
24.903 Language & Structure III: Semantics and Pragmatics
Spring 2003, 2-151, MW 1-2.30

February 24, 2003

1 The �-notation for Functions

A traditional way of representing functions:

sq(x) = x2

function-name, variable, definition

The Lambda notation arranges things differently:

sq = �x[x2]

�x[x2] is called a �-term. The structure of �-terms is:

� variable [: : : (variable) : : :]

- the variable inside the square brackets is bracketed because its presence is not obligatory.

- the value returned by the function is whatever the body of the �-term, i.e. the expres-
sion within the square brackets evaluates to. This whatever could be a truth value (0, 1),
a number, an individual, a set, a function etc.

� abstraction: the process of creating a � term from an expression potentially containing
a variable. The variable could be over anything - a truth value, a number, an individual,
a set, a function etc.

� conversion: the � term is a function. When this function is applied to an argument, the
resulting value can be computed by replacing the occurences of the (outermost) � variable
in the expression in square brackets by the argument.

2 More on Conversion

E[M/x] means ‘E with M substituted for all instances of x’.

2.1 �-Conversion

used to rename variables in � terms

(�x:[E])[y=x] =) (�y:[E[y=x]])

(�x:[x + 2])[y=x] =)

(�y:[[x+ 2][y=x]]) =)

(�y:[y + 2])

2.2 �-Conversion

used to apply functions, by replacing all instances of the variable in the body with the
input.

(�x:[E])(y) =) E[y=x]

(�x:[x3])(2) =)

[x3][2=x] =) 23

2.3 �-Conversion

used to simplify functions

(�x:[f(x)]) =) f

The term �-conversion is often used as cover term for the above operations.

2

3 Functions with Restrictions

Function, defined in the traditional way, come with a domain specification.

Let f 1 : Z 7! N be defined as f 1(x) = x2, and
let f 2 : N 7! N be defined as f 2(x) = x2

Now f 1 and f 2 are not identical.

f 1(�7) = 49, f 2(�7) is undefined.

Domain specification can be incorporated into � terms straightforwardly. The following
conventions are used:

f 1 : �x 2 Z[x2]; f 2 : �x 2 N [x2]

f 1 : �x[x 2 Zjx2]; f 2 : �x[x 2 N jx2]

More generally functions with restrictions using the �-notation are represented as follows:

�� : �:[
]

� is the argument variable,

� the domain condition,

 the value description.

4 Functions with Complex Arguments

Set arguments:

�X[X [fa; b; cg]

Function arguments:

�f [f(2)]

�f [f(2) + f(3)]

�f [f(f(2) + f(3))]

- Function application may not always work out -

�f [f(8� f(4))](�x[x 2 N jx2])

The curious function: �f:[f(f)]

3

5 Functions with more than one argument

�x:[�y:[x2 + y]]

�x�y:[x2 + y]

The role of variables:

�x[x2] = �y[y2]

Similarly

�x�y[x2 + y] = �y�x[y2 + x], but

6= �y�x[x2 + y]

6= �x�x[x2 + x]

What does �x�x[x2 + x] mean?

What is the relationship between �x�y[x2 + y] and �y�x[x2 + y]?

� The combinator C

4

6 The Scope of a Variable

In a lambda term �x[. . .], the body of the �-term [: : :] is the scope of x.

More precisely: the x after the � binds any free instances of x in its scope.

free = not bound
Variable are born free - they get bound by the closest � which has their name on it.

(1) a. �x[x3 + x2 + x + 1]

All the x’s in the square brackets are bound by the �x

b. �x:[x3 + �x:[x2 + x+ 1](x)]

The x’s inside the inner square brackets are bound by the inner �x. Only the
argument to �x:[x2 + x+ 1] and x3 are bound by the top level �x.

(1b) can be rewritten more clearly as (2).

(2) �x:[x3 + �y[y2 + y + 1](x)]

doing some � conversion, we get

�x:[x3 + x2 + x + 1]

Moral of the story: the names of variables are not important. What matters are the depen-
dencies between argument positions (within the square brackets) and the order in which
those arguments are supplied.

�-conversion should not create spurious dependencies.

(3) Common Pitfalls:

a. Undoing a dependency:

�x:[x + (�x:[x + 2])(y)](7) 6=)

[7 + (�x:[7 + 2])(y)]

b. Creating a spurious dependency:

�x:[x + (�y:[x+ y])(2)](y) 6=)

[x+ (�y:[y + y](2)]

Auxiliary Moral: Variable names aren’t important, but they can cause confusion. Hence
when possible use �-conversion to eliminate re-use of variable names.

5

7 Function Composition

Let f : A! B and g : B ! C, then the result of composing f with g is written as g Æ f ,

g Æ f : A! C, and (g Æ f)(x) = g(f(x))

succ : N ! N , succ(x) = x+ 1

sq : N ! N , sq(x) = x2

What is succ Æ sq, sq Æ succ?

Using the � calculus, we can define a � term that given functions f and g computes f Æ g:

�f [�g[�x[f(g(x))]]]

� The combinator B

(4) ‘maternal grandfather’ as the composition of mother function with the father func-
tion
Swedish morfar, farfar, farmor, mormor

8 Characteristic Functions as � terms

The characteristic function fA corresponding to a set A can be defined as follows:

(5) fA : U ! f0; 1g

x! 1 if x 2 A

x! 0 if x =2 A

We can represent characteristic functions as � terms:

(6) fA : �x[x 2 A]

The characteristic function for the set B = fx : x � 17 and x is even g can be written as:

fB = �x[x � 17 and x is even]

- the ‘predicative’ part of the set description and the body of a � term are very similar.

- the one difference is that � terms may have restrictors. For certain values, they may be
undefined. This is unlike sets, where you’re either in or out.

6

