
2.005 Thermal Fluids Engineering I        Fall`08 
Problem Set 8 Solutions 
 
Problem 1 

a) The 1-D heat equation is 
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the first derivative with respect to time is obtained by carefully applying the chain rule 
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The second derivative with respect to position x is obtained from… 

 

( ) ( )

( ) ( )

( ) ( )

2

2 2

2

2 32
2

2

2 1exp
4 4

2 1exp
4 44

exp
44

init
surf init

init
surf init

init
surf init

T T x T T
x t t

T T x xT T
x t t

T T x x T T t
x t

απ α

2
tα απ α

α
ααπ

−

∂ − ⎛ ⎞− −
= −⎜ ⎟∂ ⎝ ⎠

∂ − ⎛ ⎞− − −
= −⎜ ⎟∂ ⎝ ⎠

∂ − ⎛ ⎞−
= −⎜ ⎟∂ ⎝ ⎠

 

Therefore 
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which checks as a solution to the heat equation.  
 
b) In part (a) we have shown that the given temperature profile satisfies the heat equation.  In order that 
this temperature profile apply specifically to a semi-infinite slab it must also satisfy the two boundary 
conditions and the initial condition.  
 
Initial Condition: 
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First Boundary Condition: 
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Second Boundary Condition: 
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c) The heat flux at the surface of the slab, x=0, is obtain by using Fourier’s Law. 
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d) When two semi-infinite solids are brought into thermal contact, the interface temperature must be the 
same and the heat flux leaving one solid must be equal to the heat flux going into the second solid.  In the 
problem statement we are told to assume that there is no interfacial thermal resistance between the solid.  
For this reason, there cannot be a temperature difference between the two interfaces. Secondly, since 
there is no work transfer at the interface, the First Law applied to a differential piece of the interface tells 
us that the flux leaving one solid must be equal to the flux going into the other solid.  
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The negative sign is needed in the flux equation since the coordinate systems of the two slabs are 
different. 
 
e) Find the expression for the interface temperature. 
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f)  Using the thermophysical properties given in the problem, we can calculate Tsurf, for the three different 
blocks.  
Copper Block: Tsurf = 20.71 C  
Stainless Steel Block: Tsurf = 22.98 C 
PVC Block: Tsurf = 30.92 C  
The copper block feels coldest to the touch.  

g) Recall from part c that the expression for the heat flux at the surface is 
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The expression tπα has units of length.  This expression can be thought of as the penetration depth, 
i.e., the depth into the solid that has experienced a change in temperature from its initial condition.  This 
expression is often used in heat transfer analysis to obtain a scale fore the time it takes an entire solid (or 
a part of a solid) to respond to a temperature change at its interface.    
 



In the case of cooking a burger, we can use this length scale to obtain an approximate value for the time 
it takes to cook the burger.  If we assume that the thickness of the burger is 15 mm and the thermal 
diffusivity of the burger is that of water, we can calculate a cooking time scale of 
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(We used half the thickness of the burger as our length scale, since heat diffuses in from both the top and 
bottom surfaces.)  
 
Problem 2 
The rain keeps the surface of the asphalt at a constant 20 C. Let’s model the asphalt as a semi-infinite 
solid, with an initial temperature of 50 C. 
 
From equation 6.208 in the course reader (also derived in class), the heat flux into the asphalt at a given 

time is:  
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We integrate with respect to t to get the total heat transfer per unit area into the asphalt, remembering 
that 30 minutes is 1800 seconds…: 
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And of course, since we want the heat transferred from the asphalt, we take the negative of the value 
above: 25 J/m 100.5 ×+=′′outQ  
 
Problem 3 

a) Applying the First Law to CV 1 gives us an expression f

Since the system is at steady state and there is no work tra
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Therefore the efficiency of this Stirling engine is 
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Combining this result with the expression for  given above, we get an expression relating the power 
output of the Stirling engine to the temperature of the solar collector.  
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To maximise the work, we take the derivative of the power with respect to Th and set it equal to zero. 
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b) The power output of the generator at this operating condition is determined by plugging in the value of 
Th into equation (1). We get W = 122.41 W &

c) The efficiency for solar to electric power conversion is 0122.0
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Problem 4 

 
Below is one possible realisation of the Ericsson cycle. (You may have other designs that run the same 
thermodynamic cycle.) 
 

 



 
 
For Process 1-2, the reversible constant pressure cooling at PL, 

)()()( 12
1

1

2

2
12

2

1

2

121 HLLLL TTmRTTmR
P

mRT
P

mRTPVVPdVPPdVW −=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=== ∫∫−  

(In the above equation, we used the fact that the pressure stays constant over the process 1-2, and is 
equal to PL) 
From the 1st Law, )()()( 211221122121 HLvv TTmcWTTmcWUUWQ −+=−+=−+= −−−−  

  )()()(21 HLpHLvHL TTmcTTmcTTmRQ −=−+−=⇒ −  
This heat transfer is negative, which means that heat leaves the ideal gas and goes into the regenerator. 
 
For Process 2-3, the reversible isothermal heat transfer at TL, 
The analysis proceeds in the same way as for Process 4-1. 

In this case, 
H
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Since PL < PH, the heat transfer and work transfer are negative – heat leaves the system and work enters 
the system. 
 
For Process 3-4, the reversible constant pressure heating at PH, 
The analysis proceeds in the same way as for Process 1-2. 
In this case,  and )(43 LH TTmRW −=− )(43 LHp TTmcQ −=−  
Note that the heat and work transfers in this case are equal and opposite to the heat and work transfers in 
process 1-2. All the heat that was transferred to the regenerator in process 1-2 is transferred back to the 
gas in process 3-4. 
 
To find the cycle efficiency, we need to find the net work output and the heat input. 
The net work output is 43322114 −−−− +++= WWWWWnet  
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The heat input occurs in process 4-1. (Heat is rejected to the low temperature reservoir in process 2-3. As 
shown previously, the heat transfers in processes 1-2 and 3-4 are equal and opposite: there is no net 
heat transfer to the regenerator.) 
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The efficiency of the cycle is defined as 
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This is the same as that of a Carnot engine. This is not surprising, since any reversible engine operating 
between the same fixed temperature reservoirs TH and TL will have the same efficiency. 
 
d) The heat absorbed at TH is  cycleJQin /5.1189100ln900287001.0 =×××=

The heat rejected at TL is cycleJQQout /5.396
100
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The net work transfer is  cycleJWnet /0.793100ln)300900(287001.0 =×−××=
The thermal efficiency of the cycle is 0.667. 
 
Problem 5 
a) Since System 1 (as shown in the figure below) is reversible and adiabatic, the entropy of the system 
does not change from the initial state to the final state (by the Second Law). Therefore, we have 
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 System 2 System 1
 
 
We are told that the final volumes of A and B are the same. Note that all times, the pressures in A and B 
must be same, because of the frictionless, massless piston. Since the masses of gases in A and B are 
also the same, the final temperatures of A and B must also be the same (this just follows from the ideal 
gas law). Let this final temperature be T2
We are not given the volumes of A and B, but we only require the volume ratios in the Second Law 
equation. Let the initial volume of A be VA,1. Since the mass and initial pressure of A and B are the same,  
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Therefore, the total initial volume is VA,1 + VB,1 = 3.2VA,1. Since the final volumes are equal, and the total 
volume remains the same, we have VA,2 = VB,2 = 1.6VA,1. 
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Plugging this back into the Second Law equation, we get  
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Since the masses are equal, they drop out of the equation. Combining terms, we get  
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b) The total work extracted from the cylinder is found by applying the First Law to System 1: 

WQUU BA −=∆+∆  
There is no heat transfer from the system (QA and QB
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c) If the heat engine is not allowed to communicate with any other thermal reservoir which is at a 
temperature different from the final temperature of gases A and B then the maximum amount of work has 
been extracted from the cylinder consisting of gas A and B. No more positive work can be extracted from 
the heat engine. 
 
d) The process within System 2 (shown in the figure) is also reversible and adiabatic.  If we apply the 
Second Law to this system, we get 
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Using this result and applying the First Law to System 2, we can solve for TC,2: 

WQUU DC −=∆+∆  
There is no heat transfer to this system; we are told that the work transfer is W = –80000 J 
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This equation has two solutions, TC,2 = 664.58 K and TC,2 = 135.43 K 
For TC,2 = 664.58 K, we get TD,2 = 135.43 K 
For TC,2 = 135.43 K, we get TD,2 = 664.58 K 
Since we are told that C is the colder block, TD,2 = 664.58 K and TC,2 = 135.43 K 
 
Problem 6 
 
A reversible cycle executes the cycle shown, between a maximum temperature of 800 K and a minimum 
temperature of 600 K. This cycle is different from the “two heat-reservoir” cycles we discussed in class 



because the heat input takes place over a range of temperatures (600 K – 800 K). This engine interacts 
with several high-temperature reservoirs and one low-temperature reservoir (at 600 K). 
 

800 K Process 1 

Process 2 600 K 

400 kJ/K 800 kJ/K  
 
(a) and (c) Determine the direction in which the engine executes the cycle, and indicate the path along 
which heat is rejected. 
 
Since this cycle is a heat engine, i.e. a power-producing system, it must take heat (and entropy) from high 
temperature reservoirs and dump the entropy (along with some of the heat) to the low temperature 
reservoir, extracting some useful work in the process. So the heat transfer in must be at a higher 
temperature than the heat transfer out (in contrast to a refrigerator, where the heat transfer in is at a low 
temperature, and the heat transfer out is at a high temperature). 
 
To figure out whether heat is entering or leaving a system during a reversible process, we look at the 
entropy. From the second law for a reversible process, , a positive heat transfer must increase 
the entropy of the system. A negative heat transfer decreases the entropy of the system. 
 
We can break the cycle into two processes – the semi-circular arc (process 1) and the straight line 
(process 2). To produce power, the heat transfer must be positive during process 1. Therefore, the 
entropy of the system must increase during process 1. Similarly, the heat transfer must be out of the 
system during process 2, and therefore, the entropy of the system must decrease during process 2. So 
the engine executes a clockwise cycle and heat is rejected in process 2 (the straight-line part of the 
cycle). 
 
(b) The net work 
For a cycle, the 1st Law is  
The cyclic integral of heat for a reversible process is  (from the 2nd Law), which is just the 
area under the T-S graph. Since this region is semi-circular, its area can be calculated as , where 

the radius is 200. Therefore, the cyclic integral of heat, , is 62832 kJ, which is also equal to the net 
work. 
 
(d) The thermodynamic efficiency 
The efficiency for an engine is defined as  

We found W in part (b); we now have to find QH. To do this, we apply the 2nd Law to process 1, the heat 
input process. The heat input is given by , which is the area under the curve for process 1. 
This is the sum of the areas of the semi-circle, and the rectangle between (400 kJ/K to 800 kJ/K) and (0 K 
to 600 K). This total area is 62832 + 240000 = 302832 kJ. 
So the efficiency is W/QH = 62832/302832 = 20.75% 
 
(e) The Carnot efficiency for a cycle running between 600 K and 800 K. 

 = 25%. 

This is higher than the efficiency of the reversible cycle we calculated. This is not an inconsistency – the 
cycle we have analysed does not operate between two fixed temperature reservoirs like a Carnot cycle 
and thus does not have the same efficiency as the Carnot cycle, even though it is completely reversible. 



 
The irreversible engine 
We now take a look at an irreversible cycle with Wirrev = 0.9Wrev = 56549 kJ. The heat input is still 302832 
kJ. The entropy transferred during the heat input is still the same as that in the reversible case.   
 
We know that QL,rev = QH – Wrev = 240000 kJ. This is transferred to the (fixed) low temperature reservoir at 
600 K. The entropy transferred to the low temperature reservoir in the reversible cycle is 240000/600 = 
400 kJ/K.  Therefore, the entropy transferred in must also be 400 kJ/K. 
 
A much easier way of seeing this is looking at process 1. The entropy change in process 1 (the heat input 
process) is 400 kJ/K (from the cycle plot). Since this process is reversible, all the entropy change must be 
due to entropy transfer. 
 
(f) and (g) Calculate , and is QL,rev greater than, less than, or equal to QL,irrev? 
Applying the 1st Law to the reversible cycle, QH – QL,rev = Wrev
QL,rev = QH - Wrev = 302832 – 60832 = 240000 kJ 
Applying the 1st Law to the irreversible cycle, QH – QL,irrev = Wirrev
QL,irrev = QH - Wirrev = 302832 – 56549 = 246283 kJ 
QL,rev is smaller than QL,irrev. This is expected – less work is extracted in the irreversible cycle. This is due 
to entropy generation in the irreversible engine. Because the entropy being transferred to the 600 K 
reservoir is the sum of the entropy transferred in during process 1 and the entropy generated, the QL 
required is greater in the irreversible case. 
 
To find the entropy generation in one cycle, apply the 2nd Law to the irreversible engine over a complete 
cycle.   

 is the entropy transferred in during the heat input process, which we calculated to be 400 kJ/K. 

 simplifies to , which is -246283/600 = -410.47 kJ/K (QL leaves the system and is 

negative) 
Plugging these values in,  =10.47 kJ/K 
 
 


