Trivial Mathematics: Solution

I. Find the values of the constants:

1. $A=301$ (Game that can be won in $R-V$ throws (but no fewer))
2. $B=47$ (Smallest number that is a Keith, Carol, and Lucas number)
3. $C=259$ (Decimal representation of K, if K is interpreted as a hexadecimal number)
4. $D=2$ (Half of the name of a band who peaked at number $P+I$ on the Billboard Hot 100 in 1992 with a song called H (spelled out))
5. $E=66$ (Order that serves a major plot point in Star Wars: Episode $N-G$)
6. $F=20$ (Episode number in which "I will not do that thing with my tongue" is written repeatedly)
7. $G=17$ (Least random number)
8. $H=1$ (Building connected to building L and building $G-U$)
9. $I=8$ (Largest perfect power that is one less than a perfect power)
10. $J=2$ (Admittees to MIT's class of 2017 with an SAT math score in 600-640)
11. $K=103$ (A reversed)
12. $L=5$ (Nickname of a comic-strip character whose last name is 95472)
13. $M=18$ (Ed Sheeran-penned song from the album Four)
14. $N=20$ (Biological Engineering)
15. $O=13$ (Triskaidekaphobes' fear)
16. $P=2\left(\sum_{i=0}^{\infty} \frac{1}{2^{i}}\right)$
17. $Q=4383347$ (Patent number for a "Four-bar linkage door hinge")
18. $R=19$ (Smallest palindromic Roman numeral made from more than one distinct character)
19. $S=223$ (Only positive integer that cannot be written as the sum of fewer than 37 positive fifth powers)
20. $T=8$ (How many times U has been retired in Major League Baseball)
21. $U=14$ (Year of the Roman census in which $4,937,000$ citizens were recorded)
22. $V=13$ (Number on a Tarot card whose Rider-Waite version features a pale horse)
23. $W=10753$ (NW 11th \& Johnson, to a Portland public-transit app)
II. Plug the constants into the formula:

$$
\begin{aligned}
\left(A B L \left(D^{J}(C I M+V)\right.\right. & \left.\left.(E Q+G)\left(K P(F N U+S)\left(T W+\frac{J}{R-H}\right)+O\right)+R\right)\right)^{H} \\
& =315131615199205191612211915145
\end{aligned}
$$

III. Split 315131615199205191612211915145 into 1 - and 2-digit numbers each in $\{1,2, \ldots, 26\}$:

$$
315131615199205191612211915145
$$

IV. Apply the substitution $1 \mapsto A, 2 \mapsto B, \ldots, 26 \mapsto Z$:
V. Take the values of the constants in positions $4,6,8,9,10,12,14,15,16,18,20,21,22$ (the compositenumbered positions) - $D, F, H, I, J, L, N, O, P, R, T, U, V-$ and add 1 to each:

2201825201321981413
 \downarrow
 3212936211432091514

VI. Apply the substitution $1 \mapsto A, 2 \mapsto B, \ldots, 26 \mapsto Z$ to get the final answer:

CUBIC FUNCTION

Miscellanea

D The band is U2
F The show is The Simpsons
$I 2^{3}=8$ and $3^{2}=9$ are actually the only such pair of perfect powers-a fact first proved in 2002 (Mihǎilescu)

L" 5 " (né 555 95472) is from Peanuts
M The song is by One Direction
N The MIT course number
S The generalization of $g(5)=37$ was conjectured (by Leonard Euler's eldest son Johann) to be $g(n)=$ $2^{n}+\left\lfloor\left(\frac{3}{2}\right)^{n}\right\rfloor-2$-so far shown at least for $n \leq 471600000$

