slm.methods {SparseM} | R Documentation |
Summarize, print, and extract objects from slm
objects.
## S3 method for class 'slm' summary(object, correlation, ...) ## S3 method for class 'mslm' summary(object, ...) ## S3 method for class 'slm' print(x, digits, ...) ## S3 method for class 'summary.slm' print(x, digits, symbolic.cor, signif.stars, ...) ## S3 method for class 'slm' fitted(object, ...) ## S3 method for class 'slm' residuals(object, ...) ## S3 method for class 'slm' coef(object, ...) ## S3 method for class 'slm' extractAIC(fit, scale = 0, k = 2, ...) ## S3 method for class 'slm' deviance(object, ...)
object,x,fit |
object of class |
digits |
minimum number of significant digits to be used for most numbers. |
scale |
optional numeric specifying the scale parameter of the model, see 'scale' in 'step'. Currently only used in the '"lm"' method, where 'scale' specifies the estimate of the error variance, and 'scale = 0' indicates that it is to be estimated by maximum likelihood. |
k |
numeric specifying the "weight" of the equivalent degrees of freedom ('edf') part in the AIC formula. |
symbolic.cor |
logical; if |
signif.stars |
logical; if |
correlation |
logical; if |
... |
additional arguments passed to methods. |
print.slm
and print.summary.slm
return invisibly.
fitted.slm
, residuals.slm
, and coef.slm
return the corresponding components of the slm
object.
extractAIC.slm
and deviance.slm
return the AIC
and deviance values of the fitted object.
Roger Koenker
Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research
slm
data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast cat("slm time =",slm.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm fitted(slm.o)[1:10] residuals(slm.o)[1:10] coef(slm.o)[1:10]