
“Practice in Theory” Solution

Kenan Diab and Lauren McGough

1 Puzzle solution

The answer to each problem is a large integer which is actually a hep-th arXiv preprint identifier,
as clued by the flavor text. For some problems, you are given seven boxes, which means it is an
old style (pre April 2008) arXiv identifier (i.e. one which is formatted hep-th/YYMMxxx), and
for others, you are given eight boxes, which means it is a new one (i.e. one which is formatted
YYMM.xxxx). Some 8-box problems will have 7-digit answers, and some 7-box problems have
6-digit answers. For these, you must prepend a zero (i.e. it was published in 200x). There are no
answers which require two or three prepended zeros (i.e. there are none published in the year 2000).
Each paper has a unique, distinguished letter in the title that you extract. Sorting by date gives
you “GULAG ARCHIPELAGO AUTHOR”, which clues SOLZHENITSYN. In addition, there
is a check step: each word problem has a character with some name, and that name is the first
name of the first author on each paper.

The full list of answers is given below, and the solutions to each problem follow afterwards:

G - MATTHIAS (second one) - 9407042
U - TIM - 9505003
L - JIANYONG - 0412227
A - YUJI - 0507057
G - HERBERT - 0602108
A - PAUL - 08064592
R - NICK - 08073679
C - MATTHIAS (first one) - 08113892
H - SERGEI - 10035333
I - SEUNG-YEOP - 10050369
P - SOPHIA - 10082963
E - ANDREAS - 10102218
L - MARIO - 11035468
A - YU - 11102586
G - JOHANN - 12051835
O - ALI - 12073717
A - PHILLIP - 12093025
U - BIN - 13040568
T - EUGENIU - 13040772
H - ROBERTO - 13070705
O - ANN - 14013504
R - TSUGUHIKO - 14082649
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2 Solutions to each problem

Here are detailed solutions to each problem, pedagogically written in case it’s been a while since
you last thought about physics.

Problem 1 (Phillip)

If g is the gravitational field strength, the equation for balancing the torques is:

(48372100µg)g · 117000µm = (xg) · 468000µm =⇒ x = 12093025µg (2.1)

arXiv identifier 1209.3025 points to “Comments on a-maximization from gauged supergravity” by
Phillip Szpietowski, which gives you the letter A for extraction.

Problem 2 (Sophia)

If the fish is thrown with initial horizontal velocity v from a height h and travels a distance d in a
time t before hitting the ground, the kinematical equations in the horizontal and vertical directions,
respectively, are:

d = vt (2.2)

h =
1

2
gt2 (2.3)

where g is the gravitational acceleration. Simultaneously solving the equations with h = 1524000µm,
d = 5623188µm, and g = 9800000µm/s2 gives a velocity v = 10082963µm/s.

arXiv identifier 1008.2963 points to “Setting the scale of the p p and p bar p total cross sections
using AdS/QCD” by Sophia K. Domokos, et al., which gives you the letter P for extraction.

Problem 3 (Johann)

Let H be the height of the barrel, h be the height at which the hole is located, v be the fluid velocity
at the hole, ρ be the fluid density, Patm be the atmospheric pressure, and g be the gravitational
field strength. Since the fluid velocity at the top of the barrel is basically zero, Bernoulli’s principle
yields

Patm +
1

2
ρv2 + ρgh = Patm + ρgH (2.4)

⇒ v =
√

2g(H − h) (2.5)

Now we have to solve the kinematics problem as in the previous problem. Johann and friends will
land at a distance d away from the hole after a time t determined by the equations

d = vt (2.6)

h =
1

2
gt2 (2.7)

This yields the quadratric equation
d = 2

√
(H − h)h (2.8)

That is, the solution does not depend on g at all. Plugging in the given values of H and d, solving
the quadratic, and taking the smaller value of h gives h = 12051835µm.

arXiv identifier 1205.1835 points to “A Cusp in QED at g=2” by Johann Rafelski and Lance
Labun, which gives you the letter G for extraction.
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Problem 4 (Tim)

The moment of inertia of a cylinder of radius R and mass M with respect to its axis is I = 1
2MR2.

Let h be the height of the hill and g be the gravitational field strength. Let v be the translational
velocity of the cylinder and ω be the angular velocity of the cylinder with respect to its axis.
Conservation of energy yields:

Mgh =
1

2
Mv2 +

1

2
Iω2 (2.9)

Substituting our expression for I and the rolling without slipping condition v = rω, we obtain

ω = 1
R

√
4gh
3 . Plugging in the given numbers, we find ω = 9505003Ms−1.

arXiv identifier hep-th/9505003 points to “Two Phases for Compact U(1) Pure Gauge Theory
in Three Dimensions” by Tim Morris, which gives you the letter U for extraction.

Problem 5 (Bin)

Let H be the initial height, and let M and m be the masses of Bin and the pearl, respectively.
Conservation of energy tells us that the initial velocities of the two spheres at the point of collision
with the floor are the same. For the pearl, e.g.:

mgh =
1

2
mv2

0 =⇒ v0 =
√

2gH (2.10)

When Bin collides with the floor, his velocity changes sign, but not magnitude, since the collision is
elastic. Immediately afterwards, Bin collides with the pearl. Let V and v be Bin’s velocity and the
pearl’s velocity after this second collision. Conservation of momentum and conservation of energy,
respectively, yield:

Mv0 −mv0 = mv +MV (2.11)

1

2
(M +m)v2

0 =
1

2
MV 2 +

1

2
mv2 (2.12)

This is a system of two equations for two unknowns (v and V ) and therefore can be solved explicitly
by standard algebraic techniques. The solution for v corresponding to upward motion of the pearl
is

v =
3M −m
M +m

√
2gH (2.13)

Let h be the maximum height of the pearl after this first bounce. Conservation of energy applied
to the pearl after the bounce yields:

mgh =
1

2
mv2 (2.14)

What we really want is the height relative to its initial position - i.e. h − H. Substituting all
quantities and simplifying, we obtain

h−H =
8H(1−m/M)

(1 +m/M)2
(2.15)

Substituting the given numbers, we obtain h−H = 13040568µm. arXiv identifier 1304.0568 points
to “Smooth U(1) Gauge Potentials on the de Sitter Spacetime” by Bin Zhou, et. al., which yields
U for extraction.

3



Problem 6 (Roberto)

The resonant frequency of a series RLC circuit occurs at the frequency where the inductive and
capacitive impedances cancel each other out, thereby minimizing the total impedance:

iω0L+
1

iω0C
= 0 =⇒ ω0 =

1√
LC

(2.16)

The quality factor is defined to be Q = ω0/∆ω, where ∆ω is the width of the average power curve
at half-maximum. The average power is

P = Ī2R = V̄ 2R/Z2 (2.17)

where Ī and V̄ are the RMS current and voltage, respectively. Subsituting in the impedance
Z = R+ iωL+ 1/iωC, a short computation gives that the quality factor is

Q =
ω0L

R
(2.18)

Since you are given Q, ω0, and R in the problem statement, this equation can be used to solve for
L, and then equation 2.16 can be used to solve for C. This turns out to be 13070705 fF. arXiv
identifier 1307.0705 points to “QCD corrections to H → gg in FDR” by Roberto Pittau, which
gives you the letter H for extraction.

Problem 7 (Tsuguhiko)

The standard way to solve this would be by using the principle of superposition. You would compute
the electric field at the given point due to a solid sphere of charge density ρ with no hole and the
electric field at the given point due to a solid sphere of charge density −ρ located where the hole
is located, and add the two results together. However, since Tsuguhiko is located at the center of
the hole - i.e. the center of this second sphere, this second contribution is just zero, so it suffices to
computer the electric field at that point assuming the hole does not even exist.

The force Tsuguhiko feels is F = qE, where q is his charge and E is the electric field at his
location. E can be computed from the integral form of Gauss’s law:

˛
Σ
E · dA = Q/ε0 (2.19)

where Σ is some closed surface, E is the electric field dA is the surface element, Q is the enclosed
charge and ε0 is the permittivity of free space. Here, we can choose Σ to be a sphere centered
at the center of the large sphere with radius R/2. Since we may ignore the hole for the special
point we have chosen, spherical symmetry implies that the left hand side is equal to 4π(R/2)2E.
Then, Q = V ρ, where V = 4

3π(R/2)3 is the volume of the sphere enclosed by Σ. Solving for E and
plugging in all the numbers, one finds that the force Tsuguhiko feels is F = 14082649µN.

arXiv identifier 1408.2649 points to “Poisson-generalized geometry and R-flux” by Tsuguhiko
Asakawa, et. al, which gives you the letter R for extraction.

Problem 8 (Matthias I)

Let x = 0 be the top of the spring with the x axis oriented so that x increases as you go down the
spring. Consider some infinitesimal segment of the spring from x to x+ dx. There is some tension
T (x) at the top of the spring and T (x+ dx) at the bottom of the spring, pulling the infinitesimal
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segment in opposite directions. There is also the force due to gravity, which pulls downward with
magnitude λdxg. Newton’s second law therefore yields that

T (x+ dx) + λdxg − T (x) = 0

⇒ dT

dx
= −λg (2.20)

It is well-known that if you cut a spring of constant k into n pieces, you get n springs each
with constant kn (i.e. “springs are like capacitors”)1. So the spring constant of this tiny piece is
k = KL/dx.

Now, let a(x) be the displacement of the spring at position x relative to its equilibrium position
(i.e. the position it would have if g = 0). The tension T (x) at the location of the infinitesimal piece
is given by T (x) = k[a(x + dx) − a(x)] = KLda/dx. 2 Substituting this expression into 2.20, we
obtain

dT

dx
= KL

d2a

dx2
= −λg (2.21)

The solution to this equation is

a(x) = −λgx
2

2KL
+ Cx+D (2.22)

where C and D are integration constants. These are determined by the boundary conditions
T (L) = 0 and a(0) = 0. imposing them, we find

a(x) =
−λgx2

2KL
+
λgx

K
(2.23)

We want to compute a(1/2). Substituting the given values of K, L, λ, and g, we obtain a(1/2) =
8113892nm. This answer appears to have too few digits since there are 8 boxes given and the answer
is only 7 digits long. We prefix with a 0, since it is the same number even with a prefixed zero.
A more motivated way to know that one should do this comes from understanding the extraction
mechanism. We want valid arXiv identifiers, so we need to prepend a digit, and the only one that
doesn’t change the numerical value of the answer is 0.

arXiv identifier 0811.3892 refers to “Zhu’s algebra, the C2 algebra, and twisted modules” by
Matthias Gaberdiel and Terry Gannon, which yields the letter C for extraction.

Problem 9 (Matthias II)

This problem may be solved by the method of images. Recall that the classic example of a point
charge sitting above a plane is solved by putting a image charge of opposite charge at the point
given by reflecting the charge’s position across the plane. The same trick works here, except the
given geometry suggests we need to reflect “all the way around” - i.e. we should put 7 image charges
at the vertices of a regular hexagon with the real charge sitting at the 8th vertex. The charges
alternate +q and −q around the hexagon, where q is the given charge that Matthias carries. It is
a tedious algebraic exercise to verify that the required boundary conditions for the electric field at
the conducting surfaces are indeed satisfied (i.e. the electric field at those surfaces is perpendicular
to the surface), and we will not reproduce the argument here.

1Simple way to see this: if you stretch a spring of constant k by some amount l, each of the n pieces you would
cut it into stretches by an amount l/n - i.e. the spring constant is n times bigger.

2Here, we’re assuming T is the same throughout the infinitesimal piece, which is correct up to terms subleading
in dx.
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For a hexagon of radius 1, simple trigonometry gives that the edge length a =
√

2−
√

2 and
the three diagonals have length d1 =

√
2, d2 = a(1 +

√
2), d3 = 2. It is clear from the geometry of

the situation that the total force will be parallel to the line connecting Matthias to the center of
the hexagon. Hence, the total force is:

F =
q2

4πε0

(
2

sin(π/8)

a2
− 2

sin(π/4)

d2
1

+ 2
sin(3π/8)

d2
2

− sin(π/2)

d2
3

)
= 9407042µN (2.24)

arXiv identifier hep-th/9407042 points to “Equivariant Kaehler Geometry and Localization in the
G/G Model” by Matthias Blau and George Thompson, which yields the letter G for extraction.

Problem 10 (Herbert)

For a point on the wall at angle θ, the difference in the distance the light between adjacent slits
must travel is ∆L = d sin θ. Hence, light from adjacent slits will be out of phase when they arrive at
the wall. The difference in phase δ is given by the fraction of a period of oscillation which elapsed
over this extra distance: δ = 2π∆L

λ . Therefore, at the screen, the amplitude of the three waves will
be given by

A0 = A sin(ωt− δ) (2.25)

A1 = A sin(ωt) (2.26)

A2 = A sin(ωt+ δ) (2.27)

where here ω is the angular frequency of the light and we have ignored the possibility of a constant
phase offsetting all three amplitudes by choosing the origin of our time coordinate appropriately.
The sum of these waves can be simplified by using the trigonometric identities for sums and differ-
ences of angles

A = A0 +A1 +A2 (2.28)

= . . . (2.29)

= A(1 + 2 cos δ) sin(ωt) (2.30)

Thus, a dark spot will be observed when cos δ = −1/2. The smallest such θ will be generated
when δ = 2π/3, i.e. θ = sin−1(λ/3d). Substituting in the numbers, we obtain that θ = 607228µrad.
Again, we appear to be one digit short of the required 7 digits, so we prepend a 0. arXiv identifier
hep-th/0607228 points to “Renormalization Group Running of Newton’s G: The Static Isotropic
Case” by Herbert Hamber and Ruth Williams, which yields the letter G for extraction.

Problem 11 (Sergei)

We need to compute the efficiency of the given “box cycle” for a photon gas. Using the thermody-
namic identity

dU = TdS − PdV (2.31)

on a path that does not change the volume (dV = 0), we find that

4σV T 3 = TdS ⇒ S =
4

3
σV T 3 (2.32)
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where we have set the boundary condition for the differential equation by using the third law of
thermodynamics (S = 0 at T = 0). Plugging this back in to the thermodynamic identity, but now
considering a general deformation, we obtain:

4σV T 3dT + σT 4dV = T (4σV T 2dT +
4

3
σT 3dV )− PdV ⇒ P =

1

3
σT 4 (2.33)

Or to put it another way
3PV = U (2.34)

Let’s consider the heat taken in at each point in the cycle. In the isochoric expansion phase,
no work is done, so the entire change in internal energy during this phase is heat intake. Thus,
∆U = ∆Q = 3V∆P = 3 × 77 × PV = 231PV . In the isobaric expansion phase, the work done is
78P×56V , and the change in internal energy is 3P∆V = 3×78P×56V . Thus, ∆Q = ∆U+∆W =
4 × 78P × 56V = 17472PV . There is no heat intake in the contraction phases. So the total heat
taken is 17703PV . The total work done is 77P × 56V = 4312PV . So the efficiency is 4312/17703
and so the total work done is 41200255.125J× 4312/17703 = 10035333J.

arXiv identifier 1003.5333 points to “Quantum Sine(h)-Gordon Model and Classical Integrable
Equations” by Sergei Lukyanov and Alexander Zamolodchikov, which yields H for extraction.

Problem 12 (Mario)

The fastest way to solve this problem is to notice that the given “interaction” is not really an
interaction at all in the sense that a judicious change of basis factorizes the Hamiltonian into two
decoupled sectors. In fact, the good basis to use is just the center of mass basis. Define the following
quantities:

x = x1 − x2 (2.35)

X =
x1 + x2

2
(2.36)

The appropriate conjugate momenta that satisfy the canonical commutation relations are:

p =
p1 − p2

2
(2.37)

P = p1 + p2 (2.38)

Now define µ = m/2 and M = 2m. Then, we can rewrite the Hamiltonian as:

H = Hµ +HM (2.39)

Hµ =
p2

2µ
+
µx2

2

(
ω2 − g

m

)
(2.40)

Hµ =
P 2

2M
+
MX2

2

(
ω2 +

g

m

)
(2.41)

where we have [Hµ, HM ] = 0. Hence, we have two independent harmonic oscillators of frequencies
ω2
± = ω2 ± g/m. We know from elementary quantum mechanics that the spectrum is therefore

indexed by a pair of non-negative integers (nµ, nM ) corresponding to a state of energy

Enµ,nM = ~ω+

(
nM +

1

2

)
+ ~ω−

(
nµ +

1

2

)
(2.42)

The ground state is nµ = nM = 0. The first excited state is given by nµ = 1, nM = 0. Running the
numerical values, one obtains E1,0 = 11035468fJ.

arXiv identifier 1103.5468 points to “Generalised massive gravity one-loop partition function
and AdS/(L)CFT” by Mario Bertin, et. al., which yields L for extraction.
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Problem 13 (Andreas)

Observe the following two facts. First, the joint wavefunction, which is the tensor product of the
spin part and the spatial part, must be antisymmetric with respect to exchange of the fermions.
This means that either the spatial or spin part must be odd under exchange and the other must be
even. Second, since Andreas measures either 0 or 2~ for (S1 + S2)2, there must be a ground-state
degeneracy.

The single-particle spatial eigenstates are simply given by the free result. For a circle of cir-
cumference 1, this is:

ψn(x) = e2πinx (2.43)

where n = 0, 1, 2, . . . and the corresponding energy En = ~2(2πn)2/(2m). The lowest-energy two-
particle spatial wavefunction is ψ0(x1)ψ0(x2) - i.e. both particles are in the ground state, which is
symmetric under exchange. The next-lowest energy level of the two-particle spatial Hamiltonian is
infinitely degenerate, but one representative which is an eigenstate of the exchange operator is

1√
2

(ψ0(x1)ψ1(x2)− ψ1(x0)ψ0(x1)) (2.44)

i.e. the antisymmetrized combination of one particle in the ground state, the other in the excited
state, which is antisymmetric under exchange.

Consider now the spin piece of the wavefunction. We work in a basis of eigenstates of (S1 +S2)2.
Here we have the triplet of symmetric two-particle states, | ↑↑〉, 1√

2
(| ↑↓〉+ | ↓↑〉) , | ↓↓〉 and the

antisymmetric singlet state 1√
2

(| ↑↓〉 − | ↓↑〉). Direct computation yields that the triplet states

have (S1 +S2)2 eigenvalue equal to 2~2 and the singlet has eigenvalue 0. Moreover, S2
1 = S2

2 = 3
4~

2

for all of these states. Therefore, the triplet states have S1 ·S2 eigenvalue ~2/4 and the singlet state
has S1 · S2 eigenvalue −3

4~
2.

Combining spatial and spin parts, the symmetric spatial ground state with energy 0 must be
paired with the singlet antisymmetric spin state, giving a total energy of 3g

4 ~2. The antisymmetric
first-excited spatial wavefunction with energy E1 = ~2(2π)2/(2m) must be paired with a symmetric
spin state (a triplet state), for a total energy ~2(2π)2/(2m)− g~2/4.

That Andreas measures two values for (S1 + S2)2 indicates a degeneracy. Since we are given
the value of g, we must set these two energies equal in order to determine the mass:

~2(2π)2

2m
− g~2

4
=

3g

4
~2 (2.45)

=⇒ m =
2π2

g
= 10102218eV. (2.46)

arXiv identifier 1010.2218 points to “PT invariant complex E(8) root spaces” by Andreas Fring and
Monique Smith, which yields E for extraction.

Problem 14 (Eugeniu)

We solve the Laplace equation by separation of variables. We begin by finding a potential V (r, θ, φ)
that satisfies the appropriate boundary conditions. As is customary in the separation-of-variables
approach, we take as an ansatz a V of the form V = R(x)Θ(θ)Φ(φ) - or, more specifically, a linear
combination of terms of that form. The Laplace equation in spherical coordinates in a system with
azimuthal symmetry specifies that

1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂V

∂θ

)
= 0. (2.47)
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The Laplace equation along with the assumption of separation of variables implies that V is of the
form

V =
∑
n=0

(
Anr

n +Bnr
−n−1

)
Pn(cos(θ)) (2.48)

where the Pn are Legendre polynomials.
Our boundary conditions specify that V

∣∣
(r=R)

= 0, where R is the radius of the sphere, since

the sphere is a metal sphere, and V (r →∞) = −E0r cos(θ), since we began with a uniform electric
field E0ẑ filling all of space. Applying these to the expression above, we find that

V (r, θ, φ) = −E0R cos(θ)

(
r

R
− R2

r2

)
. (2.49)

The surface charge is then given by

σ = −ε0 ~n · ∇V
∣∣
r=R

= 3ε0E0 cos(θ). (2.50)

Plugging in the numbers given, we note that the value of φ does not matter and σ(θ = 0.42681131π) =
13040772nC/cm2.

arXiv identifier 1304.0772 points to “Short-Range Entangled Bosonic States with Chiral Edge
Modes and T-duality of Heterotic Strings” by Eugeniu Plamadeala, et. al., which yields T for
extraction.

Problem 15 (Nick)

We begin by writing the single-jellyfish partition function: Z =
∑

i e
−βEi , where i runs over the

g+ 1 states. This is just Z = 1 + eaλe−βhλ. The total partition function is then ZN . f is therefore
given by

f = − 1

hλZ
∂βZ =

eaλ−βhλ

1 + eaλ−βhλ
. (2.51)

Taking a limit as λ → ∞, we find that f is either 1 or 0 depending on whether a− βh is positive
or negative, respectively. The critical β therefore occurs at β = a

h ; that is, T = h
akB

= 8073679
millikelvins. As before, this answer is one digit short, which we rectify with a leading 0. arXiv
identifier 0807.3679 points to “R-Charge Chemical Potential in a 2+1 Dimensional System”, by
Nick Evans and Ed Threlfall, giving R for extraction.

Problem 16 (Ann)

The Lagrangian in cylindrical coordinates (r, θ, z) is

L =
1

2
m(ṙ2 + r2θ̇2 + ż2)−mgz (2.52)

Since it is rotating with constant angular velocity ω, θ̇ = ω. From the shape of the wire given, we
have ż = dz

dr ṙ = 3kr2ṙ. Thus, the Lagrangian is actually a function of just the variables r and ṙ:

L =
1

2
m(ṙ2 + r2ω2 + 9k2r4ṙ2)−mgkr3 (2.53)

We are looking for equilibrium points, so we compute the equation of motion from r arising from
this Lagrangian and set all the time derivatives equal to zero. This yields the following simple
equation:

mrω2 − 3gkr2 = 0 (2.54)
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The nontrivial fixed point is given by

r =
ω2

3gk
(2.55)

Substituting all the given numerical values gives r = 14013504nm. arXiv identifier 1401.3504
points to “Corner contribution to the entanglement entropy of an O(3) quantum critical point in
2+1 dimensions” by Ann Kallin, et. al., which yields O for extraction.

Problem 17 (Seung-Yeop)

The photon trajectories are given by the null geodesics along x and y at the z = 0 plane.

0 = ds2 = −dt2 + (1 +A cos(ωt))dx2 =⇒ dx ≈ dt
(

1− 1

2
A cos(ωt)

)
(2.56)

0 = ds2 = −dt2 + (1−A cos(ωt))dy2 =⇒ dy ≈ dt
(

1 +
1

2
A cos(ωt)

)
(2.57)

Integrating both sides so that
´
dx =

´
dy = 2L, we obtain

2L = t− A

2ω
sin(ωt) (2.58)

2L = t+
A

2ω
sin(ωt) (2.59)

So simultaneous arrival is only possible when sin(ωt) = 0. The smallest L is generated by the
smallest nonzero value of t, which is π/ω, or L = π/2ω. Restoring the factor of c, we have
L = cπ/2ω, and plugging in the given value of ω, we obtain L = 10050369m.

arXiv identifier 1005.0369 points to “Viscous shocks in Hele-Shaw flow and Stokes phenomena
of the Painleve I transcendent” by Seung-Yeop Lee, et. al., which yields I for extraction.

Problem 18 (Yuji)

There’s only one Feynman diagram to evaluate since there is only one term in the Standard Model
Lagrangian that couples the W to leptons:

∆L =
1√
2

e

sin θw
W+
µ

∑
i

ν̄iLγ
µeiL (2.60)

p

q

k

ei

ν̄i

W+

where the sum on i is over generations, and (ν̄i, ei) are the lepton pairs, and L is the left-handed
spinor part of the lepton fields. Inserting the left-handed projector explicitly, the amplitude for the
decay into any particular lepton pair is

iM =
ie√

2 sin θw
εµ(k)ū(p)γµ

1− γ5

2
v(q) (2.61)
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Here, ε is the W+ polarization vector, u, v are the standard spinors solving the massless Dirac
equation, and k, p, q are the momenta of the W+, anti-neutrino, and corresponding lepton. In the
unitary gauge (which is typically most convenient at tree level), the spin averaged amplitude is

1

3

∑
s

|iM|2 =
e2

6 sin2(θw)

(
−gµν +

kµkν
m2
W

)
tr

(
/pγ

µ 1− γ5

2
/qγ

ν 1− γ5

2

)
(2.62)

In the center of mass frame, k = (mW , 0, 0, 0), p = (mW /2, 0, 0,mW /2), q = (mW /2, 0, 0,−mW /2).
A bunch of trace algebra later, one obtains the simple answer

1

3

∑
s

|iM|2 =
m2
W e

2

3 sin2(θw)
(2.63)

The natural linewidth is given by applying Fermi’s golden rule:

Γ =

ˆ
dΓ =

ˆ
d3pd3q

(2π)62EpEq

(
m2
W e

2

3 sin2(θw)

)
1

2mW
(2π)4δ(4)(k − p− q) (2.64)

After some more algebra:

Γ =
αmW

12 sin2(θw)
(2.65)

where α = e2/4π is the fine structure constant. Plugging in all the numbers and multiplying by
the given number of generations, we obtain 507057GeV. As we have seen in previous problems, we
should prepend a 0 to this to obtain a valid arXiv hep-th identifier.

arXiv identifier hep-th:0507057 points to “Five-dimensional Supergravity Dual of a-Maximization”
by Yuji Tachikawa, which yields A for extraction.

Problem 19 (Paul)

Let’s work in c = 1 units until the end. A flat FRW-universe is described by the metric

ds2 = −dt2 + a2(t)(dr2 + r2dΩ2) (2.66)

where a is the scale factor and r is the comoving distance. We can just read off the size of the
sphere at the location of the object from the metric. If the angular size is θ, the proper size s is
equal to a(t∗)rθ, where t∗ is the time at which the light we are seeing today was emitted. Of course,
neither a nor r is observable, so we have to convert those into observable quantities.

a can be handled just by knowing the definition of the redshift factor. a today is 1 and so
a(t∗) = 1/(1 + z). r can be determined by integration on radially directed null geodesics from the
object to our present position:

0 = ds2 = −dt2 + a2dr2 =⇒ r =

ˆ
dt

a
(2.67)

We may now use the definition of the Hubble constant H = ȧ/a and the definition of the redshift
a = 1/1 + z to simplify:

r =

ˆ t0

t∗

dt

a
=

ˆ 1

a(t∗)

da

a2H(a)
= −

ˆ 0

z

dz

H(z)
(2.68)
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The Hubble constant may be related to the redshift using the Friedmann equation. We’re told that
the universe is matter dominated, so we may neglect all other energy sources so that the Friedmann
equation is simply

H2 =
8πG

3
ρm0(1 + z)3 (2.69)

where ρm0 is the matter density today. But we know that H = H0 at redshift zero (i.e. now), so
this is actually equal to

H2 = H2
0 (1 + z)3 (2.70)

Substituting this equation back into 2.68, we have

r =

ˆ z

0

dz

H0(1 + z)3/2
(2.71)

Performing this integral, restoring c, and collecting all our results, we have the final answer

s =
2cθ(1− 1√

1+z
)

H0(1 + z)
(2.72)

Plugging in all the numbers, we get s = 8064592mpc, which is, as with some previous problems, a
digit (0) short.

arXiv identifier 0806.4592 points to “Renormalizable A4 Model for Lepton Sector” by Paul
Frampton and Shinya Matsuzaki, which yields A for extraction.

Problem 20 (Ali)

This is a paraphrasing of problem 14.2 from Polchinski’s “String Theory, Volume 2”, and the
solution given below closely follows Matthew Headrick’s solution manual (arxiv:0812.4408).

Ali is a point mass with respect to the dimensions parallel to the brane. Therefore, if we
integrate the Dirac-Born-Infeld action (that Ali, being a D1-brane, is described by) along the brane
directions, we ought to obtain the familiar point-particle action in the residual 5 + 1 dimensional
space:

Spoint-particle = −m
ˆ
dτ
√
−∂τXµ∂τXµ (2.73)

In particular, since the Poincare symmetry is broken along the brane directions, all the σ dependence
in X should be contained in the brane directions so that Xm = Xm(σ) and Xµ = Xµ(τ). Under
this ansatz, the off diagonal terms of G+B vanish since the given supergravity solution for G and
H = dB contain no terms in that mix latin and greek indices (i.e. brane and parallel directions).
Plugging in, a little algebra shows that

SAli = − 1

2πα′

ˆ
dτdσe−Φ

√
−det(Gab +Bab) (2.74)

= − 1

2πα′

ˆ
dσg−1/2

√
−∂σXm∂σXm

ˆ
dτ
√
−∂τXµ∂τXµ (2.75)

Therefore, we conclude from comparison with the point-particle action that

m =
g−1/2

2πα′

ˆ
dσ|∂σXm| (2.76)
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This can be integrated since this is the coordinate, not proper line element on σ:

m =
g−1/2|xm2 − xm1 |

2πα′
(2.77)

Plugging in everything, we find that m = 12073717. arXiv identifier 1207.3717 points to “Bounces
with O(3) x O(2) symmetry” by Ali Masoumi and Erick Weinberg, which yields O for extraction.

Problem 21 (Jianyong)

This problem is well-suited to the Ryu-Takayanagi prescription for computing entanglement entropy
(EE) holographically. We must compute the minimum length of a geodesic γ anchored on the
boundary of AdS, such that the “boundary” (here, endpoints) ∂γ matches the boundary ∂A of the
interval A. Such geodesics are semicircles extending into the bulk of AdS. The explicit computation
of the desired geodesic length, “λ∗” was computed in Ryu and Takayanagi’s paper arXiv:hep-
th/0605073. It satisfies the following equation:

cosh(λ∗/R) = 1 + 2 sinh2(ρ0) sin2(π/2). (2.78)

In the large-ρ0 limit, we find that

λ∗ = 2R log (eρ0 · 1) (2.79)

= 2Rρ0 (2.80)

and therefore

S =
λ∗
4

=
Rρ0

2
(2.81)

Taking the logs of both sides,

log(S) = log(R) + log(ρ0)− log(2) = 52991.4818246993 + 359236.211322482− log(2) (2.82)

= 412227. (2.83)

As we have done multiple times before, we pad this answer with a 0. arXiv identifier hep-th/0412227
points to “Constraints on the Dark Energy from the holographic connection to the small l CMB
Suppression” by Jianyong Shen, et. al., which yields L for extraction.

Problem 22 (Yu)

The duality referenced in the problem was established in the paper “Branes And Supergroups”
by Victor Mikhaylov and Edward Witten (arxiv identifier 1410.1175). It is a duality between
OSp(2m + 1|2n) and OSp(2n + 1|2m). In this problem, n = 989117,m = 4562175; therefore the
required sum is 2(n+m) + 2 = 11102586. This indicates hep-th/1110.2586, “On ε- conjecture in a
theorem” by Yu Nakayama, giving A for extraction.
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