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ste x€lpi={) " xi=1,2;>0,Vie[m]}

> Problem data: m points {a;};~; that span R".

> In statistics, (D-OPT) is the continuous relaxation of the (discrete) D-optimal
experimental design problem; in computational geometry, it is the dual problem of
the minimum volume enclosing ellipsoid (MVEE) problem.

> Despite its seemingly simple structure, (D-0PT) is not quite amenable to
(traditional) first-order methods (since f blows up on part of dA,,, and has no
L-smoothness property on A,).

> Atwood (1973) proposed the following algorithm for solving (D-0PT):
ik € argMin, ¢ () Vif (), Gr = -V, f(z") —n,
Jk € arg maxj:x§>0 Vif(mk)7 Gr = ijf(;ck) +n,
dk:{eik—xk if Gy, > Gy, S

k k
. =z + agd”,
" —ej, otherwise

where the stepsize aj > 0 is given by exact line-search.
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The WA-TY Method

> Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yildirim (2005) —
therefore, it is referred to as the WA-TY method.
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The WA-TY Method

> Structurally, this method coincides with the Frank-Wolfe method with Wolfe’s
away-step (1970), and it was rediscovered by Todd and Yildirim (2005) —
therefore, it is referred to as the WA-TY method.

> Excellent numerical performance:
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ASFW-A & ASFW-E (this work): Away-step FW methods for LHB

FW-A & FW-E [Fed72; Kha96; ZFce]: Generalized FW methods for LHB
RSGM-F & RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method
MG [STT78]: Multiplicative gradient method
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Renbo Zhao (MIT ORC)



Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

Renbo Zhao (MIT ORC)



Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-OPT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW) methods
for L-smooth functions [LJJ15; BS17; PR19], as well as for non-degenerate
generalized self-concordant function [Dvu23] being applied to (D-0PT).

Renbo Zhao (MIT ORC)



Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-0PT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW) methods
for L-smooth functions [LJJ15; BS17; PR19], as well as for non-degenerate
generalized self-concordant function [Dvu23] being applied to (D-0PT).

> Some deeper questions:

® What is the essential structure of (D-0PT) that drives the linear convergence of the
WA-TY method (or the AFW method)?

® Can it help us develop and analyze a new type of AFW methods for an
“unconventional” class of problems?

Renbo Zhao (MIT ORC)



Mystery of the WA-TY Method

> The excellent numerical performance of the WA-TY method has attracted some
research interests — Ahipasaoglu, Sun and Todd (2008) showed local linear
convergence of this method, but the global linear convergence remains open.

> The authors pointed out two structural difficulties of (D-0PT): i) f is not
L-smooth on A,, and ii) f is degenerate on the feasible region.

> This difficulty prevents the recent analyses of the away-step FW (AFW) methods
for L-smooth functions [LJJ15; BS17; PR19], as well as for non-degenerate
generalized self-concordant function [Dvu23] being applied to (D-0PT).

> Some deeper questions:

® What is the essential structure of (D-0PT) that drives the linear convergence of the
WA-TY method (or the AFW method)?

® Can it help us develop and analyze a new type of AFW methods for an
“unconventional” class of problems?

> In this work, we will provide affirmative answers to the questions above.
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Problem of Interest

F* :=mingex [F(z) := f(Ax) + (¢, 7)) )

> X and Y are finite-dimensional vector spaces
> X C X is a polytope such that X = conv(V), where V is a finite set of atoms

> f:Y — RU{+oo} is a #-log-homogeneous self-concordant barrier (§-LHSCB) for
some regular cone L C'Y

> A:X — Y is a linear operator such that A(X) C K and A(X) NintKC # 0
> (c,-) : X = R is a linear function

> Besides D-optimal design, other applications include
® Budget-constrained D-optimal design
® Positron emission tomography

® (Reformulated) Poisson image deblurring with TV-regularization
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0-LHSCB (logarithmically-homogeneous self-concordant barrier)

> Let K ;Cé Y be a regular cone, i.e., K is closed, convex, pointed and has nonempty
interior.

> Two prototypical examples:
® f(Y)=—Indet(Y) for £:=S} and 6 =n,

° fly)=-— ;.n:leln(yj) for K := Tandezzgnzle (where wy, ..., w, > 1).

> fis a -LHSCB on K with complezity parameter 6 > 1, if f is three-times
continuously differentiable and non-degenerate on int I, and satisfies

(1) |D3f(y)[w,w,w]| <2|w|} Vye€intK,VweY,
® f(yx) = +oo for any {yr}trk>1 C int K such that yx — u € bd £,
® f(ty)=f(y) —0n(t) Vy €intk, Vi > 0.

where |lw||, := (V2 f(y)w, w)"/? denotes the local norm of w at y € int K.
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» At iteration k > 0:

> (FW direction) Compute v* € argmin, ¢, (VF(z%),2), df =0
Gy := (~VF(2%),dk). If G, = 0, then STOP.
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> (Away direction) If |Sk| > 1, compute a* € arg max,es, (VF(z"), x),
df :=2* —a* and G}, := (=VF(z"),d%).
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> (Away direction) If |Sk| > 1, compute a* € arg max,es, (VF(z"), x),
df :=2* —a* and G}, := (=VF(z"),d%).

> (Choose direction) If |Sx| =1 or G > Gk, let d* := df and ay := 1; otherwise,
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Away-step Frank-Wolfe Method for solving (P)

» Input: z° e X Ndom F, % Ay such that o ZUEV B8O, So = supp(/BO).
» At iteration k > 0:
k k

> (FW direction) Compute v* € argmin, .\, (VF(2*),z), df := v* — 2" and
Gy := (~VF(2%),dk). If G, = 0, then STOP.

> (Away direction) If |Sk| > 1, compute a* € arg max,es, (VF(z"), x),
df :=2* —a* and G}, := (=VF(z"),d%).

> (Choose direction) If |Sx| =1 or G > Gk, let d* := df and ay := 1; otherwise,
let d* := df and & == % /(1 — BE.).
> (Choose stepsize) Choose ay € (0, @] in one of the following two ways:
® Adaptive stepsize: Compute r := —(VF(z*),d*) and Dy, := ||Ad’“||yk. If Dy =0,
then ay, := ag; otherwise, oy := min{bg, ar}, where by := r./(Dk(rr + Dg)).

® Exact line-search: oy, € argming, ¢(0,a,] F(z* + ad®).
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Away-step Frank-Wolfe Method for solving (P)

» Input: 2° € XY Ndom F, 8° € Ay such that z0 = Zvev Bov, So := supp(°).
» At iteration k > 0:

> (FW direction) Compute v* € argmin, .\, (VF(2*),z), df := v* — 2" and
Gy := (~VF(2%),dk). If G, = 0, then STOP.
(Away direction) If |Sk| > 1, compute a* € arg max,es, (VF(z"), x),
df :=2* —a* and G}, := (=VF(z"),d%).

v

> (Choose direction) If |Sx| =1 or G > Gk, let d* := df and ay := 1; otherwise,
let d* := df and & == % /(1 — BE.).
> (Choose stepsize) Choose ay € (0, @] in one of the following two ways:
® Adaptive stepsize: Compute r := —(VF(z*),d*) and Dy, := ||Ad’“||yk. If Dy =0,
then ay, := ag; otherwise, oy := min{bg, ar}, where by := r./(Dk(rr + Dg)).

® Exact line-search: oy, € argming, ¢(0,a,] F(z* + ad®).

> (Update iterates) Update "' := 2% + axd® and B*™' € Ay, such that
gttt = D ey Bstlv, and let Spy1 = supp(8*t?).
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> If |V| = w(n), we may prefer to maintain a compact representation of Sy such that
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Some Remarks

Denote dim X = n.

>

Depending on X, we may prefer to solve mingcy (VF(z*),z) either by either
minimizing over X (e.g., X =[] [a;,bi]) or V (e.g., X = A,,).

The FW-gap G = (VF(z*), 2" — v*) provides an effective stopping criterion:
Gr > [0k := F(z*) = F*] fork>0.

If |V| = w(n), we may prefer to maintain a compact representation of Sy such that
|Sk| = O(n) for k > 0, at computational cost of O(n?) per iteration [BS17].

For all applications of interest, computing Dy = [|Ad"||,» = (V*F(a")d", d"yt/?
takes O(n) times, instead of O(n?) time.
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Computational Guarantees
F* := mingern [F(z) := f(Az) + (¢, z)]

> Define B := max, ,/cx {¢,x — z') (the variation of (c,-) on X).
> Define ¢ := min{|W|: W CV such that conv/V Ndom F' # (}.
> Define ¥ := A(X) and Ry (y") := sup,eacx) Iy — 4" [y < +o0.

Global linear convergence of {Jx }r>0:

> {0k }r>o is strictly decreasing (until termination).
> For all k > 0, define ke := [max{(k — |So| + ¢)/2,0}] =~ k/2, and then

) 1 ud (X, X*)?
§e < (1 — p)Fetts, h = 2
k< (1—p)*Too, where p m1n{5.3(60+9+B),42’4(9_’_3)2 )
where
® ;1 is the quadratic-growth constant of f on ) that only depends on Ry (y*)

® O(X,X") >0 is a geometric constant about X" and X.
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Computational Guarantees
F* := mingern [F(z) := f(Az) + (¢, z)]

> Define B := max, ,/cx {¢,x — z') (the variation of (c,-) on X).
> Define ¢ := min{|W|: W CV such that conv/V Ndom F' # (}.
> Define ¥ := A(X) and Ry (y") := sup,eacx) Iy — 4" [y < +o0.

Global linear convergence of {Jx }r>0:

> {0k }r>o is strictly decreasing (until termination).
> For all k > 0, define ke := [max{(k — |So| + ¢)/2,0}] =~ k/2, and then

. 1 pP (X, X*)?
< (1= kefr h = :
ok < (1—p)**do, where p mm{5.3(6o+«9+B)’42.4(9+B)2 ’
where

® ;1 is the quadratic-growth constant of f on ) that only depends on Ry (y*)
® O(X,X") >0 is a geometric constant about X" and X.

> All the quantities defining p are affine-invariant and norm-independent.
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Computational Guarantees

Global linear convergence of {Gy}r>o:

For some (affine-invariant) D < 400 and all k > 0, we have
4(1 = p)kesomax{D,1},  if 6 > 1
< ~ .
4/1 = pkeﬁ\/%max{D, 1}, ifds <1

Essentially, this means {Gj}r>0 converges at the linear rate /1 — p, which is worse
than the rate of {0k }r>0, namely (1 — p).
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Global linear convergence of {Gy}r>o:

For some (affine-invariant) D < 400 and all k > 0, we have
4(1 — p)keft 5o max{D, 1}, if 0, > 1
4yT =P " /Somax{D,1}, ifdp <1

Essentially, this means {Gj}r>0 converges at the linear rate /1 — p, which is worse
than the rate of {0k }r>0, namely (1 — p).
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> There exists a face of X, denoted by F, such that for any z* € X*, if x € X, then
(VFE(z"),z —2")=0 <= =z€eF.
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Improved local linear rate

> Let X* # () denote the set of optimal solutions of (P)

> There exists a face of X, denoted by F, such that for any z* € X*, if x € X, then
(VFE(z"),z —2")=0 <= =z€eF.

> Define Ar := maxs+ecx+ min,ey\ 7 (VF(z"),v — 2*) > 0.

Land on F in finite iterations:

Let k > 0 satisfy that
0z < min{V(Ax, Ry(y")), minyey\ #F(v) — F*}.
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Improved local linear rate

> Let X* # () denote the set of optimal solutions of (P)

> There exists a face of X, denoted by F, such that for any z* € X*, if x € X, then
(VFE(z"),z —2")=0 <= =z€eF.

> Define Ar := maxs+ecx+ min,ey\ 7 (VF(z"),v — 2*) > 0.

Land on F in finite iterations:

Let k>0 satisfy that
0z < min{V(Ax, Ry(y")), minyey\ #F(v) — F*}.
For all k > k, if z* ¢ F, then
> Sk4+1 C Sk, when either exact line-search or adaptive stepsize is used in Step 7,

> Sk+1 =8k \ {ak} for some a* € S, N Vr, when exact line-search is used in Step 7;

otherwise, if ¥ € F, then z' € F for all [ > k.
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Another Example: Positron Emission Tomography

maXzea,, {F(x) = Z;n=1 pj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].
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maXzea,, {F(x) = Z;n=1 pj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

> For all j € [m], let p; >0, a; € R}, a; # 0 and Z;"lejzl.
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Another Example: Positron Emission Tomography

max,en, {F(x) = Z;"zl Dj ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but has
many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

> For all j € [m], let p; >0, a; € R}, a; # 0 and Z;nzlpj =1
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Thank you!
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