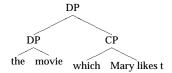

24.903 Language & Structure III: Semantics and Pragmatics Spring 2003, 2-151, MW 1-2.30 March 10, 2003

1 Handling Topicalization and Relative Clauses

- (1) Topicalization
 - a. I like fish.
 - b. Fish, I like.
- (2) Relative Clauses 1
 - a. the empty bottle
 - b. the bottle [which is empty]
 - c. the bottle [that is empty]
- (3) Base sentence: Sandy met Joey in Oakland.
 - a. The person [who, $[t_i \text{ met Joey in Oakland}]]$
 - b. The person [who, [Sandy met t_i in Oakland]]
 - c. The place [where, [Sandy met Joey t_i]]

Movement: a way to create predicates from sentences - a way to create λ -abstractions.


2 Handling Traces

• What do traces refer to?

An intuition: the 'head' of the NP

Another structure:

2

3 The Notion of 'Variable'

Traces are interpreted as variables.

Variables denote individuals, but only with respect to an assignment.

- (4) If α is a trace, then, for any assignment a, $[\![\alpha]\!]^a = a$.
- Modifying semantic composition rules to handle variable assignments.

Interpretation independent of variable assignments:

(5) For any tree α , α is in the domain of $[\![\,]\!]$ iff for all assignments a and b, $[\![\alpha]\!]^a = [\![\beta]\!]^b$. If α is in the domain of $[\![\,]\!]$, then for all assignments a, $[\![\alpha]\!] = [\![\alpha]\!]^a$.

4 Predicate Abstraction

- (6) Predicate Abstraction: If α is a branching node, whose daughters are a relative pronoun and β then $[\![\alpha]\!] = \lambda x \in D.[\![\beta]\!]^x$.
- syncategorematicity

denotations under assignments \neq denotations applied to assignments

- (7) a. [whom John likes t] $^{Tim} \neq [$ whom John likes t](Tim)
 - b. $[sleeps]^{Ann} \neq [sleeps](Ann)$
 - c. $[\![John \ likes \ t]\!]^x \neq [\![John \ likes \ t]\!](x)$

Proof strategy: top-down or bottom-up

5 such that-relatives

- (8) a. the book such that John bought it.
 - b. the book which John bought t.

Additional flexibility:

- (9) a. the book such that John denied the claim that Mona wrote it
 - b. *the book that John denied the claim that Mona wrote t
- (10) Pronoun Rule

If α is a pronoun, then for any assignment $a \in D$, $[\![\alpha]\!]^a = a$.

(11) Predicate Abstraction (Revised):

If α is a branching node, with β and γ as daughters, where β is a relative pronoun or *such*, then $[\![\alpha]\!] = \lambda x \in D. [\![\gamma]\!]^x$.

- (12) Vacuous Binding
 - a. *the man such that Mary is famous.
 - b. *the man who Mary is famous.

6 Nested Relatives

(13) the man such that Mary reviewed the book which he wrote t

Problem: illegal capture of he by which

Solution: co-indexing and assignment functions

- (14) the man such₁ that Mary reviewed the book which₂ he₁ wrote t₂
- (15) A variable assignment is a partial function from N into D.
- (16) Traces and Pronoun Rule

 If α is a pronoun or a trace, a is an assignment function and $i \in \text{dom}(a)$, then $\|\alpha_i\|^a = a(i)$.

Handling pronouns:

(17) She₁ likes him₂.

7 Assignment Functions

Modifying assignment functions:

(18) Let a be an assignment function, $i \in N$, and $x \in D$.

```
\begin{array}{l} a^{x/i}=\\ (a \ \text{extended/modified to assign}\ x\ \text{to index}\ i.) \\ \text{(i)}\ \operatorname{dom}(a^{x/i})=\operatorname{dom}(a)\cup\{i\}\\ \text{(extend the domain of}\ a\ \text{to cover index}\ i) \\ \text{(ii)}\ a^{x/i}(i)=x,\\ \text{(assign index}\ i\ \text{to}\ x) \\ \text{(iii)}\ \text{for every}\ j\in\operatorname{dom}(a^{x/i})\ \text{such that}\ j\neq i:\ a^{x/i}(j)=a(j)\ \text{(leave everything else untouched)} \end{array}
```

(19) Predicate Abstraction:

If α is a branching node, with β_i and γ as daughters, where β is a relative pronoun or *such*, and $i \in N$, then for any variable assignments a, then

$$[\![\alpha]\!]^a=\lambda x\in D.[\![\gamma]\!]^{a^{x/i}}.$$