

1 The λ -notation for Functions

A traditional way of representing functions:

$$sq(x) = x^2$$

function-name, variable, definition

The **Lambda notation** arranges things differently:

$$sq = \lambda x[x^2]$$

$\lambda x[x^2]$ is called a λ -term. The structure of λ -terms is:

λ variable [...] (variable) ...]

- the variable inside the square brackets is bracketed because its presence is not obligatory.

- the value returned by the function is **whatever** the body of the λ -term, i.e. the expression within the square brackets evaluates to. This **whatever** could be a truth value (0, 1), a number, an individual, a set, a function etc.

λ abstraction: the process of creating a λ term from an expression potentially containing a variable. The variable could be over anything - a truth value, a number, an individual, a set, a function etc.

λ conversion: the λ term is a function. When this function is applied to an argument, the resulting value can be computed by replacing the occurrences of the (outermost) λ variable in the expression in square brackets by the argument.

2 More on Conversion

$E[M/x]$ means 'E with M substituted for all instances of x '.

2.1 α -Conversion

used to rename variables in λ terms

$$(\lambda x.[E])[y/x] \Rightarrow (\lambda y.[E[y/x]])$$

$$\begin{aligned} (\lambda x.[x+2])[y/x] &\Rightarrow \\ (\lambda y.[[x+2][y/x]]) &\Rightarrow \\ (\lambda y.[y+2]) \end{aligned}$$

2.2 β -Conversion

used to apply functions, by replacing all instances of the variable in the body with the input.

$$(\lambda x.[E])(y) \Rightarrow E[y/x]$$

$$\begin{aligned} (\lambda x.[x^3])(2) &\Rightarrow \\ [x^3][2/x] &\Rightarrow 2^3 \end{aligned}$$

2.3 η -Conversion

used to simplify functions

$$(\lambda x.[f(x)]) \Rightarrow f$$

The term λ -conversion is often used as cover term for the above operations.

3 Functions with Restrictions

Function, defined in the traditional way, come with a domain specification.

Let $f_1 : Z \mapsto N$ be defined as $f_1(x) = x^2$, and
let $f_2 : N \mapsto N$ be defined as $f_2(x) = x^2$

Now f_1 and f_2 are not identical.
 $f_1(-7) = 49$, $f_2(-7)$ is undefined.

Domain specification can be incorporated into λ terms straightforwardly. The following conventions are used:

$f_1 : \lambda x \in Z[x^2]$, $f_2 : \lambda x \in N[x^2]$
 $f_1 : \lambda x[x \in Z[x^2]]$, $f_2 : \lambda x[x \in N[x^2]]$

More generally functions with restrictions using the λ -notation are represented as follows:
 $\lambda \alpha : \phi. [\gamma]$

α is the argument variable,
 ϕ the domain condition,
 γ the value description.

4 Functions with Complex Arguments

Set arguments:

$\lambda X[X \cup \{a, b, c\}]$

Function arguments:

$\lambda f[f(2)]$
 $\lambda f[f(2) + f(3)]$
 $\lambda f[f(f(2) + f(3))]$

- Function application may not always work out -

$\lambda f[f(8 - f(4))](\lambda x[x \in N[x^2]])$

The curious function: $\lambda f.[f(f)]$

5 Functions with more than one argument

$\lambda x.[\lambda y.[x^2 + y]]$
 $\lambda x \lambda y.[x^2 + y]$

The role of variables:

$\lambda x[x^2] = \lambda y[y^2]$

Similarly

$\lambda x \lambda y[x^2 + y] = \lambda y \lambda x[y^2 + x]$, but
 $\neq \lambda y \lambda x[x^2 + y]$
 $\neq \lambda x \lambda x[x^2 + x]$

What does $\lambda x \lambda x[x^2 + x]$ mean?

What is the relationship between $\lambda x \lambda y[x^2 + y]$ and $\lambda y \lambda x[x^2 + y]$?

• The combinator C

6 The Scope of a Variable

In a lambda term $\lambda x[\dots]$, the body of the λ -term $[\dots]$ is the **scope** of x .

More precisely: the x after the λ **binds** any **free** instances of x in its scope.

free = not bound

Variable are born free - they get **bound** by the closest λ which has their name on it.

(1) a. $\lambda x[x^3 + x^2 + x + 1]$
All the x 's in the square brackets are bound by the λx

b. $\lambda x.[x^3 + \lambda x.[x^2 + x + 1](x)]$
The x 's inside the inner square brackets are bound by the inner λx . Only the argument to $\lambda x.[x^2 + x + 1]$ and x^3 are bound by the top level λx .

(1b) can be rewritten more clearly as (2).

(2) $\lambda x.[x^3 + \lambda y[y^2 + y + 1](x)]$
doing some λ conversion, we get
 $\lambda x.[x^3 + x^2 + x + 1]$

Moral of the story: the names of variables are not important. What matters are the dependencies between argument positions (within the square brackets) and the order in which those arguments are supplied.

λ -conversion should not create spurious dependencies.

(3) Common Pitfalls:

a. Undoing a dependency:
 $\lambda x.[x + (\lambda x.[x + 2])(y)](7) \not\Rightarrow [7 + (\lambda x.[7 + 2])(y)]$

b. Creating a spurious dependency:
 $\lambda x.[x + (\lambda y.[x + y])(2)](y) \not\Rightarrow [x + (\lambda y.[y + y])(2)]$

Auxiliary Moral: Variable names aren't important, but they can cause confusion. Hence when possible use α -conversion to eliminate re-use of variable names.

7 Function Composition

Let $f : A \rightarrow B$ and $g : B \rightarrow C$, then the result of composing f with g is written as $g \circ f$, $g \circ f : A \rightarrow C$, and $(g \circ f)(x) = g(f(x))$

$\text{succ} : N \rightarrow N$, $\text{succ}(x) = x + 1$

$\text{sq} : N \rightarrow N$, $\text{sq}(x) = x^2$

What is $\text{succ} \circ \text{sq}$, $\text{sq} \circ \text{succ}$?

Using the λ calculus, we can define a λ term that given functions f and g computes $f \circ g$:
 $\lambda f[\lambda g[\lambda x[f(g(x))]]]$

- The combinator B

(4) 'maternal grandfather' as the composition of *mother* function with the *father* function
Swedish *morfar*, *farfar*, *farmor*, *mormor*

8 Characteristic Functions as λ terms

The characteristic function f_A corresponding to a set A can be defined as follows:

(5) $f_A : U \rightarrow \{0, 1\}$
 $x \rightarrow 1$ if $x \in A$
 $x \rightarrow 0$ if $x \notin A$

We can represent characteristic functions as λ terms:

(6) $f_A : \lambda x[x \in A]$

The characteristic function for the set $B = \{x : x \geq 17 \text{ and } x \text{ is even}\}$ can be written as:
 $f_B = \lambda x[x \geq 17 \text{ and } x \text{ is even}]$

- the 'predicative' part of the set description and the body of a λ term are very similar.
- the one difference is that λ terms may have restrictors. For certain values, they may be undefined. This is unlike sets, where you're either in or out.