Assessing the validity of a driving simulation for comparing in-vehicle informational interfaces

Ying Wang, Kathryn Godfrey, Bruce Mehler, Bryan Reimer & Joseph Coughlin

Abstract

Validity is very important in deciding the applicability of driving simulation, as a tool providing safe, controlled, and replicable research protocols, for various research and design studies. Data from on-road and simulation studies were compared to assess the validity of measures generated in the simulator. In the on-road study, driver interaction with three manual address entry methods (touch screen, keypad, and scroll wheel) was assessed in an instrumented vehicle to evaluate relative usability and safety implications. A separate group of participants drove a similar protocol in a medium fidelity, fixed-base simulator to assess the extent to which simulator measures mirrored those obtained in the field. Visual attention and task measures mapped very closely between the two environments. In general, however, driving performance measures did not differentiate among devices at the level of cognitive demand employed in this study. The findings obtained for visual attention and task engagement suggest that medium fidelity simulation provides an effective means to evaluate the effects of IVIS designs on these categories of driver behaviour.

Methods

Participants

• Age: 22-28
• Driving experience: > 3yr
• On-road: 28 participants
• Simulation: 30 participants

Design

• Between group factor - Environment (env, 2 Level)
• On-Road, Simulator
• Within group factor - Input device (dev, 3 Level)

Apparatus

• On-Road: MIT AgeLab “Aware Car”
• Simulation: “Miss Daisy” Simulator

Eye tracking: Seeing Machines FaceLab 4.2
Surrogate in-vehicle information systems

Destination Entry Task

• Each include a state, a city and a street
• Entry required only the 1st & 2nd letter of each word
• 3 consecutive repetitions for each device
• Randomized input device presentation order

Driving Performance

• Mean velocity during destination entry task
• Mean task duration

Results

Visual Attention

• Glance frequency and duration

Destination Entry Task Performance

• Initial response time
• Mean task duration

Conclusion

• Visual attention and secondary task performance measures appear particularly promising for modeling the effects of on-road drivers’ interactions with an in-vehicle information systems interface.
• Measures of glance frequency, total glance duration, initial response time, and mean task time mapped almost identically between simulation to field.
• Compared to standard driving performance measures (mean velocity and standard deviation of lane position), the visual attention measures appear more sensitive for detecting subtle differences between HMI designs.
• Standard deviation of forward velocity was the only driving performance measure to meet criteria for both relative and absolute validity in this study, and the statistical significance was modest.

In conclusion, fixed-based driving simulation appears an acceptable method of modeling basic task performance and visual distraction, but not driving performance measures.

Acknowledgments

Funding for this project was provided in part by the United States Department of Transportation’s Regional New England University Transportation Center at the Massachusetts Institute of Technology’s Senseable Family Foundation, and indirect support was provided by Ford Motor Company through the use of the instrumented vehicle. The authors wish to acknowledge the contributions of Jonathan Long and Alexander Pina for their contribution in the collection of data and preparation of this manuscript.