The Net Advance of Physics:
HOPF ALGEBRAS
General:
Tjin 91/11;
Connes and Kreimer 99/04;
Kastler 2001/04;
Hopf Algebras in General and in Combinatorial Physics: a practical introduction
by G. H. E. Duchamp et al. [2008/02]
Hopf algebras and finite tensor categories in conformal field theory
by Jurgen Fuchs and Christoph Schweigert [2010/04]
Survey on Hopf algebras of GK-dimensions 1 and 2
by K. Brown and J. J. Zhang [2020/03]
Type: BRAIDED:
Andruskiewitsch and Graña 98/02;
Type: BRAIDED: TOBA:
Andruskiewitsch and Graña 98/02;
Type: WEAK:
Nikshych and Vainerman 2000/06;
Aspects: FOLIATIONS:
Connes and Kreimer 99/04;
Aspects: RENORMALIZATION:
Connes and Kreimer 99/04;
Kreimer 2000/10;
Kreimer 2002/11;
Weinzierl 2003/10;
Manchon 2004/08;
Figueroa and Gracia-Bondia 2004/08;
Chryssomalakos 2004/08;
Ebrahimi-Fard and Kreimer 2005/10;
van Suijlekom 2006/02;
van Suijlekom 2006/10;
Aspects: SUBFACTORS: FINITE-DEPTH:
Nikshych and Vainerman 2000/06;
Aspects: SYMMETRY:
Connes 2000/11;
Re: DYNAMICAL SYSTEMS:
Hopf algebras in dynamical systems theory
by J. F. Carinena et al. [
Int'l J. Geom. Meth. Mod. Phys. 4
, 577 (2007)]
Re:
FEYNMAN DIAGRAMS:
Hopf algebra approach to Feynman diagram calculations
by Kurusch Ebrahimi-Fard and Dirk Kreimer [2005/10]
Re: ITERATED INTEGRALS:
Connes and Kreimer 99/04;
Re: KNOTS:
Nikshych and Vainerman 2000/06;
Re: MANIFOLDS: 3 MANIFOLDS:
Nikshych and Vainerman 2000/06;
Re: QUANTUM GROUPS:
Nikshych and Vainerman 2000/06;
Re: RUNGE-KUTTA METHODS:
Brouder 99/04;
Connes and Kreimer 99/04;
Re: YANG-BAXTER SYSTEMS:
Hlavaty 97/11;
Re: YANGIAN SYMMETRY:
Ge et al. 95/09;
THE NET ADVANCE OF PHYSICS