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Abstract

We conduct a geographically and temporally disaggregated empirical analysis
of civil con�ict at the sub-national level in Africa over the period 1997-2006. Our
units of observation are cells of 1 degree of latitude by 1 degree of longitude. We
exploit within-year variation in the timing of weather shocks and in the growing
season of di¤erent crops, as well as spatial variation in crop cover, to construct an
original measure of shocks that are relevant for agricultural production. Employing
a new draught index we show that negative climate shocks which occur during the
growing season of the main crops cultivated in the cell have a sizeable e¤ect on
con�ict incidence. This e¤ect is persistent over time and to a lesser extent in space.
We also use state-of-the-art spatial econometric techniques to test for the presence
of temporal and spatial spillovers in con�ict, and we �nd both to be sizeable and
highly statistically signi�cant. Exploiting variation in the type of con�ict episode,
we �nd that the impact of climate shocks on con�ict is particularly signi�cant
when focusing on outcomes such a rebel recruitment.
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1 Introduction

Sub- Saharian Africa is both the world�s poorest region and the region which has
experienced, in the past 60 years, the most armed con�icts, the majority of which are
civil con�icts (Blattman and Miguel, 2010). Poverty and internal con�ict appear to be
tightly linked throughout the world: the correlation between low per capita incomes and
higher propensities for internal war is one of the most robust empirical relationships in
the literature. In the past decade, it has become increasingly clear that understanding
the causes and consequences of civil con�ict should have a prominent place in the
development economics agenda. A major focus in the empirical research on con�ict
has been the role of economic �uctuations in shaping con�ict risk. The relationship
between weather shocks and civil con�ict was �rst highlighted by Miguel et al. (2004),
who detected a reduced form negative relationship between rainfall shocks and con�ict
incidence. The link between climate and con�ict has attracted considerable attention
ever since, further motivated by accumulating evidence on the potentially disruptive
e¤ects of climate change.

We attempt at making a step further in understanding the relationship between
climate shocks and civil con�ict by taking the analysis to a di¤erent scale. We conduct
a geographically disaggregated analysis which takes as units of observation 100 x 100
km subnational "cells", and we estimate the incidence of con�ict in a cell as a function
of climate shocks and a number of other covariates both in the cell and in neighbor-
ing areas, plus a �lag� in space and time of the endogenous variable. Our approach
contributes to the existing literature in three directions.

The �rst is methodological. We disaggregate the level of analysis both in space
and time, constructing a cell-year panel with a rich set of georeferenced covariates.
This disaggregated level of observation allows us to take a closer look at a number
of geographic covariates, which have been claimed to be predictors of con�ict but
which have so far been measured at an arguably wrong scale. More importantly, it
enables us to detect previously neglected within-year and within-country patterns. Our
disaggregated approach is accompanied by a careful modelling of spatial dependence
and thorough state-of-the-art spatial econometrics techniques which have seldom been
applied in economics. In particular, we estimate a model that includes spatially and
temporally autoregressive terms to account for the fact that con�ict may be persistent
over time, and that both the covariates and the presence of con�ict may be correlated
across space. As we explain in the next section, this poses a number of challenges for
estimation and constitutes an original contribution to the empirical con�ict literature,
and one which is particularly crucial when dealing with highly disaggregated data.

The second contribution is that we look at climate indexed within the year. Be-
cause the main channel linking climate shocks and con�ict operates through shocks to
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agricultural incomes, we attempt to isolate the component of annual climate variability
which is relevant for agriculture. In other words, instead of using climate indicators
aggregated over the whole year (e.g., average yearly rainfall), we construct speci�c indi-
cators for climatic conditions during the growing season, which is when crops are most
sensitive to unfavorable conditions. This is a data intensive process as it requires a
number of steps: identifying the main crops cultivated in each cell; �nding the growing
season of this crops (which varies across cells); and matching this information with
high frequency climate data. In other words, we exploit both within-year variation in
the timing of weather shocks as well as spatial variation in crop cover to construct an
original measure of agriculture-relevant weather shocks. Once we isolate the impact of
the weather shock component which e¤ectively a¤ects local agriculture, we �nd evi-
dence that this is what drives the overall observed local negative relationship between
con�ict episodes and weather.

A third contribution relates to the climate indicator we employ. While most of
the con�ict literature so far has focused on precipitation, we use a multiscalar drought
index that accounts for the fact that the impact of rainfall on the growing cycle of a
plant depends on the extent to which water can be retained by the soil. This in turn
depends on the characteristics of the soil and on the extent to which sunshine induces
evaporation. The climate indicator we use in our benchmark speci�cation, the Stan-
dardized Precipitation-Evapotranspiration Index (SPEI) , has been recently developed
by Vicente-Serrano et al. (2010) and considers the joint e¤ects of precipitation, po-
tential evaporation and temperature. We also explore robustness to using traditional
measures of precipitation and temperature.

Our main results can be summarized as follows. We �nd evidence of a local-level
negative relationship between civil con�ict episodes and agriculture-relevant weather
shocks. In particular, we consider a new draught index (the Standardized Precipitation-
Evapotranspiration Index, SPEI) which improves upon crude rainfall measures and
provides a better measure of the e¤ective amount of moisture received by the soil. We
show that "e¤ective rainfall" as captured by SPEI has a negative impact on con�ict
incidence only when occurring in the growing season months of the main crops culti-
vated in the area. This e¤ect is sizeable: a one standard deviation negative shock in
SPEI induces an approximate 5 percentage point increase in local con�ict incidence in
the subsequent year and a 3 percentage point in the year after that.

We show that crude, individually taken weather indicators such as precipitation
and temperature are not strong predictors of con�ict at such high spatial resolution.
Moreover, even controlling for rainfall and temperature as such, SPEI retains signi�-
cance, suggesting that location-speci�c geographic factors interact in crucial ways with
climatological phenomena.

Our innovative econometric approach allows us to investigate also patterns of prop-
agation of con�ict in time and space. Con�ict appears very clustered in space, and our
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estimation results suggest that this is partly driven by direct spillovers. The magnitude
of the e¤ect of con�ict in another cell is found to decrease with the distance of the cell
from the one under consideration, as one would expect. Con�ict persistence in time
appears to be even more relevant, as highlighted by a large, robust autoregressive com-
ponent. Overall this seems to suggest that small, one-time shocks can have potential
far-reaching e¤ects through con�ict�s propensity to propagate.

Drawing upon the rich disaggregation of con�ict events of the ACLED dataset, we
can also look at individual types of con�ict episodes to have a better understanding
of the channels of causation. We �nd that agriculture-relevant weather shocks impact
mostly non-violent activities carried out by rebels, which include recruitment and the
establishment of headquarters. This is consistent with theories which emphasize �uc-
tuations in the "opportunity cost" of joining a civil con�ict as important predictors of
con�ict onset. Finally, the scale of our study also allows us to take a closer look at the
relationship between time-invariant local characteristics �such as mineral endowments
and terrain ruggedness �without encountering in the �ecological fallacy�most of the
cross country literature runs into.1 We �nd that terrain ruggedness and the presence
of mineral resources are strong local con�ict predictors.

Our work is mostly related to two strands of the literature: that on civil con�ict
determinants and that on climate and development.

The idea that economic shocks a¤ect civil con�ict dates back to the "greed" ad
"grievance" models of Collier and Hoe­ er (1998). Based on Herschell and Grossman�s
(1991) theoretical model of insurrections, Collier and Hoe­ er emphasized an opportu-
nity cost channel linking economic conditions with con�ict onset: when income is low,
the opportunity cost of joining a rebellion is lower, leading to increased likelihood of
con�ict. However, there could also be a "greed" e¤ect positively linking con�ict likeli-
hood and economic conditions, as the potential bene�ts from insurgency also increase
during economic upturns. The relative e¤ectiveness of �ghting technology for rebels
vs. the government is also believed to a¤ect the cost of insurgency; this leads to the
prediction that con�ict should be more prevalent in areas characterized by the presence
of closed terrain to provide "safe havens" for insurgents. More recently, Dal Bo & Dal
Bo (2004) develop a model in which positive shocks to labor intensive industries dimin-
ish con�ict, while positive shocks to capital intensive industries increase it. Chassang
and Padro-i-Miquel (2009) develop a theoretical model which predicts higher con�ict
likelihood following an economic shock, through the channel of lower opportunity cost
of �ghting; the key is that transient economic shocks increase the immediate incentives
to �ght but not the discounted present value of victory.

1The so called "ecological fallacy" derives from the fact that inference about the nature of individual
or local level relationships is drawn only from aggregate statistics for the countries to which those
individuals or localities belong.
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Based on these theoretical channels, a vast empirical literature has blossomed, fo-
cusing on factors such as natural resources, terrain ruggedness, ethnic fractionalization
and economic shocks as con�ict catalysts. Most �rst generation quantitative stud-
ies consisted of cross country regressions focusing on explanatory variables related to
�greed�and �grievance�(Fearon and Laitin, 2003), whereas recent contributions have
started to look at more local factors (Buhaug et al., 2011; Besley and Reynal-Querol,
2012). A large body of literature has focused on weather driven economic shocks and
civil con�ict. Miguel et al. (2004) were the �rst to highlight a relationship between
rainfall driven economic shocks and con�ict incidence in Sub Saharan Africa. Recently,
a number of papers (Ciccone, 2011; Jensen, Sandholt and Gleditsch, 2009) have recon-
sidered the link between rainfall and con�ict, indicating that mean-reverting properties
and the spatial correlation in rainfall have not been taken into account. This suggests
that the relationship between con�ict and weather shocks deserves to be more carefully
evaluated, in particular it has been argued that "uncovering an e¤ect of rainfall on civil
con�ict will require using more disaggregated data" (Ciccone, 2011).

A second strand of the literature related to our work is that on climate and develop-
ment. Motivated by the debate on the economic consequences of global warming, recent
studies have looked at the impact of temperature on economic activity. Dell, Jones and
Olken (2012) �nd that higher temperatures substantially reduce economic growth in
poor countries, while Schlenker and Lobell (2010) highlight the negative impact of cli-
mate change on African agriculture. Some of these studies have also moved beyond the
conventional country-year framework by looking at within-year weather �uctuations:
Burgess et al. (2011) study how weather shocks impact mortality in India by looking
at high frequency variations in rainfall and temperature and conclude that only shocks
occurring after the monsoon are relevant. Kudamatsu, Persson and Strömberg (2011)
explore a similar question with African data and conclude that weather shocks had a
signi�cant impact on child mortality through the channels of malaria and malnutrition.

The remainder of the paper is organized as follows. In section 2 we present our
econometric methodology. In section 3 we document our data sources and dataset
construction, and we provide some descriptive statistics on the variables of interest. In
Section 4 we discuss the econometric evidence at the cross-sectional (cross-cell) level;
while in section 5 we conduct the main analysis exploiting both cross-sectional and
time variation, and focusing on climatic shocks.

2 Methodology

We construct a dataset which has the structure of a raster grid: the cross-sectional units
of observations are subnational �cells�of 1 degree of latitude x 1 degree of longitude,
whose sides are placed in correspondence of integer values of latitude and longitude.
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At these latitudes, 1 degree corresponds on average to approximately 110 km. This
�grid� approach is followed, among others, by Buhaug and Rød (2006), Dell (2011)
and Alesina, Michalopoulos and Papaioannou (2012). An alternative way to conduct
a subnational analysis would be to consider administrative units. However, the way in
which a country is split into administrative units is in itself the outcome of a political
decision: it may take into account both geographical and demographic features of the
territory which could all be arguably determinants of con�ict themselves, or jointly
determined with it. The supposed advantage of using administrative units is that data
on income, population or inequality are often available at the administrative level;
however, such variables are almost inevitably endogenous to con�ict and incorporating
them in a con�ict regression is at least problematic. Our approach is one which takes as
unit of observation an entity whose borders are truly exogenous to con�ict, by ideally
superimposing a grid of equally-sized cells on the territory of interest.2

The bulk of our empirical analysis is conducted at the cell/year level. Our main
dependent variable is ANY EVENT, a binary measure of con�ict incidence indicating
whether the cell has experienced a con�ict-related episode - of any of the categories
included in the ACLED dataset - over the course of the year. In order to investigate
the local level relationship between climate and con�ict incidence we estimate three
models. Consider a panel of N cells indexed by c, and T years indexed by t. Denote
with C a generic climate indicator (e.g., precipitation) and with GS_C the climate
indicator measured in the cell-speci�c growing season (see below). Let X be a vector
of controls with no time variation - such as terrain characteristics, and 
 and � denote
year and country �xed e¤ects, respectively. Model I takes the following form:

ANY EVENT c;i;t = �+
2X
k=0

�1kCc;t�k +
2X
k=0

�2kGS_Cc;t�k + �Xc+ 
t+�i+ "c;i;t (1)

where c denotes the cell, i the country and t the year. This speci�cation is essentially
the transposition of state-of-the-art cross country con�ict regression equations - à la
Ciccone (2011) - at a high spatial resolution.

Our dependent variable is binary and several con�ict regressions in the literature
using a binary dependent variable resort to logit estimators. However, we prefer to
conduct the estimation by OLS, thus �tting an unrestricted linear probability model.
The reason is twofold. On the one hand, this can be easily integrated with state-of-the-
art spatial econometrics techniques, which so far have not been explicitly developed for

2One potential di¢ culty arising when such units of observations are used is the so-called �Modi�able
Aeral Unit Problem�(MAUP). We address this issue in section 5.
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limited dependent variables. On the other hand, it has been argued that when dealing
with �rare events�, such as wars, logit and probit may yield biased estimates (King
and Zeng, 2001).

One key feature of our data is spatial correlation. Most empirical work in the
con�ict literature implicitly assumes that observations are independent across space,
and thus does not take spatial correlation nor spatial dependence into account. When
dealing with georeferenced, cross-sectional data with potential spatial dependence the
majority of the development literature conducts OLS estimation with Conley (1999)
standard errors, which are robust to spatial dependence of unknown form in the error
term (e.g., Dell, 2010). We estimate model I by OLS and we apply such a correction to
our standard errors, following the procedure of Hsiang (2010) and adjusting standard
errors for both spatial and serial correlation.

This is appropriate in cases in which spatial correlation is present in the error term
("spatial error model"), however it does not address the issue of how to explicitly
model spatial dependence in the process itself. We expect spatial correlation to be
present both in the georeferenced covariates � for example, mineral deposit presence
or climatological events �and in con�ict itself, through direct cross-cell spillovers. A
simple way of controlling for spatial correlation in the covariates is to include spatial
lags of the variables of interest, just as in time series it is common to include temporal
lags. In spatial econometrics the structure of spatial dependence between observations
is de�ned through a symmetric weighting matrix W , and the spatial lag of a given
variable is obtained multiplying the matrix W by the vector of observations. Let Ct
and GS_Ct be N-dimensional vectors of climate observations in year t, and let X be
the matrix of cell-level controls. We estimate Model II:

ANY EVENT c;i;t = �+
2X
k=0

�1kCc;t�k +
2X
k=0

�2kGS_Cc;t�k + �Xc + �i+ (2)

+
2X
k=0

�1kW � Ct�k +
2X
k=0

�2kW �GS_Ct�k + �W �X +W � �+ 
t + "c;i;t

This is a spatial Durbin model (Anselin, 1998) in which we let con�ict in one cell
depend on covariates observed not only in the cell itself, but also in the neighboring
cells. Since the structure of spatial dependence cannot be directly estimated but can
only be assumed, the choice of the weighting matrix is always a crucial issue. Spatial
econometricians recommend to base one�s decision on the underlying context and to
conduct a sensitivity analysis to di¤erent choices of matrices (Pluember and Neumayer,
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2010). A popular choice is that of a binary contiguity matrix in which a weight of 1 is
assigned to cells surrounding the cell of interest - within a given distance cuto¤ -, and
a weight of 0 to other cells. Our benchmark connectivity matrix is a binary matrix
with distance cuto¤ set to 290 km. Because 290 km is the radius of the circle drawn
around the cell�s center, and each cell is a square with sides of approximately 110 km,
this connectivity matrix implies that we e¤ectively consider as neighbors of a given cell
the 8 bordering cells plus those immediately adjacent to them. In section 5 we discuss
our choice of the weighting matrix and we conduct a sensitivity analysis to di¤erent
spatial matrices.

Following a common procedure in the spatial econometrics literature, we row-
standardize the connectivity matrix W . The coe¢ cients on the spatial lags should
thus be interpreted as the e¤ect of the average of a given variable in the neighborhood
of each cell. This model has the advantage of simplicity, since including spatial lags of
the independent variables is straightforward and poses no particular econometric con-
cerns. Standard errors are corrected for spatial and temporal correlation à la Hsiang
(2010).

However, we expect spatial correlation to be present not only in the covariates, but
also in con�ict itself. Allowing for spatial autocorrelation in the dependent variable,
in order to capture direct con�ict spillovers, is more problematic than allowing for
spatial correlation in the controls due to an obvious simultaneity problem. Part of
the observed spatial correlation in con�ict location is to be attributed to the fact that
con�ict determinants are spatially correlated themselves; part of it, on the other hand,
is to be attributed to direct contagion e¤ects. Disentangling these two e¤ects is in
general di¢ cult, as it is a version of the well-known re�ection problem (Manski, 1993).
Models allowing for spatial dependence in the dependent variable are known as spatial
autoregressive models. They have been mostly developed for cross-sectional models,
and have only recently been extended to panel data (LeSage & Pace, 2009; Elhorst,
2010 among others). These models are estimated with maximum likelihood or GMM
techniques and tend to be computationally intensive.

A further complication arises in our context, since in addition to spatial autocorre-
lation we expect the process of con�ict to be autocorrelated in time as well. To fully
incorporate both sources of autocorrelation we estimate Model III:

ANY EVENT c;i;t = �ANY EVENT c;i;t�1 + �W �ANY EVENT t+ (3)

�+
2X
k=0

�1kCc;t�k +
2X
k=0

�2kGS_Cc;t�k + �Xc + �i+
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+
2X
k=0

�1kW � Ct�k +
2X
k=0

�2kW �GS_Ct�k + �W �X +W � �

+
t + "c;i;t:

This is a dynamic, spatially autoregressive Durbin model (Elhorst, 2010) in which
we let con�ict in one cell depend on lagged con�ict in the cell itself, on contempora-
neous con�ict in the neighboring cells, on covariates in the cell itself and on covariates
in the neighboring cells. To our knowledge, this is the �rst time a spatio-temporal
autoregressive model is applied in the empirical con�ict literature.

An obvious identi�cation challenge is posed by the endogeneity of the �rst two re-
gressors, which requires these models to be estimated either by GMM or maximum
likelihood. We use the routines developed by Hughes (2012), which are based on quasi-
maximum likelihood techniques described in Elhorst (2009) and Parent and LeSage
(2009). In particular, we �t a random e¤ects model estimated applying the full maxi-
mum likelihood method described in Parent and Le Sage (2009), which treats the value
of the dependent variable for the initial time period as exogenous and uses the data
for t=2. . . T in the estimation (see appendix note 1 for details). Standard errors are
clustered by cell.

Note that the impact of a covariate X in a given cell on the independent variable Y
in that same cell is not entirely captured by the � parameter estimates in equation (3):
there is also an additional feedback e¤ect due to the fact that each X a¤ects through
� the Y �s of neighboring cells too, which in turn a¤ect the Y of the cell itself through
the spatially autoregressive term. The impact as estimated by the coe¢ cient plus this
feedback e¤ect compose what is known as the "direct e¤ect". On the other hand,
indirect e¤ects estimates measure the impact of changing an independent variable in a
particular unit on the dependent variable of all other units (LeSage and Pace, 2009).
Total e¤ects are the sum of direct and indirect e¤ects. Both these e¤ects can be
computed rearranging the equation for Model III (see appendix note 2 for details). We
report direct and total e¤ects in all of our main speci�cations.

The explicit inclusion of spatially and temporally autoregressive terms represents
an innovation of our paper in the empirical literature on con�ict, and one which is
particularly crucial when dealing with highly disaggregated data. Neglecting spatial
patterns has the potential of introducing a serious bias in one�s estimates. A detailed
review of the problems posed by spatial dependence and the possible approaches to
solve them is provided by Franzese and Hays (2004, 2006). One possibility is to simply
ignore the explicit spatial autoregressive component and estimate the model via plain,
non-spatial OLS. This leads to omitted variable bias: the impact of location-speci�c
factors tends to be overestimated as interdependency e¤ects are neglected. Thus, if
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we limited our analysis to model I, we might worry that the local impact of climate is
driven simply by the fact that con�ict is clustered in space and so are climate shocks.
A possibility is to explicitly include the spatial autoregressive component and estimate
the model via OLS: estimates will su¤er simultaneity bias, as the spatial lag will be
endogenous. The analyses will be biased in the opposite direction: in the typical case
of positive interdependence and positive covariance of spatial lag and exogenous regres-
sors, one would overestimate the interdependence e¤ects and underestimate contextual
(cell-speci�c) e¤ects. This discussion suggests that inference from studies which do
not address spatial dependence at all should be taken with caution, especially when
considering data at higher geographic resolutions.

Since our focus is on within-country variation in the incidence of con�ict, our spec-
i�cation of choice includes country �xed e¤ects3, so as to account for long-run aspects
of the political, economic or social structure of the states in our sample, as well as
for state-level geographic features (e.g. country size). According to Besley and Pers-
son (2008) �this gets around one of the key worries in the literature, namely that it
is unobserved characteristics of institutions, culture and economic structure that are
primarily responsible for civil war�and ensures that estimation results are not driven
by unmeasured features of states. Through the inclusion of year �xed e¤ects we control
for global trends in con�ict incidence as well as climate.

As a preliminary step to our panel analysis, we collapse our cell-year panel to
create a time-invariant measure of con�ict prevalence in a given cell. Our aim is that
of investigating cross-sectional relationships with various local terrain characteristics.
Our dependent variable capturing average con�ict incidence over time is the fraction
of years in the sample in which the cell has experienced at least one con�ict event.
The aim of the cross-sectional analysis is to highlight geographic correlates of con�ict
exploiting the high spatial resolution of the dataset to detect these patterns at the
appropriate scale. Again, we estimate three models:

ANY EV ENT c;i = �+ �Xc + �i + "c;i (4)

ANY EV ENT c;i = �+ �Xc + �W �X +W � �+ "c;i (5)

which are estimated by OLS with Conley errors, and

ANY EV ENT c;i = �+ 'W �ANY EV ENT + �Xc + �W �X +W � �+ "c;i (6)

estimated by maximum likelihood with errors clustered by cell.
3For the purposes of de�ning country �xed e¤ects, each cell in the dataset is uniquely assigned to a

country. Cells shared among more than one country are assigned to the country which has the largest
share of the cell�s territory; a "shared" dummy for those cells is also included among the controls.
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3 Data

3.1 Sources and dataset construction

We bring together high-frequency, georeferenced data from a variety of sources and con-
struct a dataset which covers 36 African countries over the period 1960-2006, including
information on individual con�ict episodes and on a large number of geo-climatic char-
acteristics. In particular, we collect detailed data on agricultural land cover, ethnic
groups distribution, terrain characteristics and the location of mineral resources, and
match it with data on crop calendars as well as climate indicators like precipitation
and temperature. The structure of the dataset is that of a raster grid: the cross-
sectional units of observations are subnational �cells�of 1 degree of latitude x 1 degree
of longitude, whose sides are placed in correspondence of integer values of latitude and
longitude.

In our panel analysis we focus on a smaller, balanced panel of 33 countries4 over
the period 1997-2006. The reason is manifold: �rst, this panel includes only the more
recent and presumably more accurate con�ict events coded in ACLED - see below.
Second, this sample does not include civil con�icts related to independence from colonial
powers, which are much less likely to be driven by local economic shocks. Finally, and
most importantly, this is the largest balanced panel possible with our data. Spatial
econometrics techniques have been developed for balanced panels only5 (Elhorst, 2009;
Hughes, 2012). A map of the cells included in the balanced panel is provided in the
appendix (�gure A1). Appendix table A1 shows that our benchmark model I and model
II speci�cations yield similar results in the full sample versus the balanced panel, thus
limiting the concern of selection.

Con�ict events
Data on civil con�ict episodes over the period 1960-2010 are drawn from the PRIO/Uppsala

Armed Con�ict Location and Event (ACLED) dataset in its fall 2010 version. We com-
bine the �rst version of ACLED released in 2008, which covered 8 Central African
countries (Angola, Burundi, Congo, DRC, Liberia, Rwanda, Sierra Leone and Uganda)
over the period 1960-2006, with the new version (released in fall 2010) which covers
almost the whole continent over the period 1997-2010.

This is the most recent and detailed con�ict dataset developed by PRIO/Uppsala.
It codes exact locations, in terms of latitude and longitude, dates, and additional

4These countries are: Algeria, Angola, Benin, Burkina Faso, Cameroon, Central African Republic,
Chad, Congo, Cote d�Ivoire, Rep. Dem. of the Congo, Equitorial Guinea, Ethiopia, Gabon, Ghana,
Guinea, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria,
Rwanda, Senegal, Sierra Leone, Sudan, Tanzania, Togo, Zambia, Zimbabwe.

5The main conceptual di¢ culty is that with unbalanced panels the spatial weighting matrix would
no longer be time invariant, and there would be a degrees of freedom problem.
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characteristics of a wide range of con�ict-related events in states a¤ected by civil war.
Civil con�ict episodes are de�ned broadly, to include not only battles with more than
25 casualties (the standard PRIO threshold) but all kinds of activity involving rebels,
such as recruitment or the establishment of headquarters.

In most of our analysis we use a broad indicator of con�ict incidence, that is, a
dummy equal to one if at least one con�ict event of any type occurred in a given cell
in a given year (ANY EVENT ). We also consider a breakdown of con�ict events into
di¤erent types, i.e. battles, violence against civilians, riots and rebel recruitment, to
test if our explanatory variables have a di¤erential impact on these di¤erent outcomes.

Note that not all of the cells within the African grid correspond to countries which
are coded in the ACLED dataset; many cells do not even correspond to land, but to
the ocean. The criterion for including a cell in our dataset is the following: we include
only those cells which contain a portion of territory of a country ever included in the
ACLED dataset, i.e. included either in the �old ACLED�or in the �new ACLED�.

Crop cover data
Data on the geographical distribution of agricultural crops is drawn from the M3-

Crops Data by Monfreda et al. (2008), a detailed raster dataset at the 5 arc minutes x
5 arc minutes resolution (about 9.2 km by 9.2 km at the equator) including 137 crops.
For each 5�x5�cell in the raster and each of the 137 crops included, Monfreda et al.
report harvested area in hectars. We aggregate the harvested area variable at the lower
resolution of our dataset, i.e. 1 degree x 1 degree, and we employ it to rank the crops
cultivated in each cell. We identify the main crop for each cell of our dataset as the crop
with the largest harvested area in the cell; we thus obtain 30 di¤erent �main crops�
in our full sample. In a similar way, we identify the second and third most cultivated
crop.

Natural resources
In an e¤ort to collect georeferenced data on as many natural resources as possible,

data on the location of mineral resources are drawn from a combination of the Min-
eral Resource Data System (MRDS) prepared by the United States Geological Survey
(USGS) and of the PRIO/Uppsala datasets Gemdata, Petrodata and Diadata. We
have identi�ed 85 types of mineral commodities present in the countries of our dataset,
including precious metals, industrial metals, oil and gems.6

6Speci�cally, the list includes: aluminum, amber, aquamarine, asbestos, barium, barite, bentonite,
beryl, beryllium, bismuth, bromine, calcium, chromium, clay, cobalt, coltan, copper, diamond, di-
atomite, emerald, feldspar, �uorine, and, �uorite, fuller�s, earth, garnet, garnet, gold, goshenite,
graphite, halite, heliodor, iridium, iron, jadeite, lapis-lazu, lead, lithium, magnesite, manganese, mar-
ble, metal, mica, moganite, molybdenum, nephrite, nickel, oil, opal, osmium, palladium, pearl, periodit,
PGE, phosphates, platinum, potassium, quartz, REE, rhodium, ruby, ruthenium, sapphire, silica, sil-
ver, sodium, spinel, stone, strontium, sulfur, talc, tantalum, thorium, tin, titanium, topaz, tourmaline,
tungsten, uranium, vanadium, vermiculite, zinc, zirconium.
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PRIO natural resources datasets were compiled through an intensive literature
search of academic databases and journals, national geological survey reports and in-
dustry databases and reports, and as a result they tend to be more comprehensive
and reliable than USGS. However, although likely to underreport mineral occurrences,
USGS data are the only comprehensive, georeferenced data source for mineral com-
modities available to the general public.

In the present analysis we employ a coarse indicator for the presence of any mineral
in the cell. In ongoing work we are exploring the di¤erential impact of gemstones, oil
and other types of minerals, as well as the time-varying impact of these resources in
relation to changes in their prices.

Ethnic groups
Data on ethnic groups are drawn from the new University of Zurich �Geo-referencing

of Ethnic Groups� (GREG) dataset. The latter relies on maps and data drawn from
the classical Soviet Atlas Narodov Mira and employs geographic information systems
to represent group territories as polygons. We used the maps available in the GREG
data and combined them with our raster grid to measure the extent of ethnic diversity
in each cell. As a proxy for ethnic grievances, we compute a cell-level Ethno-Linguistic
Fractionalization (ELF) index, based on the shares of inhabited territory attributed to
di¤erent ethnic groups in each cell.

Infrastructure and geography
Data on the location of roads are drawn from the Global GIS Atlas Developed by

the U.S. Geological Survey, a digital atlas of the world at a nominal scale of 1:1 million.
These data have no time variation and report only the roads known in year 2000. To
mitigate measurement error and selection concerns, we use as a proxy for road density
a dummy for the presence in the cell of at least one road of primary use.

The remaining cross-sectional geographic information are coded from the Yale G-
Econ Gridded Output dataset, from which our dataset inherits the "grid" structure
and the 1 degree by 1 degree resolution.

To investigate at the disaggregated scale the relationship between mountainous ter-
rain and con�ict, wee include two di¤erent measures: one is the average elevation in
the cell and one is the standard deviation of elevation, denoted as "roughness"; both
are measured in meters. In the con�ict literature terrain ruggedness has received con-
siderable attention, starting from Fearon and Laitin (2003); their proxy for elevation
is the share of "mountainous" terrain over a country�s surface. This is a poor measure
for various reasons: �rst, it is a measure of elevation, and not of slope: as a result, ac-
cording to this measure, a plateau would count as "rugged" terrain due to its elevation,
even though it does not display characteristics favorable to rebel warfare. Secondly,
and perhaps most importantly, being expressed as a proportion of the country�s terri-
tory, it is arguably measured at the wrong scale: unless the rebels indeed operate on
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the mountainous share of the country, the magnitude of this share should not matter.
Our measure should be an improvement on both grounds.

We also include the distance from the closest navigable river - measured in km from
the cell�s midpoint - to capture the strategic importance of the location.

Climate data
Our main climate indicator is the Standardized Precipitation-Evapotranspiration

Index (SPEI ), a recently developed multiscalar drought index (Vicente-Serrano et al.,
2010). This is a departure from most con�ict literature, which so far has focused on
precipitation as the main climate indicator. One of the concerns with precipitation as
such is that it might not be an accurate measure of climate shocks impacting agriculture,
since the impact of rainfall on the growing cycle of a plant depends also on the extent
to which water can be retained by the soil. This in turn depends on a variety of
factors: the characteristics of the soil itself, the slope, the extent to which sunshine
induces evaporation, wind exposure. This information is incorporated in Potential
Evapotranspiration (PET), which is de�ned as the amount of water that could be
evaporated and transpired if there were su¢ cient water available. A way to take into
account the di¤erent soil�s ability to retain rainfall moisture is to consider a measure
of precipitation corrected by PET. The Standardized Precipitation-Evapotranspiration
Index (SPEI) considers the joint e¤ects of precipitation, PET and temperature, thus
representing an improved alternative to the widely used Palmer Draught Index. SPEI
is available at a monthly frequency and at a spatial resolution of 0.5 degrees x 0.5
degrees, providing temporal coverage for the period 1901-2006. SPEI will be our main
explanatory variable of interest for what concerns climate, because it encompasses
all the above mentioned features of climate and of the terrain which are relevant for
agricultural production.

The SPEI index is expressed in units of standard deviation from the average based
on the available period (1901-2006). The data is �tted to a normal distribution and
normalized to a �exible multiple time scale such as 1, 4-,6-,12-,24- 48- months etc. A
short - say 4 months - time scale re�ects short- and medium-term moisture conditions
and thus provides a seasonal estimation of precipitation as it is relevant for agriculture.
For this reason we use SPEI at a 4 months time scale.7

We also consider precipitation and temperature individually. We draw monthly
precipitation data at a resolution of 1 degree by 1 degree for years 1960-2007 from
the Global Precipitation Climatology Project (GPCP). We employ the World Climate
Research Programme Global Climate Observing System GPCP Total Precipitation
dataset, at the resolution of our grid, 1 degree x 1 degree. The dataset is available
through the International Research Institute for Climate and Society at Columbia Uni-
versity.

7Our results are robust to di¤erent time scales too - available upon request.
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Temperature data are drawn from the CRU TS3.0 dataset prepared by the Climatic
Research Unit at the University of East Anglia. CRU TS3.0 is a high-resolution gridded
dataset reporting monthly temperatures at a resolution of 0.5x0.5 for the period 1901-
2006. In order to capture the relevance of the most extreme temperature values (see
e.g. Burgess et al. 2011), we construct a �temperature deviation�variable as follows:
for each cell we compute the historic average over the sample 1960-2006 of the monthly
daily mean temperature; then for each month we take the absolute deviation of the
monthly daily mean temperature from this historic average; �nally we average this
monthly measure over the year.

Crop calendars and crop-speci�c climate shocks
A key feature of our analysis is that we do not con�ne our measurement of climate

indicators to aggregates over the year, but we try to identify periods during the year
during which climatic conditions impact agricultural production the most. In particu-
lar, we construct speci�c indicators for climatic conditions during the growing season,
which is when crops are most sensitive to unfavorable conditions. To retrieve the grow-
ing season of the �rst three crops (ranked by harvested area) cultivated in each cell we
rely on crop calendars drawn from a variety of sources.

As a primary source we use the Global Monthly Irrigated and Rainfed Crop Areas
around the year 2000 (MIRCA 2000), prepared by the Physical Geography Department
of the Goethe Universität Frankfurt am Main. This is a dataset of monthly growing
seasons of 26 irrigated and rainfed crops at di¤erent latitudes and longitudes, with a
spatial resolution of 5 arc-minutes by 5 arc-minutes. It is our preferred source given
that it disaggregates by irrigated and rainfed crops - which we focus on - , and given
its high spatial resolution.

For the crops and cells not covered by MIRCA, we turn to two complementary
sources, which both report crop calendars at the country level. The �rst are those
generated with the FAO Food security and Early warning Network for Information
eXchange Workstation (FENIX) Crop Calendar tool. The FENIX tool indicates for
various crops and countries the planting and harvesting season. We de�ne the growing
season as the months comprised between planting and harvesting. Our second source
are the FAO Seeds and Plant Genetic Resources Crop Calendars.

We construct measures of crop-speci�c climate shocks by matching our monthly
climate data with the calendars of the main crops cultivated in each cell, thus creating
cell-speci�c measures of �relevant�climatic conditions.

Our benchmark indicator of climate shock, denoted as SPEI Shock Growing Season,
captures low SPEI episodes occurring during the growing season of the main crop of
a given cell. It is de�ned at the cell-year level as follows: in a given year, consider
the growing season months of the main crop; take the number of consecutive growing
season months in which SPEI was below its mean by more than one standard deviation;
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express this measure as a fraction of the number of growing season months.8 The
value of SPEI Shock Growing Season thus ranges between 0 and 1, with 0 denoting a
�good�year in which never during the growing season of the main crop SPEI assumed
abnormally low values, and 1 denoting a �bad�year in which the entire growing season
witnessed abnormally low values of SPEI. We also consider a more extreme version of
this measure in which the relevant spells are ones in which SPEI is below its mean by
2 standard deviations.

For di¤erent climate indicators - rainfall, SPEI and temperature absolute deviation
- we also de�ne "Growing Season-adjusted indicators" constructed as follows: we com-
pute monthly interactions between a �growing season�dummy and the monthly climate
indicator, and we average these monthly interactions over the year. This amounts to
computing a weighted average of monthly rainfall, SPEI or temperature absolute devi-
ation assigning a weight 0 to months outside the growing season of the main crop.

Finally, we construct a version of the above interaction measures using information
not only on the main crop, but on the three �rst crops present in each cell. The monthly
interactions between the climate indicator and growing season dummies are computed
as above, separately for each of the three �rst crops present in the cell; then for each
month a weighted average of the three interactions is computed, weighting each crop by
its share of harvested area in the cell; and �nally these monthly weighted interactions
are averaged over the year.

3.2 Descriptive statistics

Descriptive statistics are reported in table 1. Panel A reports statistics at the cell level
for the cross-sectional estimates we will perform in table 2; Panel B instead reports
statistics at the cell/year level for the balanced panel used in the rest of the analysis.

[Insert Table 1]

Cell level incidence of con�ict is very high: the average cell in our sample has
experienced con�ict episodes for 17% of the years in our full panel, which means 1.7
years for countries covered throughout 1960-2006. The territory in our sample appears
to be mineral rich, as about 20% of the cells have at least one mineral deposit, and on
average moderately elevated, with an average elevation of about 300 meters. Ethnic
fractionalization also appears to be high, with an average cell-level ELF index of 23%.
We include among our cross-sectional controls a "shared" dummy for cells which do

8 In case there are more than one consecutive spell of low SPEI during the growing season in a given
year, we consider the longest spell. Our results are robust to considering instead the �rst spell in the
year. Note that SPEI is already expressed as standard deviations form the cell�s historic mean over the
whole available period 1901-2006. For the purposes of de�ning our variable, we re-normalize it based
on the mean over our sample period, which is slightly lower than the historic mean.
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not belong entirely to one country, but contain a country border; these cells are about
29% of our sample. The dummy "border", on the other hand, identi�es cells whose
edge coincides with a state border (about 4% of our sample).

[Insert Figures 1 to 5]

In �gures 1-5 we map some of our key variables, to have a sense of the within-country
variation in our covariates. Figure 1 shows cell-level con�ict prevalence. Con�ict ap-
pears to be clustered in space, and in particular the Rwanda �Burundi con�ict cluster
is very apparent. Overall, areas in the tropical belt appear to have experienced more
con�ict, which could induce a positive spurious correlation between rainfall levels and
con�ict incidence. Figure 2 plots average rainfall levels, which as expected are higher
at the tropics and display a strong spatial correlation. Figure 3 plots the average SPEI
index. Although it also appears to be spatially clustered, it displays much more local
variation than rainfall, suggesting it might be a better explanatory variable. The plot
substantiates the claim that, although correlated with rainfall, SPEI is indeed a richer
indicator. Figure 4 shows the historic mean of the absolute temperature deviation.
Temperature variability appears to be either very high or very low; areas around the
equator appear as the most stable ones temperature wise.9 Finally, in �gure 5 each
cell is associated to a color corresponding to the main crop cultivated in the cell. The
map shows that a wide range of crops are cultivated in our sample, and there seems
to be considerable variation in their spatial distribution. This suggests that focusing
on the growing season of one crop �representative�of the whole Sub-Saharan African
continent would provide a very limited picture of the true cultivation pattern. Indeed
we can derive signi�cant variation across cells and across months in climate measures
thanks to variation in the growing seasons of di¤erent crops.

4 Empirical results: cross section

In this section we explore the empirical determinants of civil con�ict starting with
time invariant characteristics such as geography and location of mineral deposits. Our
interest in conducting this type of analysis hinges on two factors. First, despite the
limitations of cross-sectional inference, the high level of spatial resolution of our data
limits the concerns related to state-wide unobservable determinants of con�ict and
allow us to pin down the relationship between each factor and the location in which
con�ict occurs with more con�dence. Second, the data exhibits spatial dependence, in
the sense that geographic features in a given cell will likely not only a¤ect the cell itself

9 In the Appendix we report, for comparison, �gures 2, 3, and 4 constructed considering climate
indicators in a given year (2000) rather than their sample average.
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but also neighboring cells. This is something that we can test and that potentially
yields interesting insights on the interdependence among neighboring locations in the
di¤usion of con�ict.

[Insert Table 2]

Our cross-sectional evidence is presented in table 2. The table reports OLS coef-
�cients and standard errors in parentheses corrected for spatial dependence following
Conley (1999). The dependent variable captures average con�ict incidence and is the
fraction of years during the sample period in which the cell has experienced at least
one con�ict event. The mean and standard deviation of this variable are, respectively,
:17 and :25.

In columns 1 and 2 we consider �own� characteristics of the cell (Model I), in
columns 3 and 4 we also include characteristics of the neighboring cells (Model II) and
in columns 5 and 6 (Model III) we estimate a spatial lag model in which we further
include a spatially autoregressive component to capture direct con�ict spillovers across
neighbors. Neighbors are de�ned according to our benchmark weight matrix as cells
whose midpoints lie within 290 km from the midpoint of the own cell. Columns 1, 3
and 5 report the coe¢ cients of a purely cross-sectional regression without area �xed
e¤ects. In columns 2, 4 and 6 we instead include country �xed e¤ects (and their spatial
lags, for columns 4 and 6). The speci�cations that include country �xed e¤ects are
our preferred ones because our focus is on within-country variation in the incidence of
con�ict, and by including country �xed e¤ects we account for time-invariant aspects
of the political, economic or social structure of the states in our sample, as well as for
state-level geographic features, e.g. country size.

Let us consider �rst own characteristics of the cell. The �rst set of controls we
include measure geo-administrative characteristics: Shared is a dummy for whether a
cell belongs to more than one country, and Border is a dummy for whether a cell�s
side is tangent to a country border (the two are mutually exclusive). The idea is that
cells which are at the border with other countries may be more likely to experience
con�ict. The coe¢ cient for Shared is positive and consistent with this hypothesis in all
speci�cations, and signi�cant in models II and III. The Border coe¢ cient on the other
hand is statistically indistinguishable from 0. The third control listed in the table,
Area, measures the area of the cell corresponding to land, to account for coastal cells
which correspond mostly to sea. The coe¢ cient of this variable is zero in virtually all
speci�cations. We next move to geographic characteristics of the terrain. The �rst,
Elevation, measures the average altitude of the cell (in mt.). Its coe¢ cient is negative
but mostly statistically insigni�cant. More interesting is the variable Rough, which is
the standard deviation of elevation in the cell, and thus captures the roughness of the
terrain. This variable is strongly and signi�cantly correlated with con�ict incidence.
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A one-standard deviation increase in roughness increases con�ict incidence by :04 in
column 6 - our preferred speci�cation, that is approximately 1/4 of the mean of the
dependent variable. This con�rms a relationship which has been previously highlighted
in cross country studies, starting with Fearon and Laitin (2003), and which is usually
attributed to the fact that impervious areas provide safe havens for rebels.

We next consider the variable Distance from river. This is the minimum distance
(in km) of the centroid of the cell from a navigable river. The negative coe¢ cient of
this variable in columns 1 and 2 suggests that areas further away from navigable rivers
tend to experience less con�ict. This could depend on the fact that these areas are
more controlled by local governments or simply less prosperous in the long run, so that
they are less appealing for predation purposes. This is also consistent with �ndings by
Gleditsch et al.(2006), who note that the presence of a shared river basin is associated
to higher con�ict risk. Notice however that this variable is no longer signi�cant when
we include neighbors�characteristics.

Transport infrastructure plays a signi�cant role, as con�rmed by the coe¢ cient of
the variable Road, which is a dummy equal to one if the cell contains at least one road
of �primary use�(as de�ned by the Global GIS Atlas). The coe¢ cient of this variable
is around :10 across the various speci�cations, remaining highly signi�cant in all cases.
The magnitude of the e¤ect suggests that the presence of a road in the cell increases
the fraction of years with con�ict by about one fourth of a standard deviation. One
possible interpretation is that areas served by main roads are easier to reach for the
purpose of attacks. Another interpretation is again that the long terms bene�ts of
capturing those areas are higher compared to areas not covered by main roads.

We next turn to some of the channels more widely explored in the cross country
literature. The �rst is linked to the literature on ethnic fractionalization. We compute
an equivalent of the ELF index in which we use, rather than population shares of
di¤erent ethnic groups, the relative territory shares occupied by each group as reported
by the GREG dataset, after having normalized these shares by the total inhabited land
in each cell. This is a proxy for the degree of ethnic diversity in the cell, which may
be associated with �grievance�motives for con�ict. The average cell in our sample has
2 ethnic groups, with an ELF of 0.23. The coe¢ cient of this variable is positive and
signi�cant at the 10 percent level in the �rst two columns, but this e¤ect is no longer
distinguishable from 0 once spatial covariates are included.

The second channel is linked to the natural resource curse. The variable Minerals
is a dummy equal to one if the cell contains at least one mineral deposit (20 percent of
the cells in our sample have at least one such deposit). Ceteris paribus, the presence
of minerals in the cell is associated with a signi�cantly higher incidence of con�ict, in
the order of about 30% of the mean of the dependent variable. This coe¢ cient is very
stable in terms of size and signi�cance across speci�cations. The e¤ect of this variable
can be explained in two (non-mutually exclusive) ways. On the one hand, there can be
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�greed�motives, as competing forces may try to capture territory that promises high
revenue from mineral extraction. On the other hand, control over mineral resources
yields a �ow of cash revenue that rebels and government can use to �nance their military
activities.10

Let us now turn to the neighbor�s characteristics, represented by the spatial lags
of the covariates considered above. Most neighbors� characteristics are statistically
insigni�cant, suggesting, in general, that the impact of the geographic characteristics
discussed above is a strictly local one. However the impact of neighboring Roads and
Shared cells appears to have the opposite sign compared to their impact in the own cell.
This is probably driven by the fact that these two variables are negatively correlated in
space, so that own road or border presence is negatively correlated with the presence
of a major road or a border in the neighborhood.

Finally, let us consider con�ict spillovers. The autoregressive term in columns 5 and
6 appears highly signi�cant and large. To gauge the magnitude of the e¤ects consider
the following. Because we row-standardize the weighting matrix, the regressor W � Y
goes from 0 to 1 when each and every neighboring cell experiences a con�ict event.
If the number of neighbors is N; then the e¤ect of con�ict in one neighboring cell is
given by the estimated coe¢ cient b' reported in the table multiplied by 1=N: Based
on this, our estimates in column 6 imply that after controlling for own and neighbor�s
characteristics, con�ict in all neighboring cells makes it 53 percentage points more likely
to observe con�ict in the cell itself. Given that each cell has on average 17 neighbors
according to our benchmark weighting matrix, this amounts to roughly 3 percentage
points higher con�ict prevalence for each neighbor in con�ict. Note that, however, this
analysis employs a de�nition of con�ict prevalence with no time variation: this should
only be taken as suggestive evidence that con�ict spillovers in space are relevant, as
only the panel analysis can provide adequate estimates of both temporal and spatial
spillovers.

It is however interesting to note that the addition of the spatial autoregressive term
does not radically modify the signi�cance or magnitude of the covariates estimated in
the non-autoregressive model. This indicates that there is indeed some spatial correla-
tion in con�ict prevalence which is explained by spatial correlation in covariates alone.
A comparison between direct e¤ects and parameter estimates in Model III seems to
suggest that feedback e¤ects - from own cell�s characteristics to neighboring con�ict
and back to own con�ict - are limited.
10According to the theoretical literature there is a third, indirect channel through which mineral-

wealth can fuel con�ict, i.e., by increasing rent-seeking and corruption phenomena, which weaken states
and their ability to e¤ectively govern and maintain security. This third e¤ect, though, is not captured
at the scale of our study, as it is mediated through a country�s institutions (which in our study are
partly controlled for by the inclusion of country dummies).
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Overall, our cross-sectional analysis suggests that geography characteristics have a
strictly local e¤ect, especially terrain ruggedness and presence of mineral endowments,
and that cross-cells con�ict spillovers are potentially very relevant.

5 Empirical results: panel

We next turn to the analysis of climatic factors as determinants of con�ict. For this
purpose we exploit the rich temporal dimension of the data and conduct the analysis at
the cell/year level. Our dependent variable becomes ANY EVENT t, a dummy equal to
one if the cell experienced at least one con�ict event during year t. We consider three
models: a non-spatial, static model (Model I), in which we include climate shocks in
the own cell only; a non-autoregressive, spatial static model (Model II), in which we
consider climate shocks both in the own and neighboring cells; and a fully spatial,
dynamic Durbin model (Model III) in which we also include two autoregressive terms:
a spatial lag of the dependent variable, to capture contemporaneous con�ict spillovers
over space, and a temporal lag, capturing temporal con�ict persistence in the own cell.
The �rst two models are estimated by OLS, with standard errors corrected for spatial
and temporal correlation, while the third model is estimated by MLE. All regressions
include country and year �xed e¤ects, plus the controls listed in table 2; models II and
III include the spatial lags of controls and country �xed e¤ects; these coe¢ cients are
not reported for ease of exposition.

We will �rst present our benchmark speci�cation, in which we highlight the rela-
tionship between cell speci�c weather shocks and con�ict, accounting for spatial depen-
dence. We then consider two critical issues arising in spatial econometrics: the choice
of the weighting matrix and the choice of scale. We then turn to alternative climate
indicators, and �nally we attempt an analysis disaggregated by type of con�ict event.

[Insert Table 3]

Table 3 contains our main results on the e¤ects of climate on civil con�ict. The
regressor of interest is SPEI Shock Growing Season, de�ned as the fraction of the
main crop�s growing season during which SPEI was below its cell-level mean by one
standard deviation. As explained in section 4, the SPEI index considers the joint
e¤ects of precipitation, potential evapotranspiration and temperature, higher values of
this index corresponding to higher levels of �e¤ective�rainfall. In our speci�cations we
also control for standalone SPEI, which in this speci�cation captures the impact of
SPEI in months outside the growing season of the main crop. The �rst and second
temporal lag are included for all climate indicators.

In column I SPEI Shock Growing Season displays a strong, highly signi�cant cor-
relation with con�ict, both contemporaneous and in its two temporal lags, indicating
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that spells of low SPEI during the growing season are associated to more con�ict.
The impact of the standalone SPEI variable is also positive and signi�cant. This is
likely to be driven by the fact that high levels of SPEI outside the growing season are
not bene�cial for crops, which for example might rot. The speci�cation in column 1,
however, fails to take into account spatial and temporal correlation; this could create
omitted variable bias. We then turn to model II (column 2), which addresses the issue
of spatial correlation in the covariates by including spatial lags of all the independent
variables. In this speci�cation, the only own cell climate indicator which remains sig-
ni�cant is SPEI Shock Growing Season, in its �rst and second temporal lag. This is
consistent with the idea that climatic conditions during the growing season are those
which matter the most for agriculture. Con�ict responds with a one and two year lag,
which is consistent with the kind of temporal persistence highlighted in cross country
studies. Contemporaneous SPEI Shock Growing Season in the neighborhood is also
signi�cantly associated with more con�ict.

Although Model II controls for climatic conditions in the surrounding cells, it might
still su¤er omitted variable bias from not including autoregressive components of the
dependent variable. We address this issue in column 3 (Model III). First note that,
as expected, including autoregressive components tends to reduce the magnitude and
signi�cance of the coe¢ cients estimated in Model II. However, the coe¢ cients of the
�rst and second lag of SPEI Shock Growing Season in the own cell retain signi�cance.
A spell of SPEI below one standard deviation throughout the whole growing season is
associated to a 6 percentage point increase in con�ict likelihood in the subsequent year,
and a 4 percentage point one in the year following that; this is roughly 1/3 and 1/4 of
the dependent variable�s mean. Put in other terms, a one standard deviation increase
in our measure of "relevant rainfall" induces an increase in con�ict likelihood of 5 and
3 percentage points in the �rst and second subsequent years - a sizeable e¤ect.

Direct con�ict spillovers, both in time and space, appear to be very signi�cant.
Con�ict in the own cell is associated to a 31 percentage point increase in the probabil-
ity of experiencing con�ict the following year. Contemporaneous con�ict in all of the
neighboring cells induces a 45 percentage point increase in the probability of experi-
encing con�ict in the cell itself. Given that according to our de�nition of contiguity
matrix the average cell in our sample has 17 neighbors, this means that con�ict in
each of these neighbors induces a 2.5 percentage point increase in the probability of
con�ict in the average cell itself. Overall it seems that temporal persistence within
cell is more relevant than contemporaneous spatial spillovers across cells. We will be
able to address this more comprehensively in the next section, in which we explore the
sensitivity of these estimates to di¤erent choices of spatial weighting matrix.

[Insert Table 4]

Just as in time series the structure of temporal dependence is assumed by the

22



researcher and cannot be estimated, so is the structure of spatial dependence - en-
compassed by the spatial weighting matrix - in spatial econometrics. Plumper and
Neumayer (2010) warn that some datasets are very sensitive to functional form speci�-
cation of the weighting matrix, and recommend that a sensitivity analysis be included
in empirical work using spatial econometrics. The most popular choices for spatial
weighting matrix are binary contiguity matrices, as our benchmark, or matrices based
on the inverse geographic distance, typically squared. Table 4 reproposes the speci-
�cation of column 3 in table 3, estimated using di¤erent kinds of spatial matrix. In
columns 1, 2 and 3 we estimate our model using binary contiguity matrices with di¤er-
ent distance cuto¤s: 190, 450 and 600 km. A 190 km distance cuto¤ implies that we
are potentially considering as a cell�s neighbors the 8 adjacent cells. Increasing the dis-
tance cuto¤ to 290 km we add another circle of adjacent cells, and increasing it further
to 450 we add yet another circle. Finally, with a cuto¤ of 600 km, we are considering
a large, approximately circular area around the reference cell. With distance cuto¤s
of 190, 450 and 600 km the average number of neighbors for each cell is respectively
7, 41 and 74. In columns 4, 5 and 6 we turn to inverse quadratic distance matrices,
again specifying di¤erent cuto¤s past which the spatial dependence is assumed to be
0. The main di¤erence with respect to binary weight matrices is that observations
lying further away are weighted less than observations closer to the reference cell. We
include distance cuto¤s of 290, 450 and 600 km.11 We have also repeated the analysis
with linear distance based matrices, and found that results are very similar to those
obtained with squared distance (results available upon request). All of our matrices are
row standardized.

It is interesting to note that using di¤erent weighting matrices the magnitude and
signi�cance of our covariates of interest is minimally altered. In particular the co-
e¢ cient of SPEI Growing Season Main Crop in its �rst temporal lag appears to be
remarkably stable across speci�cations, and so does the temporal autoregressive co-
e¢ cient. This is an important robustness check for our main result. On the other
hand, as expected, the choice of weighting matrix does a¤ect the coe¢ cients of the
spatially lagged variables. In particular, the spatial autoregressive coe¢ cient is most
signi�cantly a¤ected by changes in the de�nition of neighborhoods, increasing in mag-
nitude as we increase the distance cuto¤. This is partly driven by a mechanical e¤ect:
as we increase the size of neighborhoods, we increase the number of neighbors. Recall
that the regressor W � Y goes from 0 to 1 only when all neighboring cells experience
a con�ict event. For a cell with N neighbors, the e¤ect of con�ict in one neighboring
cell is given by the estimated coe¢ cient on W � Y reported in the table multiplied by
1=N:

11We do not include the 190 km cuto¤ since at this cuto¤ all neighboring cells are roughly at the
same distance from the reference cell.
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Consider the coe¢ cients of the spatially autoregressive term in the case of binary
weight matrices, i.e. columns 1 to 3. If we normalize them by the average number of
neighbors under each weighting scheme, we obtain respectively 0:05 (190 km), 0:01 (450
km) and 0:008 (600 km). This reveals that as we broaden the de�nition of neighbors,
the contribution of each individual neighbor becomes smaller. This is intuitive: as
we add neighbors further away from the cell, and presumably with a smaller absolute
impact on con�ict in the reference cell, the impact of the average neighbor is driven
down. The calculation of the e¤ect per neighbor in the case of inverse distance based
weighting matrices is less straightforward but the same intuition applies.

Overall this analysis seems to suggest that own e¤ects are considerably stable as we
change the de�nition of weighting matrix. Since our focus is on the local dimensions of
con�ict, we choose as our benchmark matrix one with a reasonably restrictive de�nition
of neighbors. Moreover, we prefer the simplicity of a binary weighting matrix, which
makes the coe¢ cient of spatial lags easier to interpret.

Another critical speci�cation issue arising when dealing with spatial data is the
so-called Modi�able Aeral Unit Problem (MAUP), a well-know phenomenon in spatial
analysis. It is de�ned as "a problem arising from the imposition of arti�cial units of
spatial reporting on continuous geographical phenomenon resulting in the generation
of arti�cial spatial patterns" (Heywood et al., 1998). The MAUP consists of two
components: one is a scale problem, which is the variation in numerical results occurring
due to number of zones used in analysis, and hence the possibility of obtaining di¤erent
results for di¤erent resolutions; the other is an aggregation problem or zonation e¤ect,
which refers to which zoning scheme is used at a given level of aggregation. Although
not eliminable, this problem is mitigated when the units of observations are equal-sized
cells rather than administrative units of di¤erent sizes: at that point, the zonation
e¤ect will be minimal, even though a scale e¤ect nevertheless exists. Despite the lack
of general solutions, a simple strategy to deal with the problem, is to undertake the
analysis at multiple scales or zones. In table 5 we repeat our analysis for larger scales
of aggregation: 2 by 2 and 3 by 3 degrees cells.

[Insert Table 5]

First we construct "macro-cells" of 2 by 2 degrees composed by aggregating 4 of our
1 by 1 original cells. This new, lower-resolution grid can be constructed in 4 di¤erent
ways depending on where the "macro-cells" are centered. We run our benchmark table
3 speci�cation in each of these 4 possible grids. We use a binary contiguity matrix with
a 390 km cuto¤, so that each macro-cell�s neighborhood is formed by the 8 adjacent
macro-cells. In table 5a we report the average coe¢ cients and average standard errors
obtained from running our Model I and Model III benchmark in the four di¤erent grids.
We also report the standard deviation of each estimated coe¢ cient across the four grids,
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to have a sense of how sensitive the results are to the centering of the macro-cells. We
repeat this kind of analysis for an even lower resolution, by constructing a panel of 3
by 3 degrees cells. In this case the new grid can be centered in 9 possible ways. Table
5b reports the results of the analysis in those 9 panels. The binary contiguity matrix
in this case has a cuto¤ of 490 km, so that each macro-cell�s neighborhood is formed
by the 8 adjacent macro-cells.

The analysis highlights the following patters. First, the centering of the grid does
not seem to a¤ect the results in a very signi�cant way, as shown by the low standard
deviation of the estimated coe¢ cients across grids. This indicates that the zonation
e¤ect is limited when using the "grid" approach. This is an important robustness check
which we can conduct at these lower resolutions and not with our original 1 by 1 cells
- in that case the grid cannot be re-centered due to constraints in data availability.
Secondly, changing the resolution does not a¤ect the sign of the relevant parameter
estimates, but a¤ects the magnitude: the coe¢ cients of own cell covariates appear to
increase in magnitude as the resolution decreases. This e¤ect is documented in the
MAUP literature (Fotheringham and Wong, 1991; Amrhein, 1995): the correlation
coe¢ cient for variables of absolute measurement typically increases when areal units
are aggregated contiguously. The reason is that the aggregation process involves a
smoothing e¤ect, by averaging the relevant variables, so that the variation of a variable
tends to decrease as aggregation increases. When the variances of X and Y variables
decrease, the correlation coe¢ cient will increase if the covariance between X and Y is
relatively stable. Finally, the statistical signi�cance of the relevant covariates tends to
decrease at lower resolutions - this is especially apparent in Model III estimates. This
is likely driven by lack of power, as the number of observations decreases.

We next turn to other potential indicators of climate conditions that have been
employed in the cross country literature.

[Insert tables 6a and 6b]

The �rst is a crude measure of rainfall, measured in logs, and the second is Tem-
perature Absolute Deviation, which is the absolute deviation of the temperature from
the historical mean for the cell. For each of these two climate indicators, we compute a
"Growing Season Indicator" obtained by averaging the monthly values of the variable
only over the growing season of the main crop. Table 6a reports Model I, II and III
speci�cations in which we include both the standalone climate measure and the corre-
sponding growing season indicator for rainfall (cols. 1 to 3) and temperature (cols. 4
to 6).

In column 1 the coe¢ cients on rainfall are actually positive, which runs against
the �ndings in the cross country literature. While apparently surprising, this result is
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easily understood when considering the pattern of rainfall in �gure 2 and the pattern of
con�ict in �gure 1. Average rainfall is in fact high at the tropics and exhibits relatively
less within country variation compared to SPEI (see, e.g. �gure 3). Furthermore,
simply measuring rainfall fails to take into account di¤erences in temperature, soil,
and other conditions that may be crucial in terms of e¤ects of climate on agricultural
production. Virtually all coe¢ cients on rainfall, however, become insigni�cant once
we account for spatial spillovers in Models II and III (cols. 2 and 3). Turning to
temperature, there is some evidence from column 1 that temperature shocks during
the growing season increase the likelihood of con�ict, consistent with Burke et al.
(2009). However this e¤ect appears non signi�cant once we account for spillovers in
Models II and III (cols. 5 and 6).

This seems to suggest that neither rainfall alone nor temperature alone adequately
capture the local level relationship between con�ict and climate. In table 6b we include
the climate indicators above - rainfall and temperature - together with our benchmark
SPEI variables. Recall that SPEI is based on precipitation and temperature but also on
potential evotranspiration, which in turn depends on things like latitude, month of the
year, number of sun hours, etc. Table 6b shows that even controlling for temperature
and rainfall, both standalone and in the growing season, in the own as well as in
the neighboring cells, the own cell coe¢ cient of SPEI Shock Growing Season retains
signi�cance, thus con�rming that SPEI indeed captures the most agriculturally relevant
components of climatic phenomena.

In appendix table A2 we show some alternative SPEI based indicators. In columns
1, 2 and 3 we show that standalone SPEI is not a signi�cant con�ict predictor once
spatial lags are included, suggesting that indeed what matter most are climatic condi-
tions during the relevant growing season. In columns 4, 5 and 6 we show an alternative
indicator of SPEI over the growing season, computed by averaging monthly SPEI over
growing season months for the main crop. Unlike our benchmark indicator, this mea-
sure is not con�ned to severe SPEI negative shocks. Our estimation results indicate
that low SPEI over the growing season is associated to more con�ict, but the predic-
tive power of this indicator is inferior to our benchmark one. In columns 7, 8 and 9 we
propose a SPEI-based growing season indicator which incorporates the growing season
of the three main crops in the cell, each weighted by its relative harvested area. The
estimation results indicate that low SPEI during the growing season of the three main
crops is associated to higher con�ict, both in the own and in neighboring cells, but the
estimates are very noisy, possibly due to the lower number of observations available
for this speci�cation. Finally in columns 10, 11 and 12 we consider a version of our
benchmark indicator in which we consider more extreme SPEI shocks occurring during
the main crop�s growing season. We compute the fraction of the main crop�s growing
season during which SPEI was below its mean by 2 standard deviations. Although the
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e¤ect is large in magnitude - roughly twice the e¤ect of our benchmark indicator - and
signi�cant in model I, these results do not survive the inclusion of spatial lags.

6 Di¤erent types of con�ict events

We now turn to a disaggregation of con�ict events into four di¤erent types, based on
the ACLED classi�cation. The dummy BATTLE is equal to 1 when a cell/year has
experienced a battle of any kind, either one where control of the contested location
does not change, or one where the government or the rebels take control of a location
previously occupied by the other contestant. The dummy CIVILIAN captures violence
against civilians, de�ned in ACLED as instances where �any armed group attacks
unarmed civilians within a larger con�ict�. This is the type of event most closely
related to possible predation motives. A third type of event is riots and protests
(dummy RIOT ), i.e. instances in which �a group is involved in a public meeting
against a government institution.� Finally, ACLED also codes rebel activities such
as the establishment of a base or headquarter (which can be non-violent) as well as
recruitment drives and incursions (dummy REBEL). This is the variable where we
should expect to �nd e¤ects according to theories that stress rebel recruitment and
the opportunity cost of �ghting as an underlying rationale for the link between rainfall
shocks and con�ict. Summary statistics for these dependent variables - table 1 - indicate
that these are all rare events individually taken, especially the last class of events. This
limits the power of the speci�cations we estimate in this section, which yield relstively
noisy estimates.

[Insert Table 7]

In table 7 we estimate a series of cross-sectional regressions (Models I, II and III)
along the lines of what we did in table 2, but the dependent variable is now disag-
gregated according to the type of con�ict event: battles in cols. 1-3, violence against
civilians in cols. 4-6, riots in cols. 7-9 and rebel recruitment in cols. 10-12. The
following patterns can be detected.

First, the coe¢ cient of spatial autoregressive term (Model III) is positive and highly
signi�cant for all dependent variables, suggesting that spatial spillovers exist for all
types of events. Second, characteristics such as rough terrain positively correlate with
all types of events. Third, other characteristics impact di¤erentially the di¤erent types
of events. One example is the variable Shared, which identi�es cells that contain a
country border. This variable has a positive and signi�cant impact on rebel recruitment,
on the occurrence of battles (likely for the control of territory) and to some extent on
violence against civilians, but no impact on riots. The presence of minerals, on the other
hand, a¤ects the variables BATTLE, CIVILIAN and RIOT �as one would expect if
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the goal is to take control of the cell where minerals are located �but not so much
rebel recruitment (at least not signi�cantly in Model 3).

[Insert Table 8, part I and II]

We next turn to the e¤ect of climate shocks on di¤erent con�ict events using panel
data. In table 8 the coe¢ cients of the autoregressive terms, both in space and time,
appear to be larger for battles and violence against civilians than for riots or rebel
recruitment. Violent episodes thus appear to be more likely to persist in time and to
spill over in space compared to non-violent ones. This is not surprising, since battles and
violence against civilians seem intuitively more likely to propagate by retaliation. The
coe¢ cient on the temporal lag, in particular, is smallest for rebel recruitment, which
indeed we expect to consist of relatively independent episodes. The coe¢ cients on own
climate shocks point in the same direction as the results we obtained for the aggregate
dependent variable, i.e. years with long spells of low SPEI during the growing season
are associated to more battles (column 1), more violence against civilians (column 4),
more riots (column 7) and more rebel recruitment (column 10). However, when we
account for temporal and spatial correlation in the dependent variable by estimating
Model III, the coe¢ cients on the SPEI Shock variables are noisily estimated in all
speci�cations, except for rebel recruitment. This could be taken as evidence in favor
of theories on the opportunity cost of rebel recruitment, although caution should be
exerted as the coding of this variable in ACLED is subject to intrinsic limitations (e.g.,
higher di¢ culty of detecting recruitment activities compared to violent episodes).

7 Conclusions

In this paper we conducted a spatially disaggregated analysis of the empirical determi-
nants of con�ict in Africa over the period 1997-2006. We exploited within-year variation
in the timing of weather shocks and in the growing season of di¤erent crops, as well as
spatial variation in crop cover, to construct an original measure of shocks that are rel-
evant for agricultural production. We found that negative climate shocks which occur
during the growing season of the main crops cultivated in the cell have a sizeable e¤ect
on con�ict incidence. We also used state of the art spatial econometric techniques to
test for the presence of temporal and spatial spillovers in con�ict, and we found both
to be sizeable and highly statistically signi�cant. These results indicate that caution
should be exerted when interpreting results of studies which do not incorporate spatial
dynamics at all.

Our �ndings indicate that con�ict risk does not a¤ect all the territory of a state in
the same way: the correlates of civil con�ict have a strong local dimension, and the
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likelihood of con�ict likelihood is not constant in time nor in space, even within the
same country. This seems to suggest that policy interventions, be them in the form of
monitoring, prevention or peacekeeping e¤orts, could be and should be targeted both
in space and time.

Finally, given the increasing availability of high resolution data (e.g., gridded datasets)
and the growing number of research contributions that employ this data to address im-
portant development questions, our study can hopefully provide a number of insights
and methodological indications that are useful for future work.
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8 Appendix

8.1 Derivation of the likelihood for dynamic spatial panels12

Consider the following dynamic, spatial, random e¤ects model with N cross-sectional
units and T time periods:

yt = �yt�1 + �Wyt + iN�+ xt� + �t (1)

with �t = �t+"t., where yt = (y1t; ..., yNt)
0 is the N�1 vector of observations for the

t-th time period, � is the intercept, iN is an N�1 column vector of ones, xt is the N�k
matrix of non-stochastic regressors and � is an N � 1 vector of random e¤ects, with
�i � N(0; �2�). The random terms "t are i.i.d. with zero mean and a variance �2"IN ,
and � is assumed to be uncorrelated with "t: W is a row-normalized, symmetric N�N
spatial weighting matrix with zeros on the diagonal, whose eigenvalues are denoted as
$i; i = 1; :::; N . For simplicity spatial lags of the covariates are not explicitly included
in (1), but they could be part of matrix xt .

The basic idea is to remove the two sources of autocorrelation by combining two
transformations: a space �lter to remove the spatally autorgressive term and a time
�lter à la Prais-Winsten to remove the temporal autoregressive one.

De�ne �rst the space �lter as the N �N matrix

B = IN � �W (2)

To see how this transformation removes the spatial autoregressive term, suppose
that � = 0 and apply this �lter to equation (1):

Byt = iN�+ xt� + �t (3)

Now de�ne the time �lter as the T � (T + 1) matrix

C =

264 �� 1 0 ::: 0
...

. . . . . . . . .
...

0 ::: ::: �� 1

375 (4)

To see how this transformation removes the temporal autoregressive term, consider
the (T + 1) � 1 vector of observations for the i-th cross-sectional unit yi = (yi0; ...,
yiT )

0. Similarly, let xi = (xi1; ..., xiT )0 be the T � k vector of covariates observed in
12This subsection draws upon Parent and Le Sage (2009).
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the i-th cross-sectional unit and �i = (�i0; ..., �iT )
0 a vector of errors. Further assume

that � = 0. Applying the �lter to yi one obtains:

Cyi = iT�+ xi� + �i (5)

Note that we are assuming that y0 is given. This considerably simpli�es the com-
putational complexity of the estimation and has been shown to have little e¤ect on the
estimates when T is not too small.

The space-time �lter proposed by Parent and LeSage is given by the Kronecker
product of matrices C and B. Set Y = (y00; :::; y

0
T )
0 and X = (x01; :::; x

0
T )
0 and apply the

�lter to the entire vector of observatios. One obtains:

(C 
B)Y = X� + iNT�+ � (6)

with � � N(0;
):
Since the random e¤ects are integrated out, the NT � NT variance-covariance

matrix can be shown to be equivalent to


 = �2�(JT 
 IN ) + �2"[IT 
 IN ] (7)

with JT+1 = iT+1i0T+1:
This allows to write down the log-likelihood for the complete sample size of T for

the model de�ned in (1) as

lnLT (�) = �
NT

2
ln(2�)� 1

2
ln j
j+ T

NP
i=1
ln[(1� �$i)]�

1

2
�0
�1� (8)

where � = (�0; �; �2"; �
2
�; �; �):

8.2 Derivation of direct vs. indirect e¤ects13

Consider again the spatial model in (1). For simplicity of exposition let us neglect the
temporal autoregressive component and explicitly include spatial lags of the covariates
xt:

yt = �Wyt + iN�+ xt� +Wxt� + �t (9)

Applying the space �lter de�ned in (2), this model can be rewritten as

yt = B
�1iN�+B

�1xt� +B
�1Wxt� +B

�1�t (10)

13This subsection draws upon Elhorst (forthcoming).
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The matrix of partial derivatives of the dependent variable in the di¤erent cross-
sectional units with respect to the k-th explanatory variable in the di¤erent units (say,
xik for i=1,. . . ,N) at a particular point in time t is

�
@Y

@x1k
:::
@Y

@xNk

�
t

=

264
@y1
@x1k

::: @y1
@xNk

...
...

...
@yN
@x1k

::: @yN
@xNk

375
t

= (11)

= B�1

26664
�k W12�k ::: W1N�k
W21�k �k ::: W2N�k
...

...
...

...
WN1�k WN2�k ::: �k

37775 (12)

The direct e¤ect of the k-th covariate is de�ned as the average of the diagonal
elements of matrix (12). The indirect e¤ect is de�ned as the average of either the row
sums or, equivalently, the column sums of the non-diagonal elements of matrix (12).
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Figure 1 – Fraction of sample years with at least one conflict event, 1997-2006 

 

 

 

 

 



Figure 2 - Log Rain, average 1997-2006 

 

 

 

 

 

 



Figure 3 - SPEI , average 1997 – 2006 

 

 

 

 

 



Figure 4 – Temperature Absolute Deviation, average 1997 - 2006 

 

 

 

 

 



Figure 5 - Main crop by harvested area, year 2000 

 

 

 

 

 

 

 

 

 



Figure A1 – Cells in full vs. balanced panel 

 

 

 

 

 



Figure A2 - Log Rain, year 2000 

 

 

 

 

 

 



Figure A3 - SPEI , year 2000 

 

 

 

 

 



Figure A4 – Temperature Absolute Deviation, year 2000 

 

 

 



Table 1: Summary statistics

A: Cross sectional sample
No. Obs. Mean Std Dev

Fraction of years with conflict 2149 0.171 0.257

Shared 2149 0.289 0.453

Border 2149 0.043 0.204

Area, in km
2

2149 11260.880 2288.834

Elevation, in m 2149 328.500 270.684

Rough 2149 0.089 0.099

Distance to river, in km 2149 560.663 439.596

Road 2149 0.213 0.410

Minerals 2149 0.202 0.402

ELF 2149 0.227 0.245

B: Panel sample

ANY EVENT 18790 0.161 0.367

BATTLE 18790 0.095 0.293

CIVILIAN 18790 0.088 0.283

RIOT 18790 0.050 0.217

REBEL 18790 0.021 0.144

SPEI 18790 -0.324 0.458

SPEI Shock, Growing Season 18790 0.087 0.189

SPEI 2 stdev Shock, Growing Season 18790 0.004 0.040

SPEI Growing Season, Main Crop 18790 -0.060 0.252

SPEI Growing Season, Weighted 13750 -0.001 0.008

Rain 18774 3.372 1.691

Rain Growing Season, Main Crop 18774 1.738 1.370

Temperature, abs dev 18210 0.914 0.320

Temperature abs dev, Growing Season, Main Crop 18210 0.360 0.344



(1) (2) (3) (4)

direct 

effects

total 

effects

direct 

effects

total 

effects

W · Y 0.782*** 0.561***

(0.0252) (0.0389)

Shared 0.0149 0.0145 0.0273* 0.0220* 0.0329*** 0.0284 -0.172 0.0272** 0.0239 -0.1247

(0.0188) (0.0110) (0.0152) (0.0132) (0.0120) (0.0114)

Border -0.00196 -0.00526 -0.0134 -0.0105 -0.0173 -0.0139 0.1367 -0.0118 -0.01 0.0694

(0.0187) (0.0191) (0.0116) (0.0154) (0.0185) (0.0183)

Area
(a)

0.00166 -0.000634 0.000894 0.00195 0.00203 0.0018 -0.01 0.00191 0.0021 0.0107

(0.00347) (0.00277) (0.00429) (0.00431) (0.00317) (0.00327)

Elevation
(a)

-0.0251 -0.0558** -0.180 0.0271 -0.0395 -0.0373 0.0625 0.0307 0.0271 -0.1371

(0.0392) (0.0258) (0.184) (0.141) (0.0940) (0.0990)

Rough 0.719*** 0.623*** 0.345** 0.424*** 0.373*** 0.3906 1.1682 0.407*** 0.4193 0.9963

(0.156) (0.0707) (0.137) (0.0999) (0.0796) (0.0744)

Distance to 

river
(b)

-0.0154*** -0.00762*** 0.00458 -0.00288 0.000385 -0.0002 -0.025 -0.00127 -0.0012 0.0016

(0.00282) (0.00187) (0.00699) (0.00521) (0.00415) (0.00378)

Road 0.127*** 0.0995*** 0.106*** 0.100*** 0.108*** 0.109 0.1443 0.105*** 0.1034 0.0505

(0.0259) (0.0154) (0.0174) (0.0169) (0.0165) (0.0159)

ELF 0.0606* 0.0407* 0.0141 0.0151 0.0128 0.0175 0.2283 0.0150 0.0183 0.1693

(0.0365) (0.0223) (0.0252) (0.0248) (0.0235) (0.0228)

Minerals 0.0654*** 0.0632*** 0.0531*** 0.0565*** 0.0507*** 0.0536 0.1844 0.0531*** 0.0579 0.2792

(0.0174) (0.0136) (0.0127) (0.0139) (0.0126) (0.0123)

W·Shared -0.0862* -0.0758* -0.0703*** -0.0818***

(0.0508) (0.0410) (0.0258) (0.0294)

W·Border 0.204 0.0910 0.0470 0.0422

(0.132) (0.106) (0.0578) (0.0660)

W·Area
(a)

0.00727 0.00441 -0.00426 0.00276

(0.0174) (0.0160) (0.00745) (0.00868)

W·Elevation
(a)

0.198 -0.107 0.0531 -0.0909

(0.202) (0.171) (0.102) (0.116)

W·Rough 0.647*** 0.315 -0.119 0.0303

(0.186) (0.209) (0.121) (0.154)
W·Distance to 

river
(b)

-0.0230*** -0.000335 -0.00576 0.00196

(0.00815) (0.00725) (0.00473) (0.00491)

W·Road 0.0382 -0.0220 -0.0768*** -0.0825**

(0.0460) (0.0616) (0.0290) (0.0394)

W·ELF 0.145 0.118 0.0368 0.0592

(0.111) (0.0978) (0.0469) (0.0528)

W·Minerals 0.0706 0.148*** -0.0106 0.0694

(0.0717) (0.0550) (0.0338) (0.0450)

Country FE X X X

Observations 2,149 2,149 2,149 2,149 2,149 2,149

R-squared 0.467 0.400 0.485 0.624 0.260 0.462

(a) Coefficient and std error multiplied by 10^3 (b) Coefficient and std error multiplied by 10^2

Standard errors in parenthesis corrected for spatial dependence, following Conley (1999).  * p<0.01, ** p<0.05, * p<0.1

W = binary contiguity matrix, cutoff 290 km.

Dependent variable: fraction of years over sample period with at least one conflict event

Table 2: Conflict incidence, cross section

Model I

OLS

Model II 

OLS

(5) (6)

Model III

MLE
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Table 3: Conflict incidence and climate, panel

(1) (2)

Model I Model II 

OLS OLS

direct 

effects

total 

effects

Y, t-1 0.311***

(0.00700)

W · Y 0.446***

(0.0137)

SPEI 0.0401*** 0.0211 0.0123 0.0129 0.0535

(0.0132) (0.0233) (0.0208)

SPEI, t-1 0.0336*** 0.0171 0.0137 0.0136 0.0050

(0.0129) (0.0224) (0.0199)

SPEI, t-2 0.0119 0.0170 0.00693 0.0067 -0.0057

(0.0116) (0.0205) (0.0181)

SPEI Shock Growing Season 0.0938*** 0.0214 0.00342 0.0053 0.1187

(0.0245) (0.0261) (0.0234)

SPEI Shock Growing Season, t-1 0.106*** 0.0756*** 0.0619** 0.0611 0.0129

(0.0257) (0.0242) (0.0246)

SPEI Shock Growing Season, t-2 0.0658*** 0.0488** 0.0401* 0.0398 0.0195

(0.0243) (0.0239) (0.0225)

W · SPEI 0.0300 0.0246

(0.0309) (0.0252)

W · SPEI, t-1 0.0222 -0.0103

(0.0311) (0.0245)

W · SPEI, t-2 -0.0115 -0.0108

(0.0278) (0.0226)

W · SPEI Shock Growing Season 0.145*** 0.0784**

(0.0497) (0.0367)

W · SPEI Shock Growing Season, t-1 0.0650 -0.0530

(0.0475) (0.0385)

W · SPEI Shock Growing Season, t-1 0.0349 -0.0267

(0.0452) (0.0367)

Observations 18,790 18,790 18,790

R-squared 0.315 0.333 0.317

Standard errors in parenthesis. Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6 

corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

(3)

Model III

MLE

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year 

fixed effects. W = binary contiguity matrix, cutoff 290 km.
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Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4) (5) (6)

190 km 450 km 600 km 290 km 450 km 600 km

Y, t-1 0.313*** 0.312*** 0.321*** 0.307*** 0.302*** 0.302***

(0.00703) (0.00704) (0.00710) (0.00702) (0.00700) (0.00710)

W � Y 0.327*** 0.554*** 0.608*** 0.405*** 0.486*** 0.530***

(0.0107) (0.0179) (0.0218) (0.0121) (0.0140) (0.0156)

SPEI 0.0134 0.0185 0.0254** 0.00812 0.0148 0.0104

(0.0280) (0.0145) (0.0118) (0.0257) (0.0218) (0.0199)

SPEI, t-1 0.0257 0.00910 0.00692 0.0202 0.0129 0.00847

(0.0274) (0.0142) (0.0121) (0.0250) (0.0213) (0.0199)

SPEI, t-2 -0.0113 0.00769 0.0134 -0.00129 0.00114 0.00717

(0.0242) (0.0134) (0.0115) (0.0222) (0.0192) (0.0179)

SPEI Shock Growing Season 0.00897 0.00934 0.0304 0.00319 0.00245 -0.000410

(0.0263) (0.0203) (0.0187) (0.0262) (0.0248) (0.0243)

SPEI Shock Growing Season, t-1 0.0548** 0.0541** 0.0519** 0.0591** 0.0552** 0.0508**

(0.0267) (0.0219) (0.0203) (0.0268) (0.0258) (0.0257)

SPEI Shock Growing Season, t-2 0.0318 0.0336 0.0441** 0.0405* 0.0383 0.0400*

(0.0238) -0.0205 (0.0191) (0.0240) (0.0236) (0.0234)

W � SPEI 0.0217 0.0157 0.0103 0.0272 0.0190 0.0289

(0.0310) (0.0207) (0.0202) (0.0296) (0.0270) (0.0262)

W � SPEI, t-1 -0.0176 -0.00630 -0.00162 -0.0137 -0.00940 -0.00133

(0.0307) (0.0204) (0.0207) (0.0292) (0.0268) (0.0267)

W � SPEI, t-2 0.0126 -0.0145 -0.0282 0.000102 -0.00445 -0.0139

(0.0275) (0.0195) (0.0199) (0.0263) (0.0244) (0.0241)

W � SPEI Shock Growing Season 0.0597* 0.0811** 0.0622 0.0682* 0.0720* 0.0878**

(0.0353) (0.0403) (0.0455) (0.0377) (0.0402) (0.0434)

W � SPEI Shock Growing Season, t-1 -0.0271 -0.0553 -0.0631 -0.0406 -0.0469 -0.0429

(0.0355) (0.0423) (0.0477) (0.0387) (0.0420) (0.0455)

W � SPEI Shock Growing Season, t-2 -0.00812 -0.0320 -0.0588 -0.0251 -0.0302 -0.0323

(0.0322) (0.0413) (0.0462) (0.0355) (0.0391) (0.0420)

Observations 18,790 18,790 18,790 18,790 18,790 18,790

R-squared 0.313 0.313 0.301 0.314 0.319 0.301

Table 4: Sensitivity to different spatial matrices

Binary contiguity matrix Inverse quadratic distance matrix

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects. 

Estimation by MLE. Standard errors corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1



Table 5a: Sensitivity to different spatial resolutions, 2x2 cells 

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

nr of panels in 

which 10% 

significant

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

nr of panels in 

which 10% 

significant

Y, t-1 0.3703 0.0126 0.0135 4/4

W · Y 0.3883 0.0098 0.0192 4/4

SPEI 0.0601 0.0040 0.0116 4/4 0.0102 0.0073 0.0225 0/4

SPEI, t-1 0.0576 0.0057 0.0119 4/4 0.0019 0.0138 0.0222 0/4

SPEI, t-2 0.0312 0.0064 0.0105 4/4 0.0043 0.0064 0.0196 0/4

SPEI Shock Growing Season 0.1655 0.0145 0.0275 4/4 -0.0064 0.0362 0.0332 0/4

SPEI Shock Growing Season, t-1 0.1720 0.0164 0.0315 4/4 0.0547 0.0152 0.0356 2/4

SPEI Shock Growing Season, t-2 0.1189 0.0164 0.0279 4/4 0.0178 0.0201 0.0333 0/4

W · SPEI 0.0320 0.0151 0.0278 1/4

W · SPEI, t-1 -0.0018 0.0101 0.0270 0.4

W · SPEI, t-2 -0.0185 0.0113 0.0253 0/4

W · SPEI Shock Growing Season 0.1053 0.0472 0.0506 3/4

W · SPEI Shock Growing Season, t-1 -0.0728 0.0026 0.0558 0/4

W · SPEI Shock Growing Season, t-1 -0.0318 0.0352 0.0516 0/4

Average nr of obs 4698 4698

Average R squared 0.2803 0.4978

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

nr of panels in 

which 10% 

significant

avg. 

coefficient

coefficient 

std. dev.

avg. std. 

error

nr of panels in 

which 10% 

significant

Y, t-1 0.3723 0.0352 0.0197 9/9

W · Y 0.4267 0.0409 0.0269 9/9

SPEI 0.0663 0.0101 0.0190 9/9 0.0396 0.0143 0.0182 7/9

SPEI, t-1 0.0619 0.0125 0.0177 9/9 0.0086 0.0167 0.0191 0/9

SPEI, t-2 0.0265 0.0037 0.0167 5/9 0.0161 0.0118 0.0170 2/9

SPEI Shock Growing Season 0.1962 0.0311 0.0418 9/9 0.0553 0.0260 0.0380 4/9

SPEI Shock Growing Season, t-1 0.1927 0.0489 0.0393 9/9 0.0382 0.0356 0.0399 1/9

SPEI Shock Growing Season, t-2 0.1243 0.0211 0.0387 9/9 0.0346 0.0251 0.0354 1/9

W · SPEI -0.0008 0.0205 0.0260 0/9

W · SPEI, t-1 -0.0157 0.0302 0.0279 2/9

W · SPEI, t-2 -0.0479 0.0144 0.0243 4/9

W · SPEI Shock Growing Season 0.0451 0.0490 0.0635 5/9

W · SPEI Shock Growing Season, t-1 -0.0635 0.0527 0.0646 6/9

W · SPEI Shock Growing Season, t-1 -0.0809 0.0386 0.0585 2/9

Average nr of obs 2088 2088

Average R squared 0.6001 0.6084

OLS standard errors corrected by spatial and serial correlation. MLE standard errors corrected for clustering at the cell level. *** p<0.01, ** 

Model I - OLS Model III - MLE

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT). 

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT). 

Results of the estimation of models I and III in 9 possible panels of 3x3 cells. All regressions include controls listed in table 2, country and 

year fixed effects. W = binary contiguity matrix, cutoff 490 km.

Model I - OLS Model III - MLE

Table 5b: Sensitivity to different spatial resolution, 3x3 cells

Results of the estimation of models I and III in 4 possible panels of 2x2 cells. All regressions include controls listed in table 2, country and 

year fixed effects. W = binary contiguity matrix, cutoff 390 km.

OLS standard errors corrected by spatial and serial correlation. MLE standard errors corrected for clustering at the cell level. *** p<0.01, ** 



Table 6a: Conflict incidence and other climate indicators

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4) (5) (6)

Model I Model II Model III Model I Model II Model III
Y, t-1 0.294*** 0.295***

(0.00726) (0.00726)
W � Y 0.445*** 0.446***

(0.0143) (0.0142)
Climate 0.0199*** 0.00215 -0.00176 0.0297 0.0687 0.0244

(0.00500) (0.00782) (0.00712) (0.0240) (0.0547) (0.0419)
Climate, t-1 0.00934** -0.00911 -0.00979 -0.0177 0.106* 0.0891**

(0.00474) (0.00754) (0.00800) (0.0268) (0.0544) (0.0444)
Climate, t-2 0.000968 0.00707 0.00439 0.00754 0.0397 0.0152

(0.00461) (0.00694) (0.00666) (0.0263) (0.0538) (0.0439)

Climate, Growing 

Season Indicator 0.00648 0.0144 0.00988 0.0807** 0.0189 0.0411
(0.0143) (0.0119) (0.0111) (0.0319) (0.0432) (0.0328)

Climate, Growing 

Season Indicator, t-1 0.0130 0.00523 0.000730 0.0495 0.0227 0.00903
(0.0151) (0.0122) (0.0125) (0.0341) (0.0393) (0.0355)

Climate, Growing 

Season Indicator, t-2 0.0240* 0.00108 0.00202 0.0541 0.0554 0.0200
(0.0139) (0.0116) (0.0110) (0.0334) (0.0425) (0.0316)

W � Climate 0.0221* 0.0153* -0.0763 -0.0195
(0.0116) (0.00895) (0.0657) (0.0476)

W � Climate, t-1 0.0253** 0.0110 -0.163** -0.121**
(0.0115) (0.00984) (0.0661) (0.0497)

W � Climate, t-2 -0.0142 -0.0122 -0.0497 -0.00333
(0.0106) (0.00907) (0.0683) (0.0506)

W � Climate, Growing 

Season Indicator -0.0333 -0.0132 0.118* -0.000392
(0.0337) (0.0206) (0.0607) (0.0447)

W � Climate, Growing 

Season Indicator, t-1 9.98e-05 0.00426 0.0690 0.00727
(0.0334) (0.0244) (0.0592) (0.0465)

W � Climate, Growing 

Season Indicator, t-2 0.0522 0.0145 0.000421
(0.0331) (0.0212) (0.0416)

Observations 17,670 17,670 17,670 17,670 17,670 17,670

R squared 0.295 0.334 0.320 0.329 0.348 0.321

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and 

year fixed effects. W = binary contiguity matrix, cutoff 290 km.

Standard errors in parenthesis. Cols. 1-2-4-5 corrected for spatial and serial correlation. Cols. 3-6 

corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Log rain Temperature absolute deviation
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Table 6b: Conflict incidence and other climate indicators

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1)

Model I

Y, t-1 0.295***

(0.00730)

W · Y 0.437***

(0.0144)

X W · X X W · X
SPEI 0.0290** 0.0283 0.00492 0.0142 0.0199

(0.0143) (0.0244) (0.0335) (0.0216) (0.0270)

SPEI, t-1 0.0159 0.0325 -0.0282 0.0236 -0.0302

(0.0137) (0.0226) (0.0325) (0.0211) (0.0262)

SPEI, t-2 -0.00140 0.0223 -0.0452 0.00724 -0.0239

(0.0123) (0.0206) (0.0286) (0.0195) (0.0247)

SPEI Shock Growing Season 0.0517** 0.0165 0.0709 0.00322 0.0564

(0.0251) (0.0274) (0.0537) (0.0250) (0.0395)

SPEI Shock Growing Season, t-1 0.0689*** 0.0614** 0.00600 0.0481* -0.0524

(0.0256) (0.0253) (0.0513) (0.0255) (0.0394)

SPEI Shock Growing Season, t-1 0.0236 0.0480* -0.0531 0.0434* -0.0594

(0.0257) (0.0254) (0.0495) (0.0242) (0.0391)

Rain 0.0158*** -0.00619 0.0318*** -0.00109 0.0118

(0.00479) (0.00751) (0.0114) (0.00732) (0.00917)

Rain t-1 0.00474 -0.0135* 0.0262** -0.00818 0.00712

(0.00439) (0.00734) (0.0112) (0.00838) (0.0104)

Rain t-2 -0.000602 0.00317 -0.00682 0.00616 -0.0119

(0.00438) (0.00667) (0.0104) (0.00673) (0.00915)

Rain Growing Season Main Crop 0.00325 0.00959 -0.0278 0.00471 -0.0166

(0.0132) (0.0117) (0.0334) (0.0112) (0.0216)

Rain Growing Season Main Crop t-1 0.00104 0.000706 -0.0141 -0.00349 0.00197

(0.0139) (0.0120) (0.0347) (0.0126) (0.0258)

Rain Growing Season Main Crop t-2 0.0174 -0.00574 0.0629* -0.000634 0.0313

(0.0127) (0.0115) (0.0335) (0.0113) (0.0222)

Temperature, abs dev 0.0490** 0.0692 -0.0297 0.0176 0.0123

(0.0242) (0.0542) (0.0660) (0.0422) (0.0490)

Temperature, abs dev, t-1 0.00242 0.109** -0.124* 0.0954** -0.110**

(0.0270) (0.0540) (0.0661) (0.0444) (0.0505)

Temperature, abs dev, t-2 0.0384 0.0375 0.00641 0.0185 0.00968

(0.0267) (0.0527) (0.0675) (0.0441) (0.0510)

Temperature abs dev, Growing Season Main Crop 0.0401 0.00955 0.0405 0.0414 -0.0308

(0.0320) (0.0421) (0.0625) (0.0336) (0.0463)

Temperature abs dev, Growing Season Main Crop t-1 0.00141 0.0145 -0.0139 -0.00155 -0.01712

(0.0346) (0.0390) (0.0610) (0.0369) (0.04995)

Temperature abs dev, Growing Season Main Crop t-2 0.00121 0.0428 -0.0506 0.0155 -0.03151

(0.0342) (0.0424) (0.0696) (0.0325) (0.04254)

Observations 17,670

R-squared 0.336

Cols 1-2:  corrected for spatial and serial correlation. Col. 3: corrected for clustering at the cell level.

W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis. *** p<0.01, ** p<0.05, * p<0.1

(2) (3)

Model II Model III

17,670

0.354

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects.

17,670

0.319



Table 7: Different types of conflict events, cross section

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model I Model II Model III Model I Model II Model III Model I Model II Model III Model I Model II Model III

W · Y 0.689*** 0.728*** 0.304*** 0.589***

(0.0314) (0.0299) (0.0528) (0.0373)

Shared 0.0129 0.0176* 0.0205** 0.0114 0.0175 0.0213** -0.00767 -0.00465 -0.00363 0.0138*** 0.0123** 0.0131***

(0.00810) (0.0100) (0.00824) (0.00828) (0.0107) (0.00828) (0.00657) (0.00762) (0.00769) (0.00419) (0.00494) (0.00452)

Border -0.0122 -0.0165 -0.0126 0.00314 0.00265 0.00759 -0.00662 -0.00791 -0.00816 -0.000637 -0.00334 -0.00204

(0.0146) (0.0121) (0.0146) (0.0143) (0.0139) (0.0135) (0.00986) (0.00719) (0.0102) (0.00602) (0.00706) (0.00700)

Area
(a) 0.00247 0.00419 0.00450** -0.000798 0.00160 0.00215 -0.00450** -0.00153 -0.00128 -0.000638 -5.36e-05 -0.000214

(0.00169) (0.00295) (0.00195) (0.00194) (0.00316) (0.00221) (0.00207) (0.00289) (0.00234) (0.000788) (0.000971) (0.000913)

Elevation
(a) -0.0147 0.166 0.0780 -0.0232 -0.0824 -0.161** -0.0303** -0.0984 -0.137** -0.00310 -0.00787 -0.0532

(0.0184) (0.114) (0.0758) (0.0192) (0.0984) (0.0722) (0.0149) (0.0681) (0.0617) (0.00644) (0.0318) (0.0356)

Rough 0.431*** 0.316*** 0.301*** 0.536*** 0.352*** 0.330*** 0.245*** 0.214*** 0.210*** 0.161*** 0.140** 0.134***

(0.0642) (0.0956) (0.0668) (0.0626) (0.103) (0.0690) (0.0420) (0.0705) (0.0519) (0.0376) (0.0675) (0.0348)

Distance to river
(b) -0.00585*** -0.00592 -0.00357 -0.00579*** 0.000560 0.00185 -0.00203* 0.00183 0.00244 -0.000227 -0.000202 0.00107

(0.00132) (0.00371) (0.00243) (0.00140) (0.00398) (0.00302) (0.00107) (0.00333) (0.00282) (0.000490) (0.00198) (0.00144)

Road 0.0450*** 0.0543*** 0.0607*** 0.0596*** 0.0629*** 0.0674*** 0.0698*** 0.0640*** 0.0656*** 0.00394 0.00847* 0.0115**

(0.0109) (0.0124) (0.0114) (0.0118) (0.0135) (0.0121) (0.0113) (0.0121) (0.0114) (0.00499) (0.00470) (0.00546)

ELF 0.0376** 0.0215 0.0207 0.0279* 0.00809 0.00669 0.00943 0.00177 0.00272 0.0129* 0.00638 0.00700

(0.0162) (0.0185) (0.0163) (0.0168) (0.0189) (0.0170) (0.0133) (0.0137) (0.0152) (0.00735) (0.00788) (0.00795)

Minerals 0.0302*** 0.0276*** 0.0231*** 0.0309*** 0.0287*** 0.0238*** 0.0317*** 0.0237** 0.0223** 0.00820* 0.00805** 0.00572

(0.00972) (0.00991) (0.00859) (0.0100) (0.0101) (0.00907) (0.00916) (0.00971) (0.00882) (0.00449) (0.00354) (0.00396)

W·Shared -0.0415 -0.0311 -0.0547* -0.0357* -0.0436** -0.0281 -0.000931 -0.000118

(0.0299) (0.0218) (0.0309) (0.0215) (0.0197) (0.0182) (0.0118) (0.0116)

W·Border -0.00639 0.0199 -0.0293 -0.0266 0.0662 0.0684 -0.0426 -0.0148

(0.0777) (0.0471) (0.0775) (0.0433) (0.0570) (0.0464) (0.0277) (0.0227)

W·Area
(a) -0.000765 -0.00421 0.00221 0.000852 -0.00656 -0.00529 0.000874 0.00200

(0.0117) (0.00595) (0.0129) (0.00670) (0.00930) (0.00630) (0.00467) (0.00318)

W·Elevation
(a) -0.236* -0.105 0.0697 0.172** 0.102 0.164** -0.00932 0.0501

(0.139) (0.0839) (0.120) (0.0810) (0.0754) (0.0718) (0.0391) (0.0378)

W·Rough 0.153 -0.0595 0.320** -0.0439 -0.00303 -0.0741 -0.0333 -0.0785

(0.164) (0.119) (0.154) (0.120) (0.102) (0.0853) (0.0652) (0.0578)

W·Distance to river
(b) 0.00504 0.000907 -0.00304 -0.00468 -0.00496 -0.00663* 0.00206 -0.00179

(0.00556) (0.00309) (0.00520) (0.00391) (0.00424) (0.00386) (0.00274) (0.00180)

W·Road -0.0610 -0.0771*** -0.0224 -0.0458* -0.0115 -0.0137 -0.0270** -0.0136

(0.0416) (0.0216) (0.0508) (0.0277) (0.0302) (0.0229) (0.0120) (0.00904)

W·ELF 0.0700 0.0734* 0.0867 0.0557 0.0153 0.0296 0.00146 0.0193

(0.0674) (0.0400) (0.0788) (0.0409) (0.0370) (0.0322) (0.0223) (0.0212)

W·Minerals 0.104** 0.00346 0.0865** 0.0148 0.0926*** 0.0597* 0.0321* 0.000364

(0.0439) (0.0288) (0.0427) (0.0309) (0.0296) (0.0306) (0.0181) (0.0151)

Observations 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149

R-squared 0.415 0.606 0.432 0.405 0.569 0.402 0.223 0.350 0.255 0.400 0.515 0.413

Y = BATTLE Y = CIVILIAN Y = RIOT Y = REBEL

(a) Coefficient and std error multiplied by 10^3 (b) Coefficient and std error multiplied by 10^2. Standard errors in parenthesis corrected for spatial dependence, following Conley (1999). 

Notes:  Each observation is a cell.  All regressions include country fixed effects.   W = binary contiguity matrix, cutoff 290 km.
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Table 8: Different types of conflict events, panel - to be continued

(1) (2) (4) (5)

Model I Model II Model I Model II 

direct 
effects

total 
effects

direct 
effects

total 
effects

Y, t-1 0.2335*** 0.270***

(0.0072) (0.00715)

W · Y 0.4943*** 0.450***

(0.0132) (0.0142)

SPEI 0.0139 -0.0122 -0.0139 -0.014 0.019 0.0180* 0.0193 0.00741 0.0076 0.0184

(0.0104) (0.0199) (0.0177) (0.0106) (0.0174) (0.0166)

SPEI, t-1 0.0130 0.0240 0.0176 0.0174 0.0002 0.0296** 0.0204 0.0259 0.0255 0.0022

(0.0101) (0.0187) (0.0171) (0.0116) (0.0183) (0.0164)

SPEI, t-2 -5.77e-05 0.00853 0.0024 0.0023 -0.004 0.0148 0.00208 -0.00848 -0.0084 -0.0014

(0.00932) (0.0168) (0.0206) (0.00970) (0.0152) (0.0146)

SPEI Shock Growing Season 0.0415** 0.00144 0.0178 0.0183 0.0582 0.0754*** 0.0141 -0.00324 -0.0021 0.0767

(0.0199) (0.0228) (0.0206) (0.0214) (0.0218) (0.0192)

SPEI Shock Growing Season, t-1 0.0629*** 0.0432** 0.0317 0.0318 0.0399 0.0636*** 0.0304 0.0219 0.0217 0.0026

(0.0198) (0.0194) (0.0213) (0.0210) (0.0192) (0.0196)

SPEI Shock Growing Season, t-2 0.0436** 0.0301 0.0316 0.0313 0.0125 0.0461** 0.0347* 0.0286 0.0285 0.019

(0.0183) (0.0190) (0.0196) (0.0198) (0.0188) (0.0177)

W · SPEI 0.0331 0.0285 0.00594 0.00606

(0.0257) (0.021) (0.0238) (0.0202)

W · SPEI, t-1 -0.0167 -0.0174 0.0174 -0.0242

(0.0233) (0.0209) (0.0273) (0.0202)

W · SPEI, t-2 -0.0157 -0.0051 0.0142 0.00748

(0.0225) (0.0191) (0.0224) (0.0180)

W · SPEI Shock Growing Season 0.0733* 0.0268 0.130*** 0.0592*

(0.0406) (0.0308) (0.0418) (0.0302)

W · SPEI Shock Growing Season, t- 0.0373 -0.0012 0.0816** -0.0201

(0.0361) (0.0333) (0.0401) (0.0308)

W · SPEI Shock Growing Season, t- 0.0250 -0.022 0.0299 -0.0147

(0.0345) (0.0316) (0.0394) (0.0268)

Observations 18,790 18,790 18,790 18,790 18,790 18,790

R-squared 0.230 0.253 0.236 0.230 0.249 0.276

(3) (6)

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects. 

W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis. 

Y = CIVILIAN

Model III

Y = BATTLE

Model III

Nina
Rectangle
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Table 8 - continued: Different types of conflict events, panel

(7) (8) (10) (11)

Model I Model II Model I Model II 

direct 
effects

total 
effects

direct 
effects

total 
effects

Y, t-1 0.277*** 0.175***

(0.00707) (0.00731)

W · Y 0.329*** 0.362***

(0.0165) (0.0164)

SPEI 0.0190** 0.00427 0.000238 0.0005 0.0211 0.0199*** 0.0170* 0.0236*** 0.0235 0.0171

(0.00876) (0.0150) (0.0150) (0.00647) (0.00973) (0.00900)

SPEI, t-1 0.0144** 0.00542 0.00693 0.0071 0.0158 0.00722 -0.000759 -0.00821 -0.0081 0.0015

(0.00735) (0.0148) (0.0141) (0.00520) (0.00959) (0.00951)

SPEI, t-2 0.00777 0.0392*** 0.0266** 0.026 -0.013 0.00419 0.00374 0.00619 0.0061 0.0013

(0.00641) (0.0134) (0.0124) (0.00597) (0.00967) (0.00958)

SPEI Shock Growing Season 0.0377*** 0.0378** 0.0209 0.021 0.0284 0.0282*** 0.0196** 0.0246** 0.0246 0.022

(0.0137) (0.0165) (0.0154) (0.0106) (0.00992) (0.0101)

SPEI Shock Growing Season, t-1 0.0395*** 0.0387** 0.0203 0.0203 0.0143 0.0144* 0.0261*** 0.0180 0.0177 -0.0138

(0.0133) (0.0159) (0.0147) (0.00870) (0.00988) (0.0117)

SPEI Shock Growing Season, t-2 0.0207* 0.0178 0.0145 0.0142 -0.008 0.00282 0.00650 0.00264 0.0025 -0.0073

(0.0112) (0.0129) (0.0154) (0.00997) (0.0115) (0.0107)

W · SPEI 0.0151 0.0150 0.00491 -0.00950

(0.0204) (0.0185) (0.0126) (0.0107)

W · SPEI, t-1 0.00879 0.00447 0.00704 0.00946

(0.0187) (0.0168) (0.0109) (0.0109)

W · SPEI, t-2 -0.0440** -0.0363** -0.00153 -0.00515

(0.0175) (0.0157) (0.0128) (0.0113)

W · SPEI Shock Growing Season -0.00948 -0.000336 0.0164 -0.00645

(0.0290) (0.0241) (0.0194) (0.0144)

W · SPEI Shock Growing Season, t- -0.00803 -0.0100 -0.0255 -0.0294*

(0.0282) (0.0222) (0.0161) (0.0170)

W · SPEI Shock Growing Season, t- -0.00165 -0.0204 -0.00691 -0.00863

(0.0261) (0.0226) (0.0161) (0.0144)

Observations 18,790 18,790 18,790 18,790 18,790 18,790

R-squared 0.140 0.154 0.190 0.099 0.122 0.136

Y = RIOT Y = REBEL
(9) (12)

W = binary contiguity matrix, cutoff 290 km. Standard errors in parenthesis. 

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects. 

Model III Model III

Nina
Rectangle



Table A1: Conflict incidence and climate, full vs. balanced panel

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

(1) (2) (3) (4)

Model I Model II Model I Model II 

OLS OLS OLS OLS

SPEI 0.0401*** 0.0211 0.0358*** 0.0353***

(0.0132) (0.0233) (0.00720) (0.00811)

SPEI, t-1 0.0336*** 0.0171 0.0316*** 0.0308***

(0.0129) (0.0224) (0.00759) (0.00852)

SPEI, t-2 0.0119 0.0170 0.0206*** 0.0180**

(0.0116) (0.0205) (0.00683) (0.00764)

SPEI Shock Growing Season 0.0938*** 0.0214 0.0828*** 0.0886***

(0.0245) (0.0261) (0.0165) (0.0174)

SPEI Shock Growing Season, t-1 0.106*** 0.0756*** 0.0910*** 0.0914***

(0.0257) (0.0242) (0.0173) (0.0181)

SPEI Shock Growing Season, t-2 0.0658*** 0.0488** 0.0745*** 0.0750***

(0.0243) (0.0239) (0.0167) (0.0174)

W · SPEI 0.0300 -0.00440***

(0.0309) (0.000962)

W · SPEI, t-1 0.0222 -0.00236**

(0.0311) (0.00102)

W · SPEI, t-2 -0.0115 -0.00164*

(0.0278) (0.000900)

W · SPEI Shock Growing Season 0.145*** -0.0128***

(0.0497) (0.00246)

W · SPEI Shock Growing Season, t-1 0.0650 -0.00347

(0.0475) (0.00336)

W · SPEI Shock Growing Season, t-1 0.0349 -0.00798***

(0.0452) (0.00271)

Observations 18,790 18,790 29,532 29,532

R-squared 0.315 0.333 0.252 0.274

Balanced panel Full panel

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and 

year fixed effects. W = binary contiguity matrix, cutoff 290 km.

Standard errors corrected for spatial and serial correlation in parenthesis.



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Model I Model II Model III Model I Model II Model III Model I Model II Model III Model I Model II Model III
Y, t-1 0.311*** 0.310*** 0.306*** 0.313***

(0.00699) (0.00700) (0.00821) (0.00699)
W · Y 0.452*** 0.445*** 0.388*** 0.452***

(0.0136) (0.0138) (0.0154) (0.0136)
SPEI 0.0257** 0.0219 0.0139 0.0558*** 0.0316 0.0114 0.0275* 0.0292 0.00440 0.0302** 0.0223 0.0126

(0.0127) (0.0229) (0.0206) (0.0158) (0.0268) (0.0219) (0.0143) (0.0249) (0.0222) (0.0127) (0.0229) (0.0208)
SPEI, t-1 0.0114 0.00374 0.00282 0.0454*** 0.0208 0.0286 0.00440 0.0279 0.0183 0.0161 0.00615 0.00177

(0.0122) -0.0218 (0.0192) (0.0151) (0.0273) (0.0214) (0.0131) (0.0246) (0.0213) (0.0125) (0.0220) (0.0192)
SPEI, t-2 0.000516 0.00754 -0.000680 0.0156 0.0235 0.00936 -0.00444 0.0325 -0.00232 0.00104 0.00846 -0.000600

(0.0110) (0.0201) (0.0174) (0.0155) (0.0250) (0.0203) (0.0126) (0.0220) (0.0203) (0.0111) (0.0203) (0.0177)

SPEI, Growing Season 

Indicator -0.0685*** -0.0171 0.00685 -0.897 -0.486 -0.623 0.216*** 0.0540 0.0460

(0.0264) (0.0299) (0.0231) (0.764) (0.732) (0.637) (0.0808) (0.0729) (0.0879)

SPEI, Growing Season 

Indicator, t-1 -0.0738*** -0.0279 -0.0454* -0.189 -0.171 0.424 0.141** 0.0903 0.117

(0.0255) (0.0296) (0.0254) (0.802) (0.809) (0.755) (0.0676) (0.0750) (0.0912)

SPEI, Growing Season 

Indicator, t-2 -0.0399 -0.0235 -0.0189 -0.155 0.520 0.776 0.0387 0.0201 -0.0152

(0.0256) (0.0268) (0.0224) (0.767) (0.812) (0.665) (0.0761) (0.0671) (0.0679)

W · SPEI -0.00423 0.00523 0.0383 0.0402 -0.0123 0.0251 0.00390 0.0123

(0.0292) (0.0246) (0.0350) (0.0271) (0.0327) (0.0270) (0.0295) (0.0249)

W · SPEI, t-1 0.00167 -0.00143 0.0419 -0.0173 -0.0354 -0.0270 0.00489 0.00508

(0.0290) (0.0229) (0.0361) (0.0263) (0.0312) (0.0246) (0.0297) (0.0231)

W · SPEI, t-2 -0.0177 -0.00278 -0.00698 -0.0115 -0.0465 -0.00122 -0.0194 -0.00382

(0.0263) (0.0207) (0.0334) (0.0248) (0.0295) (0.0243) (0.0267) (0.0210)

W · SPEI, Growing 

Season Indicator -0.102** -0.0800** -1.019 -0.490 0.297 0.185

(0.0475) (0.0346) (1.061) (0.959) (0.194) (0.135)

W · SPEI, Growing 

Season Indicator, t-1 -0.0997** 0.0229 -0.517 -0.216 0.0646 -0.117

(0.0447) (0.0366) (1.001) (1.062) (0.169) (0.139)

W · SPEI, Growing 

Season Indicator, t-2 -0.0503 0.00864 -2.541** -2.115** -0.00123 0.00538

(0.0452) (0.0315) (1.107) (0.965) (0.154) (0.110)

Observations 18,790 18,790 18,790 18,790 18,790 18,790 13,750 13,750 13,750 18,790 18,790 18,790

R squared 0.310 0.328 0.315 0.314 0.314 0.317 0.305 0.306 0.312 0.311 0.328 0.312

Standard errors in parenthesis. Cols. 1-2-4-5-7-8-10-11 corrected for spatial and serial correlation. Cols. 3-6-9-12 corrected for clustering at the cell level. *** p<0.01, ** p<0.05, * p<0.1

Table A2: Conflict incidence and other SPEI based climate indicators, panel

Standalone Growing Season Maincrop Growing Season 2 St Dev ShockGrowing Season Weighted

Dependent variable (Y) = 1 if conflict event in year t (ANY EVENT)

Notes:  Each observation is a cell/year.  All regressions include controls listed in table 2, country and year fixed effects. W = binary contiguity matrix, cutoff 290 km.
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