LIE ALGEBRAS and LIE GROUPS: General: Dixon no date; Hall 2000/05; Semmes 2004/12; Archive of This Week's Finds in Mathematical Physics, 1--50 by John C. Baez [1993-1995] 242 pp. Elements of Group Theory (Section 2), by Francisco Yndurain [2007/10] Lecture Notes in Lie Groups by Vladimir G. Ivancevic and Tijana T. Ivancevic [2011/04] Symétrie en Physique: Algèbres de Lie, Théorie des groupes et Représentations by Adil Belhaj [2012/05] Lie Transformation Groups -- An Introduction to Symmetry Group Analysis of Differential Equations by Michael Kunzinger [2015/06] 114 pp. Lie groups and their applications to particle physics: A tutorial for undergraduate physics majors by JQ. Huang [2020/12] Lie groups and Lie algebras by P. Etingof [2022/01] 252 pp. MIT lecture notes. Type: E8: E8, the most exceptional group by Skip Garibaldi [2016/05] Type: ANTIALGEBRAS: A short survey of Lie antialgebras by SéverineLeidwanger, andSophie Morier-Genoud [2012/10] Type: GROUPOIDS: Lie groupoids by H. Bursztyn and M. del Hoyo [2023/09] Type: n-ARY: n-ary algebras: a review with applications by Jose A. de Azcarraga and Jose M. Izquierdo [2010/05] Type: SEMISIMPLE: Witte 2001/06; Type: SH: Azcarraga et al. 98/03; Type: Simple: Azcarraga et al. 98/03; Type: VERTEX ALGEBRAS: Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE by Victor Kac [2015/12] Types: q-DEFORMED; QUANTIZED; Aspects: COHOMOLOGIES: Azcarraga et al. 98/03; Aspects: DIAGRAMS: REPRESENTATIONS: Mihailovs 98/03; Re: BLACK HOLES: BHS: Fre' 98/02; Re: COMPACT MATRIX GROUPS: Kac-Moody and Virasoro algebras by Antony Wassermann [2010/04] 80 pp Re: DIFFERENCE EQUATIONS: Levi and Winternitz 2005/02; Re: DUALITIES: Trigante (thesis) 98/01; Re: M THEORY: Fre' 98/02; Re: YANGIAN SYMMETRY: Bernard 92/11; Ge et al. 95/09; THE NET ADVANCE OF PHYSICS
LIE ALGEBRAS and LIE GROUPS: