
Haskell: Compiler as Theorem-Prover

Greg Price (price)

2007 Nov 19

code samples: http://cluedumps.mit.edu/wiki/2007/11-19

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 1 / 26

http://cluedumps.mit.edu/wiki/2007/11-19


1 Software Transactional Memory

2 Protocol Types

3 More theorems

4 The Big Picture

5 References

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 2 / 26



Software Transactional Memory

Concurrency: locking

costly, deadlocks, bugs.

Optimistic transactions, restarting

Worse bugs:

void f() {
begin_transaction();
if (x != y)
launch_missiles();

end_transaction();
}

void g() {
begin_transaction();
x++;
y++;
end_transaction();

}

Restart side effects?

& all the old bugs too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 4 / 26



Software Transactional Memory

Concurrency: locking costly, deadlocks, bugs.

Optimistic transactions, restarting

Worse bugs:

void f() {
begin_transaction();
if (x != y)
launch_missiles();

end_transaction();
}

void g() {
begin_transaction();
x++;
y++;
end_transaction();

}

Restart side effects?

& all the old bugs too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 4 / 26



Software Transactional Memory

Concurrency: locking costly, deadlocks, bugs.

Optimistic transactions, restarting

Worse bugs:

void f() {
begin_transaction();
if (x != y)
launch_missiles();

end_transaction();
}

void g() {
begin_transaction();
x++;
y++;
end_transaction();

}

Restart side effects?

& all the old bugs too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 4 / 26



Software Transactional Memory

Concurrency: locking costly, deadlocks, bugs.

Optimistic transactions, restarting

Worse bugs:

void f() {
begin_transaction();
if (x != y)
launch_missiles();

end_transaction();
}

void g() {
begin_transaction();
x++;
y++;
end_transaction();

}

Restart side effects?

& all the old bugs too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 4 / 26



Software Transactional Memory

Concurrency: locking costly, deadlocks, bugs.

Optimistic transactions, restarting

Worse bugs:

void f() {
begin_transaction();
if (x != y)
launch_missiles();

end_transaction();
}

void g() {
begin_transaction();
x++;
y++;
end_transaction();

}

Restart side effects?

& all the old bugs too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 4 / 26



Software Transactional Memory

Solution:
f = atomically $

do xv <- readTVar x
yv <- readTVar y
if xv /= yv then launch_missiles_soon

else return ()
g = atomically $

do xv <- readTVar x; writeTVar x (xv+1)
yv <- readTVar y; writeTVar y (yv+1)

(see example STMExample)

can’t have (non-transactional) side effects

no special compiler support (except runtime)

other bugs ruled out too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 6 / 26



Software Transactional Memory

Solution:
f = atomically $

do xv <- readTVar x
yv <- readTVar y
if xv /= yv then launch_missiles_soon

else return ()
g = atomically $

do xv <- readTVar x; writeTVar x (xv+1)
yv <- readTVar y; writeTVar y (yv+1)

(see example STMExample)

can’t have (non-transactional) side effects

no special compiler support (except runtime)

other bugs ruled out too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 6 / 26



Software Transactional Memory

Solution:
f = atomically $

do xv <- readTVar x
yv <- readTVar y
if xv /= yv then launch_missiles_soon

else return ()
g = atomically $

do xv <- readTVar x; writeTVar x (xv+1)
yv <- readTVar y; writeTVar y (yv+1)

(see example STMExample)

can’t have (non-transactional) side effects

no special compiler support (except runtime)

other bugs ruled out too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 6 / 26



Software Transactional Memory

Solution:
f = atomically $

do xv <- readTVar x
yv <- readTVar y
if xv /= yv then launch_missiles_soon

else return ()
g = atomically $

do xv <- readTVar x; writeTVar x (xv+1)
yv <- readTVar y; writeTVar y (yv+1)

(see example STMExample)

can’t have (non-transactional) side effects

no special compiler support (except runtime)

other bugs ruled out too

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 6 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO ()

an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO ()

an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO () an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO () an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO () an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

pure

putStr "hello" :: IO () an IO action

sequenced: do { ...; f :: IO a; ... }

executed only through main:
main :: IO ()
main = do putStr "Hello world!\n"

launch_missiles

⇒ side effects only through type IO a

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 8 / 26



STM: Guaranteeing No Side Effects

side effects only through type IO a

atomically :: STM a -> IO a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

do { ...; f :: STM a; ... } (same)

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 10 / 26



STM: Guaranteeing No Side Effects

side effects only through type IO a

atomically :: STM a -> IO a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

do { ...; f :: STM a; ... } (same)

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 10 / 26



STM: Guaranteeing No Side Effects

side effects only through type IO a

atomically :: STM a -> IO a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

do { ...; f :: STM a; ... } (same)

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 10 / 26



STM: Guaranteeing No Side Effects

side effects only through type IO a

atomically :: STM a -> IO a

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

do { ...; f :: STM a; ... } (same)

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 10 / 26



1 Software Transactional Memory

2 Protocol Types

3 More theorems

4 The Big Picture

5 References

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 11 / 26



Protocol Types

spec :: Spec ((Snd Int :+: Snd String) :->: End) IOChan
a protocol spec

accept spec

:: (Extend M (ChanCap c s) e e’ n) =>
LinearT IO e e’ (LVar n)

request spec

:: (Dual s s’,
Extend M (ChanCap c s’) e e’ n) =>

LinearT IO e e’ (LVar n)

runLinearT (accept spec >>>= ...) :: IO a
executes protocol exactly

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 13 / 26



Protocol Types

spec :: Spec ((Snd Int :+: Snd String) :->: End)︸ ︷︷ ︸
s

IOChan

a protocol spec

accept spec

:: (Extend M (ChanCap c s) e e’ n) =>
LinearT IO e e’ (LVar n)

request spec

:: (Dual s s’,
Extend M (ChanCap c s’) e e’ n) =>

LinearT IO e e’ (LVar n)

runLinearT (accept spec >>>= ...) :: IO a
executes protocol exactly

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 13 / 26



Protocol Types

spec :: Spec ((Snd Int :+: Snd String) :->: End)︸ ︷︷ ︸
s

IOChan

a protocol spec

accept spec

:: (Extend M (ChanCap c s) e e’ n) =>
LinearT IO e e’ (LVar n)

request spec

:: (Dual s s’,
Extend M (ChanCap c s’) e e’ n) =>
LinearT IO e e’ (LVar n)

runLinearT (accept spec >>>= ...) :: IO a
executes protocol exactly

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 13 / 26



Protocol Types

spec :: Spec ((Snd Int :+: Snd String) :->: End)︸ ︷︷ ︸
s

IOChan

a protocol spec

accept spec :: (Extend M (ChanCap c s) e e’ n) =>
LinearT IO e e’ (LVar n)

request spec :: (Dual s s’,
Extend M (ChanCap c s’) e e’ n) =>
LinearT IO e e’ (LVar n)

runLinearT (accept spec >>>= ...) :: IO a
executes protocol exactly

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 13 / 26



Protocol Types

spec :: Spec ((Snd Int :+: Snd String) :->: End)︸ ︷︷ ︸
s

IOChan

a protocol spec

accept spec :: (Extend M (ChanCap c s) e e’ n) =>
LinearT IO e e’ (LVar n)

request spec :: (Dual s s’,
Extend M (ChanCap c s’) e e’ n) =>
LinearT IO e e’ (LVar n)

runLinearT (accept spec >>>= ...) :: IO a
executes protocol exactly

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 13 / 26



Protocol Types: Means of Proof

runLinearT :: LinearT IO Empty Empty a -> IO a

environments of capabilities

send :: (Evolve n c (Snd a :->: x) e x e’) =>
LVar n -> a -> LinearT IO e e’ ()

recv :: (Evolve n c (Rcv a :->: x) e x e’) =>
LVar n -> LinearT IO e e’ a

sel1 :: (Evolve n c ((x1:+:x2):->:y) e (x1:->:y) e’) =>
LVar n -> LinearT IO e e’ ()

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 15 / 26



Protocol Types: Means of Proof

runLinearT :: LinearT IO Empty Empty a -> IO a

environments of capabilities

send :: (Evolve n c (Snd a :->: x) e x e’) =>
LVar n -> a -> LinearT IO e e’ ()

recv :: (Evolve n c (Rcv a :->: x) e x e’) =>
LVar n -> LinearT IO e e’ a

sel1 :: (Evolve n c ((x1:+:x2):->:y) e (x1:->:y) e’) =>
LVar n -> LinearT IO e e’ ()

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 15 / 26



Protocol Types: Means of Proof

runLinearT :: LinearT IO Empty Empty a -> IO a

environments of capabilities

send :: (Evolve n c (Snd a :->: x) e x e’) =>
LVar n -> a -> LinearT IO e e’ ()

recv :: (Evolve n c (Rcv a :->: x) e x e’) =>
LVar n -> LinearT IO e e’ a

sel1 :: (Evolve n c ((x1:+:x2):->:y) e (x1:->:y) e’) =>
LVar n -> LinearT IO e e’ ()

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 15 / 26



Protocol Types: Means of Proof

runLinearT :: LinearT IO Empty Empty a -> IO a

environments of capabilities

send :: (Evolve n c (Snd a :->: x) e x e’) =>
LVar n -> a -> LinearT IO e e’ ()

recv :: (Evolve n c (Rcv a :->: x) e x e’) =>
LVar n -> LinearT IO e e’ a

sel1 :: (Evolve n c ((x1:+:x2):->:y) e (x1:->:y) e’) =>
LVar n -> LinearT IO e e’ ()

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 15 / 26



Protocol Types: Generic Building Blocks

data T
data F

class Prop a
instance Prop T
instance Prop F

class Prop b => Equal x y b | x y -> b

data Z
data S x

class Nat a
instance Nat Z
instance Nat n => Nat (S n)

instance Equal Z Z T
instance Nat n => Equal (S n) Z F
instance Nat n => Equal Z (S n) F
instance (Nat n1, Nat n2, Equal n1 n2 b)

=> Equal (S n1) (S n2) b

also lists, environments, many other things

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 17 / 26



Protocol Types: Generic Building Blocks

data T
data F

class Prop a
instance Prop T
instance Prop F

class Prop b => Equal x y b | x y -> b

data Z
data S x

class Nat a
instance Nat Z
instance Nat n => Nat (S n)

instance Equal Z Z T
instance Nat n => Equal (S n) Z F
instance Nat n => Equal Z (S n) F
instance (Nat n1, Nat n2, Equal n1 n2 b)

=> Equal (S n1) (S n2) b

also lists, environments, many other things

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 17 / 26



Protocol Types: Generic Building Blocks

data T
data F

class Prop a
instance Prop T
instance Prop F

class Prop b => Equal x y b | x y -> b

data Z
data S x

class Nat a
instance Nat Z
instance Nat n => Nat (S n)

instance Equal Z Z T
instance Nat n => Equal (S n) Z F
instance Nat n => Equal Z (S n) F
instance (Nat n1, Nat n2, Equal n1 n2 b)

=> Equal (S n1) (S n2) b

also lists, environments, many other things

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 17 / 26



Protocol Types: Generic Building Blocks

data T
data F

class Prop a
instance Prop T
instance Prop F

class Prop b => Equal x y b | x y -> b

data Z
data S x

class Nat a
instance Nat Z
instance Nat n => Nat (S n)

instance Equal Z Z T
instance Nat n => Equal (S n) Z F
instance Nat n => Equal Z (S n) F
instance (Nat n1, Nat n2, Equal n1 n2 b)

=> Equal (S n1) (S n2) b

also lists, environments, many other things

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 17 / 26



Protocol Types: Generic Building Blocks

data T
data F

class Prop a
instance Prop T
instance Prop F

class Prop b => Equal x y b | x y -> b

data Z
data S x

class Nat a
instance Nat Z
instance Nat n => Nat (S n)

instance Equal Z Z T
instance Nat n => Equal (S n) Z F
instance Nat n => Equal Z (S n) F
instance (Nat n1, Nat n2, Equal n1 n2 b)

=> Equal (S n1) (S n2) b

also lists, environments, many other things

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 17 / 26



Other popular theorems

type-checked physical dimensions:
newton = kg <*> m </> s </> s
thrust = dm 12537.2 <*> newton
dm 1 <*> m <+> dm 1 <*> m</>s -- error!
(see example Dimensional)

mutable state on a leash:
runST :: (forall s. ST s a) -> a

“theorems for free”:
if maybemap :: (a -> b) -> [a] -> [b]
then maybemap f == maybemap id . map f

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 19 / 26



Other popular theorems

type-checked physical dimensions:
newton = kg <*> m </> s </> s
thrust = dm 12537.2 <*> newton
dm 1 <*> m <+> dm 1 <*> m</>s -- error!
(see example Dimensional)

mutable state on a leash:
runST :: (forall s. ST s a) -> a

“theorems for free”:
if maybemap :: (a -> b) -> [a] -> [b]
then maybemap f == maybemap id . map f

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 19 / 26



Other popular theorems

type-checked physical dimensions:
newton = kg <*> m </> s </> s
thrust = dm 12537.2 <*> newton
dm 1 <*> m <+> dm 1 <*> m</>s -- error!
(see example Dimensional)

mutable state on a leash:
runST :: (forall s. ST s a) -> a

“theorems for free”:
if maybemap :: (a -> b) -> [a] -> [b]
then maybemap f == maybemap id . map f

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 19 / 26



1 Software Transactional Memory

2 Protocol Types

3 More theorems

4 The Big Picture

5 References

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 20 / 26



A Proof

{} `

A ∧ B ⇒ B ∧ A

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 21 / 26



A Proof

{} ` A ∧ B ⇒ B ∧ A

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 21 / 26



A Proof

{A ∧ B} ` B ∧ A

{} ` A ∧ B ⇒ B ∧ A

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 21 / 26



A Proof

{A ∧ B} ` A ∧ B

{A ∧ B} ` B

{A ∧ B} ` A ∧ B

{A ∧ B} ` A

{A ∧ B} ` B ∧ A

{} ` A ∧ B ⇒ B ∧ A

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 21 / 26



A Proof

{A ∧ B} ` A ∧ B
Id

{A ∧ B} ` B
∧E2

{A ∧ B} ` A ∧ B
Id

{A ∧ B} ` A
∧E1

{A ∧ B} ` B ∧ A
∧I

{} ` A ∧ B ⇒ B ∧ A
⇒I

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 21 / 26



A Proof (the same one)

λx . pair (snd x) (fst x)

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 23 / 26



A Proof (the same one)

{x : A× B} ` x : A× B
Id

{x : A× B} ` (snd x) : B
×E2

{x : A× B} ` x : A× B
Id

{x : A× B} ` (fst x) : A
×E1

{x : A× B} ` (pair (snd x)(fst x)) : B × A
×I

{} ` (λx . pair (snd x)(fst x)) : A× B → B × A
→I

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 24 / 26



References

all at http://cluedumps.mit.edu/wiki/2007/11-19

STM: Harris, Marlow, Peyton Jones, Herlihy 2005; Peyton Jones
“Beautiful Concurrency” for intro

protocol types: Jesse Tov, unpublished. Some of the ideas in Oleg
Kiselyov’s HList.

“theorems for free”: Phil Wadler, 1989. Now ∃ a web app.

Greg Price (price) () Haskell: Compiler as Theorem-Prover 2007 Nov 19 26 / 26


	Software Transactional Memory
	Protocol Types
	More theorems
	The Big Picture
	References

