, which runs against
the findings in the cross country literature. While apparently surprising, this result is
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easily understood when considering the pattern of rainfall in figure 2 and the pattern of
conflict in figure 1. Average rainfall is in fact high at the tropics and exhibits relatively
less within country variation compared to SPEI (see, e.g. figure 3). Furthermore,
simply measuring rainfall fails to take into account differences in temperature, soil,
and other conditions that may be crucial in terms of effects of climate on agricultural
production. Virtually all coefficients on rainfall, however, become insignificant once
we account for spatial spillovers in Models IT and IIT (cols. 2 and 3). Turning to
temperature, there is some evidence from column 1 that temperature shocks during
the growing season increase the likelihood of conflict, consistent with Burke et al.
(2009). However this effect appears non significant once we account for spillovers in
Models IT and III (cols. 5 and 6).

This seems to suggest that neither rainfall alone nor temperature alone adequately
capture the local level relationship between conflict and climate. In table 6b we include
the climate indicators above - rainfall and temperature - together with our benchmark
SPEI variables. Recall that SPEI is based on precipitation and temperature but also on
potential evotranspiration, which in turn depends on things like latitude, month of the
year, number of sun hours, etc. Table 6b shows that even controlling for temperature
and rainfall, both standalone and in the growing season, in the own as well as in
the neighboring cells, the own cell coefficient of SPEI Shock Growing Season retains
significance, thus confirming that SPEI indeed captures the most agriculturally relevant
components of climatic phenomena.

In appendix table A2 we show some alternative SPEI based indicators. In columns
1, 2 and 3 we show that standalone SPEI is not a significant conflict predictor once
spatial lags are included, suggesting that indeed what matter most are climatic condi-
tions during the relevant growing season. In columns 4, 5 and 6 we show an alternative
indicator of SPEI over the growing season, computed by averaging monthly SPEI over
growing season months for the main crop. Unlike our benchmark indicator, this mea-
sure is not confined to severe SPEI negative shocks. Our estimation results indicate
that low SPEI over the growing season is associated to more conflict, but the predic-
tive power of this indicator is inferior to our benchmark one. In columns 7, 8 and 9 we
propose a SPEI-based growing season indicator which incorporates the growing season
of the three main crops in the cell, each weighted by its relative harvested area. The
estimation results indicate that low SPEI during the growing season of the three main
crops is associated to higher conflict, both in the own and in neighboring cells, but the
estimates are very noisy, possibly due to the lower number of observations available
for this specification. Finally in columns 10, 11 and 12 we consider a version of our
benchmark indicator in which we consider more extreme SPEI shocks occurring during
the main crop’s growing season. We compute the fraction of the main crop’s growing
season during which SPEI was below its mean by 2 standard deviations. Although the
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effect is large in magnitude - roughly twice the effect of our benchmark indicator - and
significant in model I, these results do not survive the inclusion of spatial lags.

6 Different types of conflict events

We now turn to a disaggregation of conflict events into four different types, based on
the ACLED classification. The dummy BATTLE is equal to 1 when a cell/year has
experienced a battle of any kind, either one where control of the contested location
does not change, or one where the government or the rebels take control of a location
previously occupied by the other contestant. The dummy CIVILIAN captures violence
against civilians, defined in ACLED as instances where “any armed group attacks
unarmed civilians within a larger conflict”. This is the type of event most closely
related to possible predation motives. A third type of event is riots and protests
(dummy RIOT), i.e. instances in which “a group is involved in a public meeting
against a government institution.” Finally, ACLED also codes rebel activities such
as the establishment of a base or headquarter (which can be non-violent) as well as
recruitment drives and incursions (dummy REBFEL). This is the variable where we
should expect to find effects according to theories that stress rebel recruitment and
the opportunity cost of fighting as an underlying rationale for the link between rainfall
shocks and conflict. Summary statistics for these dependent variables - table 1 - indicate
that these are all rare events individually taken, especially the last class of events. This
limits the power of the specifications we estimate in this section, which yield relstively
noisy estimates.

[Insert Table 7]

In table 7 we estimate a series of cross-sectional regressions (Models I, IT and IIT)
along the lines of what we did in table 2, but the dependent variable is now disag-
gregated according to the type of conflict event: battles in cols. 1-3, violence against
civilians in cols. 4-6, riots in cols. 7-9 and rebel recruitment in cols. 10-12. The
following patterns can be detected.

First, the coefficient of spatial autoregressive term (Model III) is positive and highly
significant for all dependent variables, suggesting that spatial spillovers exist for all
types of events. Second, characteristics such as rough terrain positively correlate with
all types of events. Third, other characteristics impact differentially the different types
of events. One example is the variable Shared, which identifies cells that contain a
country border. This variable has a positive and significant impact on rebel recruitment,
on the occurrence of battles (likely for the control of territory) and to some extent on
violence against civilians, but no impact on riots. The presence of minerals, on the other
hand, affects the variables BATTLE, CIVILIAN and RIOT - as one would expect if
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the goal is to take control of the cell where minerals are located — but not so much
rebel recruitment (at least not significantly in Model 3).

[Insert Table 8, part I and II]

We next turn to the effect of climate shocks on different conflict events using panel
data. In table 8 the coefficients of the autoregressive terms, both in space and time,
appear to be larger for battles and violence against civilians than for riots or rebel
recruitment. Violent episodes thus appear to be more likely to persist in time and to
spill over in space compared to non-violent ones. This is not surprising, since battles and
violence against civilians seem intuitively more likely to propagate by retaliation. The
coefficient on the temporal lag, in particular, is smallest for rebel recruitment, which
indeed we expect to consist of relatively independent episodes. The coefficients on own
climate shocks point in the same direction as the results we obtained for the aggregate
dependent variable, i.e. years with long spells of low SPEI during the growing season
are associated to more battles (column 1), more violence against civilians (column 4),
more riots (column 7) and more rebel recruitment (column 10). However, when we
account for temporal and spatial correlation in the dependent variable by estimating
Model III, the coefficients on the SPFEI Shock variables are noisily estimated in all
specifications, except for rebel recruitment. This could be taken as evidence in favor
of theories on the opportunity cost of rebel recruitment, although caution should be
exerted as the coding of this variable in ACLED is subject to intrinsic limitations (e.g.,
higher difficulty of detecting recruitment activities compared to violent episodes).

7 Conclusions

In this paper we conducted a spatially disaggregated analysis of the empirical determi-
nants of conflict in Africa over the period 1997-2006. We exploited within-year variation
in the timing of weather shocks and in the growing season of different crops, as well as
spatial variation in crop cover, to construct an original measure of shocks that are rel-
evant for agricultural production. We found that negative climate shocks which occur
during the growing season of the main crops cultivated in the cell have a sizeable effect
on conflict incidence. We also used state of the art spatial econometric techniques to
test for the presence of temporal and spatial spillovers in conflict, and we found both
to be sizeable and highly statistically significant. These results indicate that caution
should be exerted when interpreting results of studies which do not incorporate spatial
dynamics at all.

Our findings indicate that conflict risk does not affect all the territory of a state in
the same way: the correlates of civil conflict have a strong local dimension, and the

28



likelihood of conflict likelihood is not constant in time nor in space, even within the
same country. This seems to suggest that policy interventions, be them in the form of
monitoring, prevention or peacekeeping efforts, could be and should be targeted both
in space and time.

Finally, given the increasing availability of high resolution data (e.g., gridded datasets)

and the growing number of research contributions that employ this data to address im-
portant development questions, our study can hopefully provide a number of insights
and methodological indications that are useful for future work.

References

1]

[2]

Alesina, A., S. Michalopoulos and E.Papaioannou (2012) “Ethnic Inequality”,
mimeo.

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Boston, Kluwer,
Academic.

Armhein C 1995 Searching for the elusive aggregation effect: Evidence from sta-
tistical simulations. Environment & Planning A, Jan95, Vol. 27 Issue 1, p105

Barrios, S., L. Bertinelli and E. Strobl (2010), “Trends in Rainfall and Economic
Growth in Africa: A Neglected Cause of the African Growth Tragedy”, The Review
of Economics and Statistics, 92(2), 350-366.

Besley, T. J., and T. Persson (2008) “The Incidence of Civil War: Theory and
Evidence.” NBER, Working Paper 14585

Besley, T. J., and M. Reynal Querol (2012) "The Legacy of Historical Conflicts.
Evidence from Africa", mimeo.

Blattman, C. and Miguel, E. (2010). Civil War, Journal of Economic Literature,
Journal of Economic Literature, 48:1, 3-57

Bruckner, M. and A. Ciccone (2010), “Rain and the Democratic Window of Op-
portunity ”

Buhaug, H. (2010). “Climate Not to Blame for African Civil Wars.” Proceedings
of the National Academy of Sciences of the USA 107 (38): 16477-16482.

Buhaug, H., and J. K.Rgd (2006). “Local Determinants of African Civil Wars,
1970-2001.” Political Geography, 25(3): 315-35.

29



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[21]

[22]

[23]

Burgess, R., O. Deschenes, D. Donaldson and M. Greenstone (2011), “Weather
and Death in India”

Buhaug, H., H.Hegre, and H. Strand (2010). “Sensitivity Analysis of Climate
Variability and Civil War.” Peace Research Institute Oslo Paper. Oslo: Peace
Research Institute.

Buhaug, H. and Gleditsch, K. S. (2008). Contagion or Confusion? Why Conflicts
Cluster in Space, International Studies Quarterly 52(2), pp. 215-233

Buhaug, H., K.R. Gleditsch, H. Holtermann, G. @stby and A.F. Tollefsen (2011),
“It’s the Local Economy, Stupid! Geographic Wealth Dispersion and Conflict
Outbreak Location”

Burke M. B., E. Miguel, S.Satyanath, JA. Dykema JA, and D.B. Lobell (2009).
“Warming Increases the Risk of Civil War in Africa.” Proceedings of the National
Academy of Sciences of the USA 106(37): 20670-20674.

Chassang, S. and G. Padro-i-Miquel (2009), "Economic Shocks and Civil War",
Quarterly Journal of Political Science 4(3): 211-228.

Ciccone, A. (2011), “Estimating the Effect of Transitory Economic Shocks on Civil
Conflict ”, mimeo.

Collier, Paul, and Anke Hoeffler (1998). “On the Economic Causes of Civil War”,
Ozford Economic Papers, 50, 563-573, 1998.

Conley, T. G., (1999). GMM estimation with cross-sectional dependence, Journal
of Econometrics 92(1), pp. 1-45

Dal B, E.and P. Dal B6 (2004), “Workers, Warriors, and Criminals: Social Con-
flict in General Equilibrium.” Brown University Department of Economics Work-
ing Paper 2004-10, forthcoming in the Journal of the European Economic Associ-
ation.

Dell, M. (2010), "The Persisten Effects of Mita Mining in Peru", Econometrica
78(6), 2010: pp. 1863-1903.

Dell, M., B.F. Jones and B.A. Olken (2012), “Temperature Shocks and Economic
Growth: Evidence from the Last Half Century”, American Economic Journal:
Macroeconomics 4 (3), pp. 66-95, July 2012

Deschenes, O., and E. Moretti (2009): “Extreme Weather Events, Mortality and
Migration,” Review of Economics and Statistics, Forthcoming.

30



[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[34]

[35]

[36]

Djankov, S. and M. Reynal-Querol (2008), “Poverty and Civil War: Revisiting the
Evidence ”

Do, Q-T. and L.Iyer (2009), “Geography, Poverty and Conflict in Nepal”, mimeo,
Harvard Business School.

Elhorst, J.P, (2009) ’Spatial panel data models’ in M.M. Fischer & A.Getis (Eds),
Handbook of Applied Spatial Analysis, pp. 377-407.

Elhorst, J. P. (2012), "Dynamic spatial panels: Models, methods and inferences",
Journal of Geographical Systems 14: 5-28

Elhorst, J.P. (forthcoming), "Matlab Software for Spatial Panels", International
Regional Science Review.

Fearon, J. D. and Laitin, D. (2003). Ethnicity, Insurgency, and Civil War, Ameri-
can Political Science Review 97(1), pp. 75-90

Fotheringham, A.S. and Wong, D. 1991 The modifiable areal unit problem in
multivariate statistical analysis. Environment and Planning A 23, 1025-1044.

Gleditsch, N. P., Owen, T., Furlong, K. and Lacina, B. (2006).Conflicts over Shared
Rivers: Resource Wars or Fuzzy Boundaries?, Political Geography 25(4), pp. 361
382

Franzese, R. and Hays, J. (2004). Empirical Modeling Strategies for Spatial In-
terdependence: Omitted-Variable vs. Simultaneity Biases, paper presented at the
21st Summer Meeting of the Society for Political Methodology.

Franzese, R. and Hays, J. (2006). Spatio-Temporal Models for Political-Science
Panel and Time-Series-Cross-Section Data, presented at the 23rd Meeting of the
Society for Political Methodology

Franzese, R. and Hays, J. (2007). Spatial-Econometric Models of Cross-Sectional
Interdependence in Political-Science Panel and Time-Series-Cross-Section Data,
Political Analysis 15(2), pp.140-64

Hendrix, C.S. And S.M. Glaser (2007), “Trends and Triggers: Climate, Climate
Change and Civil Conflict in Sub-Saharan Africa ”

Herschell, I. ad Grossman, H. (1991). A General Equilibrium Model of Insurrec-
tions, American Economic Review 81(49), pp. 912-921

Heywood, 1., S.Cornelius and S. Carver, (1998), Introduction to Geographical
Information Systems. New York: Addison Wesley Longman.

31



[38]

[39]

[40]

[41]

[42]

Hsiang, S.M. (2010), "Temperatures and cyclones strongly associated with eco-
nomic production in the Caribbean and Central America", Proceedings of the
National Academy of Sciences, 107 15367-15372.

Hughes , G. (2012) "Implementing procedures for spatial panel econometrics in
Stata", mimeo.

Jensen, P, .S.Sandholt and K.S.Gleditsch (2009), "Rain, Growth, and Civil War:
The Importance of Location", Defence and Peace Economics 20(5): 359-372.

King, G. and L. Zheng (2001), "Logistic Regression in Rare Events Data." Political
Analysis, 137-163.

Kudamatsu, M., T. Persson and D. Stromberg (2011), “ Weather and Infant Mor-
tality in Africa”, mimeo.

Le Sage, J..P., and R.K. Pace (2009),. Introduction to spatial econometrics. Boca
Raton, US:CRC Press Taylor & Francis Group.

Lujala, P. (2009), "Deadly Combat over Natural Resources: Gems, Petroleum,
Drugs, and the Severity of Armed Civil Conflict", Journal of Conflict Resolution
53(1), pp. 50-71

Manski, C. (2003), "Identification of Endogenous Social Effects: The Reflection
Problem", The Review of Economic Studies, Vol. 60, No. 3.

Maccini, S., and D. Yang. (2009). “Under the Weather: Health, Schooling, and
Socioeconomic Consequences of Early-life Rainfall.” American Economic Review,
99(3): 1006-1026.

Michalopoulos, S., and E.Papaioannou (2011), "The Long-Run Effects of the
Scramble for Africa," CEPR Discussion Papers 8676,

Miguel, E., S. Satyanath, and E. Sergenti (2004), “Economic Shocks and Civil
Conflict: An Instrumental Variables Approach”, Journal of Political Economy,
Vol. 112, pp. 725-753.

Miguel, E., and S. Satyanath (2010) “Understanding Transitory Rainfall Shocks,
Economic Growth and Civil Conflict.” National Bureau of Economic Research
Working Paper 16461, October.

Monfreda, C., N. Ramankutty and J.A. Foleyl (2008), “Farming the planet: Geo-
graphic Distribution of Crop Areas, Yields, Physiological Types, and Net Primary
Production in the Year 2000 ”, Global Biochemical Cycles

32



[51]

[52]

[53]

[54]

[59]

[60]

[61]

Montalvo, J.G., and M. Reynal-Querol (2005). “Ethnic Polarization, Potential
Conflict and Civil War”, American Economic Review, 95, 796-816.

Parent, O. and J.P.Le Sage (2009), Spatial Dynamic Panel Data Models with
Random Effects, mimeo.

Pluember, T., and E. Neumayer (2010), "Model specification in the analysis of
spatial dependence", European Journal of Political Research 49: 418-442.

Portmann, F. T., S. Siebert and P.Doll. (2010), "MIRCA2000 — Global monthly
irrigated and rainfed crop areas around the year 2000: A new high-resolution data
set, for agricultural and hydrological modeling", Global Biogeochemical Cycles, 24,
GB 1011.

Raleigh, C., A.Linke and H.Hegre and J.Karlsen. (2010). Introducing ACLED-
Armed Conflict Location and Event Data. Journal of Peace Research 47(5) 1-10.

Schlenker, W. and D.B. Lobell (2010), “Robust Negative Impacts of Climate
Change on African Agriculture ”, Environ. Res. Lett. 5 (2010)

Schlenker, W., an M. Roberts (2008): “Estimating the Impact of Climate Change
on Crop Yields: The Importance of Nonlinear Temperature Effects,” NBER Work-
ing Paper 13799.

Spolaore, E. and R.Wacziarg. “War and Relatedness”, CEPR Discussion Paper
7371, 2009.

University of East Anglia Climatic Research Unit (CRU) (2008), CRU Time Series
(TS) high resolution gridded datasets,. NCAS British Atmospheric Data Centre.

U.S. Geological Survey (2005). Mineral Resources Data System: U.S. Geological
Survey, Reston, Virginia.

Vicente-Serrano S.M., Begueria S., Lépez-Moreno J.I., Angulo M., El Kenawy
A. (2010), "A global 0.5° gridded dataset (1901-2006) of a multiscalar drought
index considering the joint effects of precipitation and temperature", Journal of
Hydrometeorology 11(4), 1033-1043, DOI: 10.1175/2010JHM1224.1.

Wegenast, T., and M. Basedau (forthcoming), “Babylon on Fire: Ethnic Fraction-
alization, Natural Resources and Major Civil War ”, Journal of Conflict Resolu-
tion.

Weidmann, Nils B., Jan Ketil Rgd and Lars-Erik Cederman (2010). "Representing
Ethnic Groups in Space: A New Dataset". Journal of Peace Research, in press.

33



8 Appendix

8.1 Derivation of the likelihood for dynamic spatial panels'?

Consider the following dynamic, spatial, random effects model with N cross-sectional
units and 7" time periods:

Y = oyr—1 + pWys +ina+ 8+ 1y (1)

with n, = p,+¢¢., where y¢ = (yiy, ..., ynt)' is the N x 1 vector of observations for the
t-th time period, « is the intercept, i) is an IV x 1 column vector of ones, z; is the N x k
matrix of non-stochastic regressors and p is an N x 1 vector of random effects, with
w; ~ N(0, JZ). The random terms &; are i.i.d. with zero mean and a variance o2ly,
and p is assumed to be uncorrelated with ;. W is a row-normalized, symmetric N x N
spatial weighting matrix with zeros on the diagonal, whose eigenvalues are denoted as
wi, i =1,..., N. For simplicity spatial lags of the covariates are not explicitly included
in (1), but they could be part of matrix x; .

The basic idea is to remove the two sources of autocorrelation by combining two
transformations: a space filter to remove the spatally autorgressive term and a time
filter & la Prais-Winsten to remove the temporal autoregressive one.

Define first the space filter as the N x N matrix

B=Iy—-pW (2)

To see how this transformation removes the spatial autoregressive term, suppose
that ¢ = 0 and apply this filter to equation (1):

By =ina+ x5 + 1, (3)
Now define the time filter as the T' x (7' 4+ 1) matrix
~¢ 1 0 .. 0
C=1| t+ - - (4)
0 o v —¢ 1
To see how this transformation removes the temporal autoregressive term, consider

the (T4 1) x 1 vector of observations for the i-th cross-sectional unit y; = (v, ...,
yir)'. Similarly, let z; = (241, ..., 7)) be the T' X k vector of covariates observed in

2 This subsection draws upon Parent and Le Sage (2009).
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the i-th cross-sectional unit and n; = (1,9, ..., 7;7)" a vector of errors. Further assume
that p = 0. Applying the filter to y; one obtains:

Cyi =ira+z;8 +n; (5)

Note that we are assuming that yg is given. This considerably simplifies the com-
putational complexity of the estimation and has been shown to have little effect on the
estimates when T is not too small.

The space-time filter proposed by Parent and LeSage is given by the Kronecker
product of matrices C and B. Set Y = (y;, ..., y7)" and X = (2], ...,2/.)" and apply the
filter to the entire vector of observatios. One obtains:

(C®B)Y = Xp+inra+n (6)
with n ~ N(0,Q).
Since the random effects are integrated out, the NT x NT' variance-covariance
matrix can be shown to be equivalent to

Q =0, (Jr® In) + 02[Ir ® In] (7)

with JT+1 = Z'T+1Z.€p+1-
This allows to write down the log-likelihood for the complete sample size of T for
the model defined in (1) as

NT 1 N 1, _
InLp(€) = —Tln(27r) —5 In|Q+T '_lln[(l — pwi)] — 517’9 In (8)

where & = (ﬂ’,a,a?,ai,qﬁ,p)-

8.2 Derivation of direct vs. indirect effects'?

Consider again the spatial model in (1). For simplicity of exposition let us neglect the
temporal autoregressive component and explicitly include spatial lags of the covariates
.

yr = pWy +iya + 8 + Wl + n, 9)
Applying the space filter defined in (2), this model can be rewritten as

v = B Yiya + B a8+ B7'Wax0 + B_177t (10)

'3 This subsection draws upon Elhorst (forthcoming).

35



The matrix of partial derivatives of the dependent variable in the different cross-
sectional units with respect to the k-th explanatory variable in the different units (say,

x;, for i=1,...,N) at a particular point in time t is
Oy
[ Yy oy } RS
Or1,  Oxnk |, D
Oz
Br W20y,
_ g W10y By

Wn10, W0y,

Oy
0T Nk

N
OTNE t
WinOy
Wan 0y,

(12)

B

The direct effect of the k-th covariate is defined as the average of the diagonal
elements of matrix (12). The indirect effect is defined as the average of either the row
sums or, equivalently, the column sums of the non-diagonal elements of matrix (12).
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Figure 1 — Fraction of sample years with at least one conflict event, 1997-2006
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Figure 2 - Log Rain, average 1997-2006

7
7

Tropic cj}ganrs
m [

I 1]

[

R

N
L
IREEE

I 1

|

i g ‘ B ] Arabian Sea

i

Gulf of Guinea 0 ; ] ,,'/

Equator

Atlantic Ocean .

I 325061 e
I o061-092 ]
[ ] o092-205 [
[ ]205-310 : /f Indian Ocean
[ 310-3.94 \

B 394-459 \,I
. 50561 —




Figure 3 - SPEI , average 1997 — 2006
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Figure 4 — Temperature Absolute Deviation, average 1997 - 2006
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Figure 5 - Main crop by harvested area, year 2000
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Figure A1 — Cells in full vs. balanced panel
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Figure A2 - Log Rain, year 2000
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Figure A3 - SPEI , year 2000
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Figure A4 — Temperature Absolute Deviation, year 2000
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Table 1: Summary statistics

A: Cross sectional sample

No. Obs. Mean Std Dev

Fraction of years with conflict 2149 0.171 0.257
Shared 2149 0.289 0.453
Border 2149 0.043 0.204
Area, in km? 2149 11260.880 2288.834
Elevation, in m 2149 328.500 270.684
Rough 2149 0.089 0.099
Distance to river, in km 2149 560.663 439.596
Road 2149 0.213 0.410
Minerals 2149 0.202 0.402
ELF 2149 0.227 0.245
B: Panel sample

ANY EVENT 18790 0.161 0.367
BATTLE 18790 0.095 0.293
CIVILIAN 18790 0.088 0.283
RIOT 18790 0.050 0.217
REBEL 18790 0.021 0.144
SPEI 18790 -0.324 0.458
SPEI Shock, Growing Season 18790 0.087 0.189
SPEI 2 stdev Shock, Growing Season 18790 0.004 0.040
SPEI Growing Season, Main Crop 18790 -0.060 0.252
SPEI Growing Season, Weighted 13750 -0.001 0.008
Rain 18774 3.372 1.691
Rain Growing Season, Main Crop 18774 1.738 1.370
Temperature, abs dev 18210 0.914 0.320
Temperature abs dev, Growing Season, Main Crop 18210 0.360 0.344




Table 2: Conflict incidence, cross section

Dependent variable: fraction of years over sample period with at least one conflict event

(1) (2 (3) (4) (5) (6)
Model | Model Il Model Il
OLS OLS MLE
direct total direct total
effects effects effects effects
WY 0.782%** 0.561%**
(0.0252) (0.0389)
Shared 0.0149 0.0145 0.0273* 0.0220* 0.0329***  0.0284 -0.172  0.0272*  0.0239 -0.1247
(0.0188) (0.0110) (0.0152) (0.0132) (0.0120) (0.0114)
Border -0.00196 -0.00526 -0.0134 -0.0105 -0.0173  -0.0139 0.1367  -0.0118 -0.01 0.0694
(0.0187) (0.0191) (0.0116) (0.0154) (0.0185) (0.0183)
Area® 0.00166 -0.000634 0.000894 0.00195 0.00203  0.0018 -0.01 0.00191  0.0021 0.0107
(0.00347) (0.00277) (0.00429) (0.00431) (0.00317) (0.00327)
Elevation® -0.0251 -0.0558** -0.180 0.0271 -0.0395  -0.0373 0.0625  0.0307 0.0271 -0.1371
(0.0392) (0.0258) (0.184) (0.141) (0.0940) (0.0990)
Rough 0.719%** 0.623%** 0.345% 0.424%+ 0.373**  0.3906 1.1682  0.407**  0.4193 0.9963
(0.156) (0.0707) (0.137) (0.0999) (0.0796) (0.0744)
Distance to
river® -0.0154***  -0.00762*** 0.00458 -0.00288 0.000385 -0.0002 -0.025 -0.00127 -0.0012 0.0016
(0.00282) (0.00187) (0.00699) (0.00521) (0.00415) (0.00378)
Road 0.127%+* 0.0995%** 0.106%** 0.100%** 0.108*** 0.109 0.1443  0.105**  0.1034 0.0505
(0.0259) (0.0154) (0.0174) (0.0169) (0.0165) (0.0159)
ELF 0.0606* 0.0407* 0.0141 0.0151 0.0128 0.0175 0.2283 0.0150 0.0183 0.1693
(0.0365) (0.0223) (0.0252) (0.0248) (0.0235) (0.0228)
Minerals 0.0654*** 0.0632%** 0.0531**  (0.0565%** 0.0507***  0.0536 0.1844 0.0531***  0.0579 0.2792
(0.0174) (0.0136) (0.0127) (0.0139) (0.0126) (0.0123)
W-Shared -0.0862* -0.0758* -0.0703%** -0.0818%*+
(0.0508) (0.0410) (0.0258) (0.0294)
W-Border 0.204 0.0910 0.0470 0.0422
(0.132) (0.106) (0.0578) (0.0660)
W-Area® 0.00727 0.00441 -0.00426 0.00276
(0.0174) (0.0160) (0.00745) (0.00868)
W-Elevation® 0.198 -0.107 0.0531 -0.0909
(0.202) (0.171) (0.102) (0.116)
W-Rough 0.647% 0.315 -0.119 0.0303
(0.186) (0.209) (0.121) (0.154)
W -Distance to
river® -0.0230%*  -0.000335 -0.00576 0.00196
(0.00815) (0.00725) (0.00473) (0.00491)
W-Road 0.0382 -0.0220 -0.0768%* -0.0825%*
(0.0460) (0.0616) (0.0290) (0.0394)
W-ELF 0.145 0.118 0.0368 0.0592
(0.111) (0.0978) (0.0469) (0.0528)
W-Minerals 0.0706 0.148%* -0.0106 0.0694
(0.0717) (0.0550) (0.0338) (0.0450)
Country FE X X X
Observations 2,149 2,149 2,149 2,149 2,149 2,149
R-squared 0.467 0.400 0.485 0.624 0.260 0.462

(a) Coefficient and std error multiplied by 1073 (b) Coefficient and std error multiplied by 102
Standard errors in parenthesis corrected for spatial dependence, following Conley (1999). * p<0.01, ** p<0.05, * p<0.1

W = binary contiguity matrix, cutoff 290 km.
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Table 3: Conflict incidence and climate, panel

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

) 2 3
Model | Model Il Model IlI
OLS OLS MLE
direct total
effects  effects
Y, t-1 0.311%*
(0.00700)
WY 0.446***
(0.0137)
SPEI 0.0401*** 0.0211 0.0123 0.0129 0.0535
(0.0132) (0.0233) (0.0208)
SPEI, t-1 0.0336*** 0.0171 0.0137 0.0136 0.0050
(0.0129) (0.0224) (0.0199)
SPEI, t-2 0.0119 0.0170 0.00693 0.0067  -0.0057
(0.0116) (0.0205) (0.0181)
SPEI Shock Growing Season 0.0938*** 0.0214 0.00342 0.0053 0.1187
(0.0245) (0.0261) (0.0234)
SPEI Shock Growing Season, t-1 0.106***  0.0756*** 0.0619*  0.0611 0.0129
(0.0257) (0.0242) (0.0246)
SPEI Shock Growing Season, t-2 0.0658***  0.0488** 0.0401* 0.0398 0.0195
(0.0243) (0.0239) (0.0225)
W - SPEI 0.0300 0.0246
(0.0309) (0.0252)
W - SPEI, t-1 0.0222 -0.0103
(0.0311) (0.0245)
W - SPEI, t-2 -0.0115 -0.0108
(0.0278) (0.0226)
W - SPEI Shock Growing Season 0.145%x* 0.0784**
(0.0497) (0.0367)
W - SPEI Shock Growing Season, t-1 0.0650 -0.0530
(0.0475) (0.0385)
W - SPEI Shock Growing Season, t-1 0.0349 -0.0267
(0.0452) (0.0367)
Observations 18,790 18,790 18,790
R-squared 0.315 0.333 0.317

Notes: Each observation is a cell/year. All regressions include controls listed in table 2, country and year

fixed effects. W = binary contiguity matrix, cutoff 290 km.

Standard errors in parenthesis. Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6

corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Sensitivity to different spatial matrices

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1)

)

®)

(4)

()

(6)

Binary contiguity matrix

Inverse quadratic distance matrix

190 km 450 km 600 km 290 km 450 km 600 km
Y, t-1 0.313" 0.312* 0.321" 0.307 0.302" 0.302"**
(0.00703)  (0.00704)  (0.00710)  (0.00702)  (0.00700)  (0.00710)
W-Y 0.327** 0.554*** 0.608*** 0.405*** 0.486*** 0.530***
(0.0107) (0.0179) (0.0218) (0.0121) (0.0140) (0.0156)
SPEI 0.0134 0.0185 0.0254** 0.00812 0.0148 0.0104
(0.0280) (0.0145) (0.0118) (0.0257) (0.0218) (0.0199)
SPEI, t-1 0.0257 0.00910 0.00692 0.0202 0.0129 0.00847
(0.0274) (0.0142) (0.0121) (0.0250) (0.0213) (0.0199)
SPEI, t-2 -0.0113 0.00769 0.0134 0.00129  0.00114 0.00717
(0.0242) (0.0134) (0.0115) (0.0222) (0.0192) (0.0179)
SPEI Shock Growing Season 0.00897 0.00934 0.0304 0.00319 0.00245  -0.000410
(0.0263) (0.0203) (0.0187) (0.0262) (0.0248) (0.0243)
SPEI Shock Growing Season, t-1 0.0548**  0.0541**  0.0519**  0.0591**  0.0552**  0.0508**
(0.0267) (0.0219) (0.0203) (0.0268) (0.0258) (0.0257)
SPEI Shock Growing Season, t-2 0.0318 0.0336 0.0441* 0.0405* 0.0383 0.0400*
(0.0238) -0.0205 (0.0191) (0.0240) (0.0236) (0.0234)
W - SPEI 0.0217 0.0157 0.0103 0.0272 0.0190 0.0289
(0.0310) (0.0207) (0.0202) (0.0296) (0.0270) (0.0262)
W - SPEI, t-1 -0.0176 -0.00630  -0.00162 -0.0137 -0.00940  -0.00133
(0.0307) (0.0204) (0.0207) (0.0292) (0.0268) (0.0267)
W - SPEI, t-2 0.0126 -0.0145 0.0282  0.000102  -0.00445 -0.0139
(0.0275) (0.0195) (0.0199) (0.0263) (0.0244) (0.0241)
W - SPEI Shock Growing Season 0.0597* 0.0811** 0.0622 0.0682* 0.0720* 0.0878*
(0.0353) (0.0403) (0.0455) (0.0377) (0.0402) (0.0434)
W - SPEI Shock Growing Season, t-1 -0.0271 -0.0553 -0.0631 -0.0406 -0.0469 -0.0429
(0.0355) (0.0423) (0.0477) (0.0387) (0.0420) (0.0455)
W - SPEI Shock Growing Season, t-2  -0.00812 -0.0320 -0.0588 -0.0251 -0.0302 -0.0323
(0.0322) (0.0413) (0.0462) (0.0355) (0.0391) (0.0420)
Observations 18,790 18,790 18,790 18,790 18,790 18,790
R-squared 0.313 0.313 0.301 0.314 0.319 0.301

Notes: Each observation is a cell/year. All regressions include controls listed in table 2, country and year fixed effects.
Estimation by MLE. Standard errors corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1



Table 5a: Sensitivity to different spatial resolutions, 2x2 cells

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT).

Model | - OLS Model Ill - MLE
nr of panels in nr of panels in
avg. coefficient avg. std.  which 10% avg. coefficient avg. std.  which 10%
coefficient std. dev. error significant coefficient std. dev. error significant

Y, t-1 0.3703 0.0126 0.0135 4/4
WY 0.3883 0.0098 0.0192 4/4
SPEI 0.0601 0.0040 0.0116 4/4 0.0102 0.0073 0.0225 0/4
SPEI, t-1 0.0576 0.0057 0.0119 4/4 0.0019 0.0138 0.0222 0/4
SPEI, t-2 0.0312 0.0064 0.0105 4/4 0.0043 0.0064 0.0196 0/4
SPEI Shock Growing Season 0.1655 0.0145 0.0275 4/4 -0.0064 0.0362 0.0332 0/4
SPEI Shock Growing Season, t-1 0.1720 0.0164 0.0315 4/4 0.0547 0.0152 0.0356 2/4
SPEI Shock Growing Season, t-2 0.1189 0.0164 0.0279 4/4 0.0178 0.0201 0.0333 0/4
W - SPEI 0.0320 0.0151 0.0278 1/4
W - SPEI, t-1 -0.0018 0.0101 0.0270 0.4
W - SPEI, t-2 -0.0185 0.0113 0.0253 0/4
W - SPEI Shock Growing Season 0.1053 0.0472 0.0506 3/4
W - SPEI Shock Growing Season, t-1 -0.0728 0.0026 0.0558 0/4
W - SPEI Shock Growing Season, t-1 -0.0318 0.0352 0.0516 0/4
Average nr of obs 4698 4698

Average R squared 0.2803 0.4978

Results of the estimation of models | and Il in 4 possible panels of 2x2 cells. All regressions include controls listed in table 2, country and
year fixed effects. W = binary contiguity matrix, cutoff 390 km.
OLS standard errors corrected by spatial and serial correlation. MLE standard errors corrected for clustering at the cell level. *** p<0.01, **

Table 5b: Sensitivity to different spatial resolution, 3x3 cells

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT).

Model | - OLS Model Il - MLE
nr of panels in nr of panels in
avg. coefficient avg. std. which 10% avg. coefficient avg. std.  which 10%
coefficient std. dev. error significant coefficient std. dev. error significant

Y, t-1 0.3723 0.0352 0.0197 9/9
WY 0.4267 0.0409 0.0269 9/9
SPEI 0.0663 0.0101 0.0190 9/9 0.0396 0.0143 0.0182 7/9
SPEI, t-1 0.0619 0.0125 0.0177 9/9 0.0086 0.0167 0.0191 0/9
SPEI, t-2 0.0265 0.0037 0.0167 5/9 0.0161 0.0118 0.0170 2/9
SPEI Shock Growing Season 0.1962 0.0311 0.0418 9/9 0.0553 0.0260 0.0380 4/9
SPEI Shock Growing Season, t-1 0.1927 0.0489 0.0393 9/9 0.0382 0.0356 0.0399 1/9
SPEI Shock Growing Season, t-2 0.1243 0.0211 0.0387 9/9 0.0346 0.0251 0.0354 1/9
W - SPEI -0.0008 0.0205 0.0260 0/9
W - SPEI, t-1 -0.0157 0.0302 0.0279 2/9
W - SPEI, t-2 -0.0479 0.0144 0.0243 4/9
W - SPEI Shock Growing Season 0.0451 0.0490 0.0635 5/9
W - SPEI Shock Growing Season, t-1 -0.0635 0.0527 0.0646 6/9
W - SPEI Shock Growing Season, t-1 -0.0809 0.0386 0.0585 2/9
Average nr of obs 2088 2088

Average R squared 0.6001 0.6084

Results of the estimation of models | and Il in 9 possible panels of 3x3 cells. All regressions include controls listed in table 2, country and
year fixed effects. W = binary contiguity matrix, cutoff 490 km.
OLS standard errors corrected by spatial and serial correlation. MLE standard errors corrected for clustering at the cell level. *** p<0.01, **



Table 6a: Conflict incidence and other climate indicators

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1)

()

@)

(4) ©) (6)

Log rain Temperature absolute deviation
Model | Model Il Model Ill Model | Model Il Model Ill
Y, t-1 0.294*** 0.295***
(0.00726) (0.00726)
W-Y 0.445*** 0.446***
(0.0143) (0.0142)
Climate 0.0199*** 0.00215 -0.00176 0.0297 0.0687 0.0244
(0.00500) (0.00782) (0.00712) (0.0240) (0.0547) (0.0419)
Climate, t-1 0.00934**  -0.00911 -0.00979 -0.0177 0.106* 0.0891**
(0.00474) (0.00754) (0.00800) (0.0268) (0.0544) (0.0444)
Climate, t-2 0.000968 0.00707 0.00439 0.00754 0.0397 0.0152
(0.00461) (0.00694) (0.00666) (0.0263) (0.0538) (0.0439)
Climate, Growing
Season Indicator 0.00648 0.0144 0.00988 0.0807** 0.0189 0.0411
(0.0143) (0.0119) (0.0111) (0.0319) (0.0432) (0.0328)
Climate, Growing
Season Indicator, t-1 0.0130 0.00523 0.000730 0.0495 0.0227 0.00903
(0.0151) (0.0122) (0.0125) (0.0341) (0.0393) (0.0355)
Climate, Growing
Season Indicator, t-2 0.0240* 0.00108 0.00202 0.0541 0.0554 0.0200
(0.0139) (0.0116) (0.0110) (0.0334) (0.0425) (0.0316)
W - Climate 0.0221* 0.0153* -0.0763 -0.0195
(0.0116) (0.00895) (0.0657) (0.0476)
W - Climate, t-1 0.0253** 0.0110 -0.163** -0.121**
(0.0115) (0.00984) (0.0661) (0.0497)
W - Climate, t-2 -0.0142 -0.0122 -0.0497 -0.00333
(0.0106) (0.00907) (0.0683) (0.0506)
W - Climate, Growing
Season Indicator -0.0333 -0.0132 0.118* -0.000392
(0.0337) (0.0206) (0.0607) (0.0447)
W - Climate, Growing
Season Indicator, t-1 9.98e-05 0.00426 0.0690 0.00727
(0.0334) (0.0244) (0.0592) (0.0465)
W - Climate, Growing
Season Indicator, t-2 0.0522 0.0145 0.000421
(0.0331) (0.0212) (0.0416)
Observations 17,670 17,670 17,670 17,670 17,670 17,670
R squared 0.295 0.334 0.320 0.329 0.348 0.321

Notes: Each observation is a cell/year. All regressions include controls listed in table 2, country and

year fixed effects. W = binary contiguity matrix, cutoff 290 km.

Standard errors in parenthesis. Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6
corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1
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Table 6b: Conflict incidence and other climate indicators

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

€] (2) 3
Model | Model Il Model Ill
Y, t-1 0.295***
(0.00730)
WY 0.437***
(0.0144)
X W - X X W - X
SPEI 0.0290** 0.0283  0.00492 0.0142 0.0199
(0.0143) (0.0244) (0.0335) (0.0216) (0.0270)
SPEI, t-1 0.0159 0.0325 -0.0282 0.0236  -0.0302
(0.0137) (0.0226) (0.0325) (0.0211) (0.0262)
SPEI, t-2 -0.00140 0.0223  -0.0452 0.00724  -0.0239
(0.0123) (0.0206) (0.0286)  (0.0195) (0.0247)
SPEI Shock Growing Season 0.0517** 0.0165  0.0709 0.00322  0.0564
(0.0251) (0.0274) (0.0537)  (0.0250) (0.0395)
SPEI Shock Growing Season, t-1 0.0689***  0.0614** 0.00600 0.0481* -0.0524
(0.0256) (0.0253) (0.0513)  (0.0255) (0.0394)
SPEI Shock Growing Season, t-1 0.0236 0.0480* -0.0531 0.0434*  -0.0594
(0.0257) (0.0254) (0.0495)  (0.0242) (0.0391)
Rain 0.0158**  -0.00619 0.0318*++* -0.00109 0.0118
(0.00479) (0.00751) (0.0114) (0.00732) (0.00917)
Rain t-1 0.00474 -0.0135* 0.0262**  -0.00818 0.00712
(0.00439) (0.00734) (0.0112) (0.00838) (0.0104)
Rain t-2 -0.000602 0.00317 -0.00682 0.00616 -0.0119
(0.00438) (0.00667) (0.0104) (0.00673) (0.00915)
Rain Growing Season Main Crop 0.00325 0.00959 -0.0278 0.00471 -0.0166
(0.0132) (0.0117) (0.0334) (0.0112) (0.0216)
Rain Growing Season Main Crop t-1 0.00104 0.000706 -0.0141 -0.00349 0.00197
(0.0139) (0.0120) (0.0347) (0.0126) (0.0258)
Rain Growing Season Main Crop t-2 0.0174 -0.00574 0.0629* -0.000634 0.0313
(0.0127) (0.0115) (0.0335) (0.0113) (0.0222)
Temperature, abs dev 0.0490** 0.0692  -0.0297 0.0176 0.0123
(0.0242) (0.0542) (0.0660)  (0.0422) (0.0490)
Temperature, abs dev, t-1 0.00242 0.109**  -0.124* 0.0954*  -0.110**
(0.0270) (0.0540) (0.0661)  (0.0444) (0.0505)
Temperature, abs dev, t-2 0.0384 0.0375 0.00641 0.0185  0.00968
(0.0267) (0.0527) (0.0675)  (0.0441) (0.0510)
Temperature abs dev, Growing Season Main Crop 0.0401 0.00955  0.0405 0.0414 -0.0308

(0.0320) (0.0421) (0.0625)  (0.0336) (0.0463)
Temperature abs dev, Growing Season Main Crop t-1 0.00141 0.0145 -0.0139 -0.00155 -0.01712
(0.0346) (0.0390) (0.0610)  (0.0369) (0.04995)
Temperature abs dev, Growing Season Main Crop t-2 0.00121 0.0428 -0.0506 0.0155 -0.03151
(0.0342) (0.0424) (0.0696) (0.0325) (0.04254)

Observations 17,670 17,670 17,670
R-squared 0.336 0.354 0.319

Notes: Each observation is a cell/lyear. All regressions include controls listed in table 2, country and year fixed effects.
W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1
Cols 1-2: corrected for spatial and serial correlation. Col. 3: corrected for clustering at the cell level.



Table 7: Different types of conflict events, cross section

Y = BATTLE Y = CIVILIAN Y = RIOT Y = REBEL
1) @ (3 @ 5 (6) (] (® 9) (10) (11 (12)
Model | Model 11 Model 11 Model | Model 11 Model 111 Model | Model 11 Model 111 Model | Model Il Model 111
WY 0.689*** 0.728*** 0.304*** 0.589***
(0.0314) (0.0299) (0.0528) (0.0373)
Shared 0.0129 0.0176* 0.0205** 0.0114 0.0175 0.0213** -0.00767 -0.00465 -0.00363 | 0.0138*** 0.0123** 0.0131***
(0.00810) (0.0100) (0.00824) | (0.00828) (0.0107) (0.00828) [ (0.00657) (0.00762) (0.00769)| (0.00419) (0.00494) (0.00452)
Border -0.0122 -0.0165 -0.0126 0.00314 0.00265 0.00759 -0.00662 -0.00791 -0.00816 | -0.000637 -0.00334 -0.00204
(0.0146) (0.0121) (0.0146) (0.0143) (0.0139) (0.0135) (0.00986) (0.00719) (0.0102) (0.00602) (0.00706) (0.00700)
Area® 0.00247 0.00419 0.00450**| -0.000798 0.00160 0.00215 | -0.00450** -0.00153 -0.00128 | -0.000638 -5.36e-05 -0.000214
(0.00169) (0.00295) (0.00195)| (0.00194) (0.00316) (0.00221)| (0.00207) (0.00289) (0.00234)| (0.000788) (0.000971) (0.000913)
Elevation® -0.0147 0.166 0.0780 -0.0232 -0.0824 -0.161** -0.0303** -0.0984 -0.137** -0.00310 -0.00787 -0.0532
(0.0184) (0.1149) (0.0758) (0.0192) (0.0984) (0.0722) (0.0149) (0.0681) (0.0617) (0.00644) (0.0318) (0.0356)
Rough 0.431*** 0.316*** 0.301*** 0.536*** 0.352*** 0.330*** 0.245%** 0.214*** 0.210%*** 0.161*** 0.140** 0.134***
(0.0642) (0.0956) (0.0668) (0.0626) (0.103) (0.0690) (0.0420) (0.0705) (0.0519) (0.0376) (0.0675) (0.0348)
Distance to river® -0.00585***  -0.00592 -0.00357 | -0.00579*** 0.000560 0.00185 -0.00203* 0.00183 0.00244 | -0.000227 -0.000202 0.00107
(0.00132) (0.00371) (0.00243)| (0.00140) (0.00398) (0.00302)| (0.00107) (0.00333) (0.00282)| (0.000490) (0.00198) (0.00144)
Road 0.0450***  0.0543***  0.0607***| 0.0596***  0.0629*** 0.0674***| 0.0698***  0.0640***  0.0656*** 0.00394 0.00847* 0.0115**
(0.0109) (0.0124) (0.0114) (0.0118) (0.0135) (0.0121) (0.0113) (0.0121) (0.0114) (0.00499) (0.00470) (0.00546)
ELF 0.0376** 0.0215 0.0207 0.0279* 0.00809 0.00669 0.00943 0.00177 0.00272 0.0129* 0.00638 0.00700
(0.0162) (0.0185) (0.0163) (0.0168) (0.0189) (0.0170) (0.0133) (0.0137) (0.0152) (0.00735) (0.00788) (0.00795)
Minerals 0.0302***  0.0276***  0.0231***| 0.0309***  0.0287***  0.0238*** | 0.0317*** 0.0237** 0.0223** 0.00820* 0.00805** 0.00572
(0.00972) (0.00991) (0.00859) (0.0100) (0.0101) (0.00907) [ (0.00916) (0.00971) (0.00882)| (0.00449) (0.00354) (0.00396)
W-Shared -0.0415 -0.0311 -0.0547* -0.0357* -0.0436** -0.0281 -0.000931 -0.000118
(0.0299) (0.0218) (0.0309) (0.0215) (0.0197) (0.0182) (0.0118) (0.0116)
W -Border -0.00639 0.0199 -0.0293 -0.0266 0.0662 0.0684 -0.0426 -0.0148
(0.0777) (0.0471) (0.0775) (0.0433) (0.0570) (0.0464) (0.0277) (0.0227)
W-Area® -0.000765 -0.00421 0.00221 0.000852 -0.00656 -0.00529 0.000874 0.00200
(0.0117) (0.00595) (0.0129) (0.00670) (0.00930) (0.00630) (0.00467) (0.00318)
W -Elevation® -0.236* -0.105 0.0697 0.172** 0.102 0.164** -0.00932 0.0501
(0.139) (0.0839) (0.120) (0.0810) (0.0754) (0.0718) (0.0391) (0.0378)
W -Rough 0.153 -0.0595 0.320** -0.0439 -0.00303 -0.0741 -0.0333 -0.0785
(0.164) (0.119) (0.154) (0.120) (0.102) (0.0853) (0.0652) (0.0578)
W -Distance to river® 0.00504 0.000907 -0.00304 -0.00468 -0.00496 -0.00663* 0.00206 -0.00179
(0.00556) (0.00309) (0.00520) (0.00391) (0.00424) (0.00386) (0.00274) (0.00180)
W -Road -0.0610 -0.0771%** -0.0224 -0.0458* -0.0115 -0.0137 -0.0270** -0.0136
(0.0416) (0.0216) (0.0508) (0.0277) (0.0302) (0.0229) (0.0120) (0.00904)
W-ELF 0.0700 0.0734* 0.0867 0.0557 0.0153 0.0296 0.00146 0.0193
(0.0674) (0.0400) (0.0788) (0.0409) (0.0370) (0.0322) (0.0223) (0.0212)
W -Minerals 0.104** 0.00346 0.0865** 0.0148 0.0926*** 0.0597* 0.0321* 0.000364
(0.0439) (0.0288) (0.0427) (0.0309) (0.0296) (0.0306) (0.0181) (0.0151)
Observations 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149
R-squared 0.415 0.606 0.432 0.405 0.569 0.402 0.223 0.350 0.255 0.400 0.515 0.413

Notes: Each observation is a cell. All regressions include country fixed effects. W = binary contiguity matrix, cutoff 290 km.
(a) Coefficient and std error multiplied by 10”3 (b) Coefficient and std error multiplied by 10"2. Standard errors in parenthesis corrected for spatial dependence, following Conley (1999).




Table 8: Different types of conflict events, panel - to be continued

Y = BATTLE Y = CIVILIAN
@ @ @) @ ©) 6
Model | Model Il Model 111 Model | Model Il Model 111
direct total direct total
effects effects effects effects
Y, t-1 0.2335*** 0.270%**
(0.0072) (0.00715)
W .Y 0.4943*** 0.450%**
(0.0132) (0.0142)
SPEI 0.0139 -0.0122 -0.0139 -0.014 0.019 | 0.0180* 0.0193 0.00741 0.0076 0.0184
(0.0104) (0.0199) (0.0177) (0.0106) (0.0174) (0.0166)
SPEI, t-1 0.0130 0.0240 0.0176  0.0174 0.0002| 0.0296** 0.0204 0.0259 0.0255 0.0022
(0.0101) (0.0187) (0.0171) (0.0116) (0.0183) (0.0164)
SPEI, t-2 -5.77e-05  0.00853 0.0024 0.0023 -0.004| 0.0148 0.00208 -0.00848 -0.0084 -0.0014
(0.00932) (0.0168) (0.0206) (0.00970) (0.0152) (0.0146)
SPEI Shock Growing Season 0.0415** 0.00144 0.0178 0.0183 0.0582| 0.0754*** 0.0141 -0.00324 -0.0021 0.0767
(0.0199) (0.0228) (0.0206) (0.0214) (0.0218) (0.0192)
SPEI Shock Growing Season, t-1 0.0629***  0.0432** 0.0317 0.0318 0.0399| 0.0636*** 0.0304 0.0219 0.0217 0.0026
(0.0198) (0.0194) (0.0213) (0.0210) (0.0192) (0.0196)
SPEI Shock Growing Season, t-2 0.0436** 0.0301 0.0316 0.0313 0.0125| 0.0461* 0.0347* 0.0286 0.0285 0.019
(0.0183) (0.0190) (0.0196) (0.0198) (0.0188) (0.0177)
W - SPEI 0.0331 0.0285 0.00594 0.00606
(0.0257) (0.021) (0.0238) (0.0202)
W - SPEI, t-1 -0.0167 -0.0174 0.0174 -0.0242
(0.0233) (0.0209) (0.0273) (0.0202)
W . SPEI, t-2 -0.0157 -0.0051 0.0142 0.00748
(0.0225) (0.0191) (0.0224) (0.0180)
W - SPEI Shock Growing Season 0.0733* 0.0268 0.130%** 0.0592*
(0.0406) (0.0308) (0.0418) (0.0302)
W - SPEI Shock Growing Season, t- 0.0373 -0.0012 0.0816** -0.0201
(0.0361) (0.0333) (0.0401) (0.0308)
W - SPEI Shock Growing Season, t- 0.0250 -0.022 0.0299 -0.0147
(0.0345) (0.0316) (0.0394) (0.0268)
Observations 18,790 18,790 18,790 18,790 18,790 18,790
R-squared 0.230 0.253 0.236 0.230 0.249 0.276

Notes: Each observation is a cell/lyear. All regressions include controls listed in table 2, country and year fixed effects.

W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis.
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Table 8 - continued: Different types of conflict events, panel

Y =RIOT Y = REBEL
(7) (8) 9) (10) (11) (12)
Model | Model Il Model 111 Model | Model Il Model 111
direct total direct total

effects effects effects effects
Y, t-1 0.277%** 0.175%**
(0.00707) (0.00731)
WY 0.329%** 0.362%**
(0.0165) (0.0164)

SPEI 0.0190** 0.00427 0.000238 0.0005 0.0211| 0.0199*** 0.0170* 0.0236*** 0.0235 0.0171
(0.00876)  (0.0150) (0.0150) (0.00647) (0.00973) (0.00900)

SPEI, t-1 0.0144** 0.00542 0.00693 0.0071 0.0158| 0.00722 -0.000759 -0.00821 -0.0081 0.0015
(0.00735) (0.0148) (0.0141) (0.00520) (0.00959) (0.00951)

SPEI, t-2 0.00777  0.0392*** 0.0266** 0.026 -0.013| 0.00419 0.00374 0.00619 0.0061 0.0013
(0.00641) (0.0134) (0.0124) (0.00597) (0.00967) (0.00958)

SPEI Shock Growing Season 0.0377***  0.0378** 0.0209 0.021 0.0284| 0.0282***  0.0196** 0.0246** 0.0246 0.022
(0.0137) (0.0165) (0.0154) (0.0106)  (0.00992) (0.0101)

SPEI Shock Growing Season, t-1 0.0395***  0.0387** 0.0203 0.0203 0.0143| 0.0144* 0.0261*** 0.0180 0.0177 -0.0138
(0.0133) (0.0159) (0.0147) (0.00870) (0.00988) (0.0117)

SPEI Shock Growing Season, t-2 0.0207* 0.0178 0.0145 0.0142 -0.008| 0.00282 0.00650 0.00264 0.0025 -0.0073
(0.0112) (0.0129) (0.0154) (0.00997) (0.0115) (0.0107)
W - SPEI 0.0151 0.0150 0.00491 -0.00950
(0.0204) (0.0185) (0.0126) (0.0107)
W - SPEI, t-1 0.00879 0.00447 0.00704 0.00946
(0.0187) (0.0168) (0.0109) (0.0109)
W - SPEI, t-2 -0.0440** -0.0363** -0.00153 -0.00515
(0.0175) (0.0157) (0.0128) (0.0113)
W - SPEI Shock Growing Season -0.00948 -0.000336 0.0164 -0.00645
(0.0290) (0.0241) (0.0194) (0.0144)
W - SPEI Shock Growing Season, t- -0.00803 -0.0100 -0.0255 -0.0294*
(0.0282) (0.0222) (0.0161) (0.0170)
W - SPEI Shock Growing Season, t- -0.00165 -0.0204 -0.00691 -0.00863
(0.0261) (0.0226) (0.0161) (0.0144)

Observations 18,790 18,790 18,790 18,790 18,790 18,790
R-squared 0.140 0.154 0.190 0.099 0.122 0.136

Notes: Each observation is a cell/lyear. All regressions include controls listed in table 2, country and year fixed effects.

W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis.
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Table Al: Conflict incidence and climate, full vs. balanced panel

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2 3) 4)
Balanced panel Full panel
Model | Model I Model | Model Il
OLS OLS OLS OLS
SPEI 0.0401*** 0.0211 0.0358*** 0.0353***
(0.0132) (0.0233) (0.00720) (0.00811)
SPEI, t-1 0.0336*** 0.0171 0.0316*** 0.0308***
(0.0129) (0.0224) (0.00759) (0.00852)
SPEI, t-2 0.0119 0.0170 0.0206*** 0.0180**
(0.0116) (0.0205) (0.00683) (0.00764)
SPEI Shock Growing Season 0.0938*** 0.0214 0.0828*** 0.0886***
(0.0245) (0.0261) (0.0165) (0.0174)
SPEI Shock Growing Season, t-1 0.106*** 0.0756*** 0.0910*** 0.0914***
(0.0257) (0.0242) (0.0173) (0.0181)
SPEI Shock Growing Season, t-2 0.0658*** 0.0488** 0.0745*** 0.0750***
(0.0243) (0.0239) (0.0167) (0.0174)
W - SPEI 0.0300 -0.00440***
(0.0309) (0.000962)
W - SPEI, t-1 0.0222 -0.00236**
(0.0311) (0.00102)
W - SPEI, t-2 -0.0115 -0.00164*
(0.0278) (0.000900)
W - SPEI Shock Growing Season 0.145*** -0.0128***
(0.0497) (0.00246)
W - SPEI Shock Growing Season, t-1 0.0650 -0.00347
(0.0475) (0.00336)
W - SPEI Shock Growing Season, t-1 0.0349 -0.00798***
(0.0452) (0.00271)
Observations 18,790 18,790 29,532 29,532
R-squared 0.315 0.333 0.252 0.274

Notes: Each observation is a cell/lyear. All regressions include controls listed in table 2, country and

year fixed effects. W = binary contiguity matrix, cutoff 290 km.
Standard errors corrected for spatial and serial correlation in parenthesis.



Table A2: Conflict incidence and other SPEI based climate indicators, panel

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2 (3) Q) (5) (6) (7) (8) 9) (10 (11) (12)
Standalone Growing Season Maincrop Growing Season Weighted Growing Season 2 St Dev Shock
Model | Model Il Model Ill Model | Model Il Model Il Model | Model Il Model Ill Model | Model Il Model IlI
Y, t-1 0.311*** 0.310%** 0.306*** 0.313***
(0.00699) (0.00700) (0.00821) (0.00699)
WY 0.452%** 0.445%** 0.388*** 0.452%**
(0.0136) (0.0138) (0.0154) (0.0136)
SPEI 0.0257** 0.0219 0.0139 0.0558%*** 0.0316 0.0114 0.0275* 0.0292 0.00440 0.0302** 0.0223 0.0126
(0.0127) (0.0229) (0.0206) (0.0158) (0.0268) (0.0219) (0.0143) (0.0249) (0.0222) (0.0127) (0.0229) (0.0208)
SPEI, t-1 0.0114 0.00374 0.00282 0.0454%*=* 0.0208 0.0286 0.00440 0.0279 0.0183 0.0161 0.00615 0.00177
(0.0122) -0.0218 (0.0192) (0.0151) (0.0273) (0.0214) (0.0131) (0.0246) (0.0213) (0.0125) (0.0220) (0.0192)
SPEI, t-2 0.000516 0.00754 -0.000680 0.0156 0.0235 0.00936 -0.00444 0.0325 -0.00232 0.00104 0.00846 -0.000600
(0.0110) (0.0201) (0.0174) (0.0155) (0.0250) (0.0203) (0.0126) (0.0220) (0.0203) (0.0111) (0.0203) (0.0177)
SPEI, Growing Season
Indicator -0.0685*** -0.0171 0.00685 -0.897 -0.486 -0.623 0.216*** 0.0540 0.0460
(0.0264) (0.0299) (0.0231) (0.764) (0.732) (0.637) (0.0808) (0.0729) (0.0879)
SPEI, Growing Season
Indicator, t-1 -0.0738*** -0.0279 -0.0454* -0.189 -0.171 0.424 0.141* 0.0903 0.117
(0.0255) (0.0296) (0.0254) (0.802) (0.809) (0.755) (0.0676) (0.0750) (0.0912)
SPEI, Growing Season
Indicator, t-2 -0.0399 -0.0235 -0.0189 -0.155 0.520 0.776 0.0387 0.0201 -0.0152
(0.0256) (0.0268) (0.0224) (0.767) (0.812) (0.665) (0.0761) (0.0671) (0.0679)
W - SPEI -0.00423 0.00523 0.0383 0.0402 -0.0123 0.0251 0.00390 0.0123
(0.0292) (0.0246) (0.0350) (0.0271) (0.0327) (0.0270) (0.0295) (0.0249)
W - SPEI, t-1 0.00167 -0.00143 0.0419 -0.0173 -0.0354 -0.0270 0.00489 0.00508
(0.0290) (0.0229) (0.0361) (0.0263) (0.0312) (0.0246) (0.0297) (0.0231)
W - SPEI, t-2 -0.0177 -0.00278 -0.00698 -0.0115 -0.0465 -0.00122 -0.0194 -0.00382
(0.0263) (0.0207) (0.0334) (0.0248) (0.0295) (0.0243) (0.0267) (0.0210)
W - SPEI, Growing
Season Indicator -0.102** -0.0800** -1.019 -0.490 0.297 0.185
(0.0475) (0.0346) (1.061) (0.959) (0.194) (0.135)
W - SPEI, Growing
Season Indicator, t-1 -0.0997** 0.0229 -0.517 -0.216 0.0646 -0.117
(0.0447) (0.0366) (2.001) (1.062) (0.169) (0.139)
W - SPEI, Growing
Season Indicator, t-2 -0.0503 0.00864 -2.541** -2.115* -0.00123 0.00538
(0.0452) (0.0315) (1.107) (0.965) (0.154) (0.110)
Observations 18,790 18,790 18,790 18,790 18,790 18,790 13,750 13,750 13,750 18,790 18,790 18,790
R squared 0.310 0.328 0.315 0.314 0.314 0.317 0.305 0.306 0.312 0.311 0.328 0.312

Notes: Each observation is a cell/lyear. All regressions include controls listed in table 2, country and year fixed effects. W = binary contiguity matrix, cutoff 290 km.
Standard errors in parenthesis. Cols. 1-2-4-5-7-8-10-11 corrected for spatial and serial correlation. Cols. 3-6-9-12 corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1
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