24.903 Language & Structure Ill: Semantics and Pragmatics
Spring 2003, 2-151, MW 1-2.30
February 24, 2003

1 The A-notation for Functions

A traditional way of representing functions:
sq(z) = 2?

function-name, variable, definition

The Lambda notation arranges things differently:
sq = \z[z?]

Az[z?] is called a A-term. The structure of \-terms is:
A variable [... (variable) . ..]

- the variable inside the square brackets is bracketed because its presence is not obligatory.

- the value returned by the function is whatever the body of the \-term, i.e. the expres-
sion within the square brackets evaluates to. This whatever could be a truth value (0, 1),
a number, an individual, a set, a function etc.

A abstraction: the process of creating a A term from an expression potentially containing
a variable. The variable could be over anything - a truth value, a number, an individual,
a set, a function etc.

A conversion: the A term is a function. When this function is applied to an argument, the
resulting value can be computed by replacing the occurences of the (outermost) A variable
in the expression in square brackets by the argument.

2 More on Conversion

E[M/x] means ‘E with M substituted for all instances of z’.

2.1 «-Conversion

used to rename variables in \ terms

Az [EDly/z] = (My.[Ely/=]])
(Az.[z +2))[y/z] =

Myl + 2]ly/2]]) =
(Ay.ly+2)

2.2 [-Conversion

used to apply functions, by replacing all instances of the variable in the body with the

input.
(M. [E])(y) = Ely/x]

(Az.[23])(2) =
[3][2/z] = 23

2.3 n-Conversion

used to simplify functions

Az [f(@)]) = f

The term A-conversion is often used as cover term for the above operations.

3 Functions with Restrictions

Function, defined in the traditional way, come with a domain specification.

Let f, : Z — N be defined as f,(z) and

= a2,
let f,: N — N be defined as f,(z) = 2*

Now f, and f, are not identical.
f1(=7) = 49, f2(—7) is undefined.

Domain specification can be incorporated into A terms straightforwardly. The following
conventions are used:

fi: Az € Z[z?], f,: Az € N[22

fi:Azlw € Z|a?], f,: Az[z € N|z?

More generally functions with restrictions using the \-notation are represented as follows:

Aa: @[]

« is the argument variable,
¢ the domain condition,
~ the value description.

4 Functions with Complex Arguments

Set arguments:
AX[X U{a,b,c}]

Function arguments:

AL (2)]
ALF2)+ B3)]
M)+ F3))]

- Function application may not always work out -

AU = FA)I(Aale € Na?])

The curious function: Af.[f(f)]

5 Functions with more than one argument

Az [Ay.[2* + 9]
AzAy.[2” + y)

The role of variables:

Azfa?] = Ay[y°]

Similarly

AzXy[z? + y] = dyAz[y? + 2], but
Aydz[z? + y]

\zzz? + 2]

What does Az Az[z? + z] mean?
What is the relationship between Az Ay[z? + y] and AyAz[z? + y]?

e The combinator C'

6 The Scope of a Variable

In a lambda term Az[...], the body of the A-term [..] is the scope of z.
More precisely: the z after the A binds any free instances of z in its scope.

free = not bound
Variable are born free - they get bound by the closest A which has their name on it.

(1) a Mz +2”+x+1]
All the z’s in the square brackets are bound by the Az
b. Az.[z3 + A\x.[z? + z + 1](z)]
The 2’s inside the inner square brackets are bound by the inner Az. Only the
argument to Az.[z* + z + 1] and z3 are bound by the top level Az.

(1b) can be rewritten more clearly as (2).

(2 Az.[z3 + Myly? + y +1](2)]
doing some) conversion, we get
Az.[zd + 2+ + 1)

Moral of the story: the names of variables are not important. What matters are the depen-
dencies between argument positions (within the square brackets) and the order in which
those arguments are supplied.

A-conversion should not create spurious dependencies.

(3) Common Pitfalls:
a. Undoing a dependency:
Axfz + (\zfz +2])()](7) =
7+ Az [7+2))(y)]
b. Creating a spurious dependency:
Azfz + (Ay.[z + y) (D)) 7~
[z + (Ay-ly +](2)]

Auxiliary Moral: Variable names aren’t important, but they can cause confusion. Hence
when possible use a-conversion to eliminate re-use of variable names.

7 Function Composition

Letf: A— Bandg: B — C, then the result of composing f with g is writtenas g o f,
gof:A—C,and (go f)(x) = g(f(v))

succ: N — N, succ(z) =z +1

sq: N — N, sq(x) = 2?

What is succ o sq, sq o succ?

Using the A calculus, we can define a A term that given functions f and g computes f o g:
Afglalf (g(2)]]]

e The combinator B

(4) ‘maternal grandfather’ as the composition of mother function with the father func-
tion
Swedish morfar, farfar, farmor, mormor

8 Characteristic Functions as \ terms

The characteristic function f, corresponding to a set A can be defined as follows:

(5) fa:U —{o,1}
r—1ifre A
z—oife g A

We can represent characteristic functions as A terms:

(6) fa:Az[zreA]

The characteristic function for the set B = {z : « > 17 and z is even } can be written as:
fp=Az[z > 17and z is even|

- the ‘predicative’ part of the set description and the body of a A term are very similar.

- the one difference is that \ terms may have restrictors. For certain values, they may be
undefined. This is unlike sets, where you’'re either in or out.

