# Optimal Stochastic Algorithms for Convex-Concave Saddle Point Problems 

Renbo Zhao<br>Operations Research Center, Massachusetts Institute of Technology

Department of ISEM, NUS
Singapore, May 2019
(1) Introduction

Problem Setup Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## (1) Introduction

Problem Setup Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## Problem Statement

Consider the following convex-concave saddle point problem (SPP)

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}[S(x, y) \triangleq f(x)+g(x)+\Phi(x, y)-J(y)] \tag{SPP}
\end{equation*}
$$

## Problem Statement

Consider the following convex-concave saddle point problem (SPP)

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}[S(x, y) \triangleq f(x)+g(x)+\Phi(x, y)-J(y)] \tag{SPP}
\end{equation*}
$$

$\triangleright \mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where $\mathbb{X}$ and $\mathbb{Y}$ be two finite-dimensional real normed spaces.

## Problem Statement

Consider the following convex-concave saddle point problem (SPP)

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}[S(x, y) \triangleq f(x)+g(x)+\Phi(x, y)-J(y)] \tag{SPP}
\end{equation*}
$$

$\triangleright \mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where $\mathbb{X}$ and $\mathbb{Y}$ be two finite-dimensional real normed spaces.
$\triangleright \mathbb{X}^{*}$ and $\mathbb{Y}^{*}$ are the dual spaces of $\mathbb{X}$ and $\mathbb{Y}$, respectively.

## Problem Statement

Consider the following convex-concave saddle point problem (SPP)

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}[S(x, y) \triangleq f(x)+g(x)+\Phi(x, y)-J(y)] \tag{SPP}
\end{equation*}
$$

$\triangleright \mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where $\mathbb{X}$ and $\mathbb{Y}$ be two finite-dimensional real normed spaces.
$\triangleright \mathbb{X}^{*}$ and $\mathbb{Y}^{*}$ are the dual spaces of $\mathbb{X}$ and $\mathbb{Y}$, respectively.
$\triangleright f: \mathbb{X} \rightarrow \overline{\mathbb{R}}, g: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ and $J: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ are convex, closed and proper (CCP) functions, where $\overline{\mathbb{R}} \triangleq(-\infty,+\infty]$.

## Problem Statement

Consider the following convex-concave saddle point problem (SPP)

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}}[S(x, y) \triangleq f(x)+g(x)+\Phi(x, y)-J(y)] \tag{SPP}
\end{equation*}
$$

$\triangleright \mathcal{X} \subseteq \mathbb{X}$ and $\mathcal{Y} \subseteq \mathbb{Y}$ are nonempty, closed and convex sets, where $\mathbb{X}$ and $\mathbb{Y}$ be two finite-dimensional real normed spaces.
$\triangleright \mathbb{X}^{*}$ and $\mathbb{Y}^{*}$ are the dual spaces of $\mathbb{X}$ and $\mathbb{Y}$, respectively.
$\triangleright f: \mathbb{X} \rightarrow \overline{\mathbb{R}}, g: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ and $J: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ are convex, closed and proper (CCP) functions, where $\overline{\mathbb{R}} \triangleq(-\infty,+\infty]$.
$\triangleright \Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ is convex-concave, i.e., $\Phi(\cdot, y)$ is convex and $\Phi(x, \cdot)$ is concave, for any $(x, y) \in \mathbb{X} \times \mathbb{Y}$.

## Regularity Assumptions

## Regularity Assumptions

$\triangleright f$ is $\mu$-strong convex (s.c.) and $L$-smooth on $\mathcal{X}(L \geq \mu \geq 0)$, i.e.,

$$
\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2}, \forall x, x^{\prime} \in \mathcal{X}
$$

## Regularity Assumptions

$\triangleright f$ is $\mu$-strong convex (s.c.) and $L$-smooth on $\mathcal{X}(L \geq \mu \geq 0)$, i.e., $\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2}, \forall x, x^{\prime} \in \mathcal{X}$.
$\triangleright$ Both cases $\mu=0$ and $\mu>0$ will be considered.

## Regularity Assumptions

$\triangleright f$ is $\mu$-strong convex (s.c.) and $L$-smooth on $\mathcal{X}(L \geq \mu \geq 0)$, i.e., $\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2}, \forall x, x^{\prime} \in \mathcal{X}$.
$\triangleright$ Both cases $\mu=0$ and $\mu>0$ will be considered.
$\triangleright g$ and $J$ admit tractable Bregman proximal projections on $\mathcal{X}$ and $\mathcal{Y}$, respectively. Also, $\operatorname{dom} g \cap \mathcal{X} \neq \emptyset$ and $\operatorname{dom} J \cap \mathcal{Y} \neq \emptyset$.

## Regularity Assumptions

$\triangleright f$ is $\mu$-strong convex (s.c.) and $L$-smooth on $\mathcal{X}(L \geq \mu \geq 0)$, i.e.,

$$
\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2}, \forall x, x^{\prime} \in \mathcal{X}
$$

$\triangleright$ Both cases $\mu=0$ and $\mu>0$ will be considered.
$\triangleright g$ and $J$ admit tractable Bregman proximal projections on $\mathcal{X}$ and $\mathcal{Y}$, respectively. Also, $\operatorname{dom} g \cap \mathcal{X} \neq \emptyset$ and $\operatorname{dom} J \cap \mathcal{Y} \neq \emptyset$.
$\triangleright \Phi$ is $\left(L_{x x}, L_{y x}, L_{y y}\right)$-smooth on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$
\begin{align*}
\left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x^{\prime}, y\right)\right\|_{\mathbb{X}^{*}} & \leq L_{x x}\left\|x-x^{\prime}\right\|_{\mathbb{X}}  \tag{1a}\\
\left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x, y^{\prime}\right)\right\|_{\mathbb{X}^{*}} & \leq L_{y x}\left\|y-y^{\prime}\right\|_{\mathbb{Y}}  \tag{1b}\\
\left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x^{\prime}, y\right)\right\|_{\mathbb{Y}^{*}} & \leq L_{y x}\left\|x-x^{\prime}\right\|_{\mathbb{X}}  \tag{1c}\\
\left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x, y^{\prime}\right)\right\|_{\mathbb{Y}^{*}} & \leq L_{y y}\left\|y-y^{\prime}\right\|_{\mathbb{Y}} \tag{1d}
\end{align*}
$$

## Regularity Assumptions

$\triangleright f$ is $\mu$-strong convex (s.c.) and $L$-smooth on $\mathcal{X}(L \geq \mu \geq 0)$, i.e.,

$$
\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{X}}^{2}, \forall x, x^{\prime} \in \mathcal{X}
$$

$\triangleright$ Both cases $\mu=0$ and $\mu>0$ will be considered.
$\triangleright g$ and $J$ admit tractable Bregman proximal projections on $\mathcal{X}$ and $\mathcal{Y}$, respectively. Also, $\operatorname{dom} g \cap \mathcal{X} \neq \emptyset$ and $\operatorname{dom} J \cap \mathcal{Y} \neq \emptyset$.
$\triangleright \Phi$ is $\left(L_{x x}, L_{y x}, L_{y y}\right)$-smooth on $\mathcal{X} \times \mathcal{Y}$, i.e.,

$$
\begin{align*}
\left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x^{\prime}, y\right)\right\|_{\mathbb{X}^{*}} & \leq L_{x x}\left\|x-x^{\prime}\right\|_{\mathbb{X}}  \tag{1a}\\
\left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x, y^{\prime}\right)\right\|_{\mathbb{X}^{*}} & \leq L_{y x}\left\|y-y^{\prime}\right\|_{\mathbb{Y}}  \tag{1b}\\
\left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x^{\prime}, y\right)\right\|_{\mathbb{Y}^{*}} & \leq L_{y x}\left\|x-x^{\prime}\right\|_{\mathbb{X}}  \tag{1c}\\
\left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x, y^{\prime}\right)\right\|_{\mathbb{Y}^{*}} & \leq L_{y y}\left\|y-y^{\prime}\right\|_{\mathbb{Y}} \tag{1d}
\end{align*}
$$

$\triangleright$ A saddle point $\left(x^{*}, y^{*}\right) \in \mathcal{X} \times \mathcal{Y}$ exists for (SPP), i.e.,

$$
S\left(x^{*}, y\right) \leq S\left(x^{*}, y^{*}\right) \leq S\left(x, y^{*}\right), \quad \forall(x, y) \in \mathcal{X} \times \mathcal{Y}
$$

## Applications

## Applications

$\triangleright$ Any bilinear SPP, i.e., $\Phi(x, y)=\langle\mathrm{A} x, y\rangle, \mathrm{A} \in \mathcal{L}\left(\mathbb{X}, \mathbb{Y}^{*}\right)$

## Applications

$\triangleright$ Any bilinear SPP, i.e., $\Phi(x, y)=\langle\mathrm{A} x, y\rangle, \mathrm{A} \in \mathcal{L}\left(\mathbb{X}, \mathbb{Y}^{*}\right)$
$\triangleright$ Non-bilinear SPP

## Applications

$\triangleright$ Any bilinear SPP, i.e., $\Phi(x, y)=\langle\mathrm{A} x, y\rangle, \mathrm{A} \in \mathcal{L}\left(\mathbb{X}, \mathbb{Y}^{*}\right)$
$\triangleright$ Non-bilinear SPP

- Convex-concave game


## Applications

$\triangleright$ Any bilinear SPP, i.e., $\Phi(x, y)=\langle\mathrm{A} x, y\rangle, \mathrm{A} \in \mathcal{L}\left(\mathbb{X}, \mathbb{Y}^{*}\right)$
$\triangleright$ Non-bilinear SPP

- Convex-concave game
- Convex Optimization with Functional Constraints


## Applications

$\triangleright$ Any bilinear SPP, i.e., $\Phi(x, y)=\langle\mathrm{A} x, y\rangle, \mathrm{A} \in \mathcal{L}\left(\mathbb{X}, \mathbb{Y}^{*}\right)$
$\triangleright$ Non-bilinear SPP

- Convex-concave game
- Convex Optimization with Functional Constraints
- Kernel Matrix Learning


## Stochastic First-Order Oracles

$$
f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x, \xi)] \quad \Phi(x, y) \triangleq \mathbb{E}_{\zeta}[\widetilde{\Phi}(x, y, \zeta)]
$$

## Stochastic First-Order Oracles

$$
f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x, \xi)] \quad \Phi(x, y) \triangleq \mathbb{E}_{\zeta}[\widetilde{\Phi}(x, y, \zeta)]
$$

## Oracle model (Stochastic approximation):

Return estimators of $\nabla f, \nabla \Phi(\cdot, y)$ and $\nabla \Phi(x, \cdot)$, i.e., $\hat{\nabla} f, \hat{\nabla} \Phi(\cdot, y)$ and $\hat{\nabla} \Phi(x, \cdot)$, that
$\triangleright$ are unbiased
$\triangleright$ have bounded variances
$\triangleright$ (may also) obey "light-tailed" distributions

| Gradient Noise | Mean | Variance |
| :---: | :---: | :---: |
| $\delta_{x, f} \triangleq \hat{\nabla} f-\nabla f$ | 0 | $\sigma_{x, f}^{2}$ |
| $\delta_{x, \Phi} \triangleq \hat{\nabla}_{x} \Phi(\cdot, y)-\nabla_{x} \Phi(\cdot, y)$ | 0 | $\sigma_{x, \Phi}^{2}$ |
| $\delta_{y, \Phi} \triangleq \hat{\nabla}_{y} \Phi(x, \cdot)-\nabla_{y} \Phi(x, \cdot)$ | 0 | $\sigma_{y, \Phi}^{2}$ |

## Stochastic First-Order Oracles

$$
f(x) \triangleq \mathbb{E}_{\xi}[\tilde{f}(x, \xi)] \quad \Phi(x, y) \triangleq \mathbb{E}_{\zeta}[\widetilde{\Phi}(x, y, \zeta)]
$$

## Oracle model (Stochastic approximation):

Return estimators of $\nabla f, \nabla \Phi(\cdot, y)$ and $\nabla \Phi(x, \cdot)$, i.e., $\hat{\nabla} f, \hat{\nabla} \Phi(\cdot, y)$ and $\hat{\nabla} \Phi(x, \cdot)$, that
$\triangleright$ are unbiased
$\triangleright$ have bounded variances
$\triangleright$ (may also) obey "light-tailed" distributions

| Gradient Noise | Mean | Variance |
| :---: | :---: | :---: |
| $\delta_{x, f} \triangleq \hat{\nabla} f-\nabla f$ | 0 | $\sigma_{x, f}^{2}$ |
| $\delta_{x, \Phi} \triangleq \hat{\nabla}_{x} \Phi(\cdot, y)-\nabla_{x} \Phi(\cdot, y)$ | 0 | $\sigma_{x, \Phi}^{2}$ |
| $\delta_{y, \Phi} \triangleq \hat{\nabla}_{y} \Phi(x, \cdot)-\nabla_{y} \Phi(x, \cdot)$ | 0 | $\sigma_{y, \Phi}^{2}$ |

$\triangleright(\mathrm{SPP}) \rightarrow \operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)$, where $\sigma \triangleq \sigma_{x, f}+\sigma_{x, \Phi}+\sigma_{y, \Phi}$.

# (1) Introduction 

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Develop the first stochastic restart scheme for SPP.

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Develop the first stochastic restart scheme for SPP.
$\triangleright$ Consider the sub-Gaussian gradient noises.

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Develop the first stochastic restart scheme for SPP.
$\triangleright$ Consider the sub-Gaussian gradient noises.
$\triangleright$ To obtain an $\epsilon$-duality gap w.p. $\geq 1-\nu$, the oracle complexity is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{\log (1 / \epsilon)}{\nu}\right)\right)$.

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Furthermore, assume that $\operatorname{dom} g$ and $\operatorname{dom} J$ are closed.

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Furthermore, assume that $\operatorname{dom} g$ and $\operatorname{dom} J$ are closed.
$\triangleright$ Then to obtain an $\epsilon$-expected duality gap, the oracle complexity is

$$
O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right) .
$$

## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Furthermore, assume that $\operatorname{dom} g$ and dom $J$ are closed.
$\triangleright$ Then to obtain an $\epsilon$-expected duality gap, the oracle complexity is $O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

- The complexities of $L$ and $L_{y x}$ are optimal.


## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Furthermore, assume that $\operatorname{dom} g$ and dom $J$ are closed.
$\triangleright$ Then to obtain an $\epsilon$-expected duality gap, the oracle complexity is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

- The complexities of $L$ and $L_{y x}$ are optimal.
- The complexities of $\sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$ are optimal up to a log factor, but still the best-known.


## Main Contribution $(\mu>0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, \mu\right)
$$

$\triangleright$ Furthermore, assume that $\operatorname{dom} g$ and $\operatorname{dom} J$ are closed.
$\triangleright$ Then to obtain an $\epsilon$-expected duality gap, the oracle complexity is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

- The complexities of $L$ and $L_{y x}$ are optimal.
- The complexities of $\sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$ are optimal up to a log factor, but still the best-known.
- The complexities of $L_{x x}$ and $L_{y y}$ are the best-known. (Lower bound? Acceleration?)


## Comparison with Other Methods

| Algorithm | Problem Class | Oracle Complexity |
| :---: | :---: | :---: |
| PDHG-type <br> [Hamedani \& Aybat'18] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}+L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |
| Mirror-Prox-B <br>  <br> Nemirovski'12] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}}{\mu} \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |

## Comparison with Other Methods

| Algorithm | Problem Class | Oracle Complexity |
| :---: | :---: | :---: |
| PDHG-type <br> [Hamedani \& Aybat'18] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}+L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |
| Mirror-Prox-B <br>  <br> Nemirovski'12] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}}{\mu} \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |

$\triangleright$ The oracle complexity of Algorithm 2 is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

## Comparison with Other Methods

| Algorithm | Problem Class | Oracle Complexity |
| :---: | :---: | :---: |
| PDHG-type <br> [Hamedani \& Aybat'18] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}+L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |
| Mirror-Prox-B <br>  <br> Nemirovski'12] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}}{\mu} \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |

$\triangleright$ The oracle complexity of Algorithm 2 is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

- For $\sigma=0$ and $L_{y y}=0$, strictly better than the previous methods.


## Comparison with Other Methods

| Algorithm | Problem Class | Oracle Complexity |
| :---: | :---: | :---: |
| PDHG-type <br> [Hamedani \& Aybat'18] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}+L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |
| Mirror-Prox-B <br>  <br> Nemirovski'12] | $\sigma=0, L_{y y}=0$ | $O\left(\frac{L+L_{x x}}{\mu} \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}\right)$ |

$\triangleright$ The oracle complexity of Algorithm 2 is
$O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{1}{\epsilon}\right)\right)$.

- For $\sigma=0$ and $L_{y y}=0$, strictly better than the previous methods.
- For $\sigma>0$ and $L_{y y}>0$, the first complexity result.


## Subroutine $(\mu=0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

## Subroutine $(\mu=0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

$\triangleright$ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.

## Subroutine $(\mu=0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

$\triangleright$ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
$\triangleright$ To obtain an $\epsilon$-expected duality gap, the oracle complexity is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) .
$$

## Subroutine ( $\mu=0$ )

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

$\triangleright$ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
$\triangleright$ To obtain an $\epsilon$-expected duality gap, the oracle complexity is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) .
$$

- The complexities of $L, L_{y x}, \sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$ are optimal.


## Subroutine ( $\mu=0$ )

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

$\triangleright$ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
$\triangleright$ To obtain an $\epsilon$-expected duality gap, the oracle complexity is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) .
$$

- The complexities of $L, L_{y x}, \sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$ are optimal.
- The complexities of $L_{x x}$ and $L_{y y}$ are the best-known. (Lower bound? Acceleration?)


## Subroutine $(\mu=0)$

$$
\operatorname{SPP}\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma, 0\right)
$$

$\triangleright$ Extend the primal-dual hybrid gradient (PDHG) framework to the non-bilinear stochastic SPP.
$\triangleright$ To obtain an $\epsilon$-expected duality gap, the oracle complexity is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) .
$$

- The complexities of $L, L_{y x}, \sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$ are optimal.
- The complexities of $L_{x x}$ and $L_{y y}$ are the best-known. (Lower bound? Acceleration?)
$\triangleright$ If the gradient noises are sub-Gaussian, to obtain an $\epsilon$-duality gap w.p. at least $1-\nu$, the oracle complexity is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}} \log \left(\frac{1}{\nu}\right)\right) .
$$

## Comparison with Other Methods

| Algorithm | Prob. Class | Oracle Complexity |
| :---: | :---: | :---: |
| PDHG-type <br> [Hamedani \& Aybat'18] | $\sigma=0$ | $O\left(\frac{L}{\epsilon}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}\right)$ |
| Mirror-Prox <br> [Nemirovski'05] | $\sigma=0$ | $O\left(\frac{L}{\epsilon}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}\right)$ |
| Stoc. MP <br> [Juditsky et al.'11] | $\sigma>0$ | $O\left(\frac{L}{\epsilon}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right)$ |
| Stoc. Acc. MP <br> [Chen et al.'17] | $\sigma>0$ | $O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right)$ |
| Algorithm 1 <br> [Zhao'19] | $\sigma>0$ | $O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right)$ |

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## Non-Euclidean Geometry

## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.

## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.
$\triangleright$ We call $h_{\mathcal{U}}$ a distance generating function (DGF) on $\mathcal{U}$ if

## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.
$\triangleright$ We call $h_{\mathcal{U}}$ a distance generating function (DGF) on $\mathcal{U}$ if

- it is essentially smooth, i.e., cont. differentiable on int $\operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,


## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.
$\triangleright$ We call $h_{\mathcal{U}}$ a distance generating function (DGF) on $\mathcal{U}$ if

- it is essentially smooth, i.e., cont. differentiable on int $\operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous on $\mathcal{U}$,


## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.
$\triangleright$ We call $h_{\mathcal{U}}$ a distance generating function (DGF) on $\mathcal{U}$ if

- it is essentially smooth, i.e., cont. differentiable on int $\operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous on $\mathcal{U}$,
- it generates the Bregman distance

$$
D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \triangleq h_{\mathcal{U}}(u)-h_{\mathcal{U}}\left(u^{\prime}\right)-\left\langle\nabla h_{\mathcal{U}}\left(u^{\prime}\right), u-u^{\prime}\right\rangle
$$

that satisfies $D_{h u}\left(u, u^{\prime}\right) \geq(1 / 2)\left\|u-u^{\prime}\right\|^{2}$, for any $u \in \mathcal{U}$ and $u^{\prime} \in \mathcal{U}^{o} \triangleq \mathcal{U} \cap \operatorname{int} \operatorname{dom} h_{\mathcal{U}}$.

## Non-Euclidean Geometry

$\triangleright$ Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where $\mathbb{U}$ is a finite-dimensional real normed space.
$\triangleright$ We call $h_{\mathcal{U}}$ a distance generating function (DGF) on $\mathcal{U}$ if

- it is essentially smooth, i.e., cont. differentiable on int $\operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous on $\mathcal{U}$,
- it generates the Bregman distance

$$
D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \triangleq h_{\mathcal{U}}(u)-h_{\mathcal{U}}\left(u^{\prime}\right)-\left\langle\nabla h_{\mathcal{U}}\left(u^{\prime}\right), u-u^{\prime}\right\rangle
$$

that satisfies $D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \geq(1 / 2)\left\|u-u^{\prime}\right\|^{2}$, for any $u \in \mathcal{U}$ and $u^{\prime} \in \mathcal{U}^{o} \triangleq \mathcal{U} \cap \operatorname{int} \operatorname{dom} h_{\mathcal{U}}$.
$\triangleright$ Example: $\mathbb{U}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \mathcal{U}=\Delta_{n} \triangleq\left\{u \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} u_{i}=1\right\}$, $h_{\mathcal{U}}=\sum_{i=1}^{n} u_{i} \log u_{i}$, $\operatorname{dom} h_{\mathcal{U}}=\mathbb{R}_{+}^{n}, \mathcal{U}^{o}=\mathrm{ri} \Delta_{n}$.

## Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

## Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

## Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

$\triangleright \operatorname{If~}_{\inf }^{u \in \mathcal{U}} \boldsymbol{\varphi}(u)>-\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then $u^{+}$is unique and lies in $\mathcal{U}^{\circ} \cap \operatorname{dom} \varphi$.

## Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

$\triangleright \operatorname{If~}_{\inf }^{u \in \mathcal{U}} \boldsymbol{\varphi}(u)>-\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then $u^{+}$is unique and lies in $\mathcal{U}^{0} \cap \operatorname{dom} \varphi$.
$\triangleright$ We say $\varphi$ has a tractable BPP on $\mathcal{U}$ if there exists a DGF $h_{\mathcal{U}}$ on $\mathcal{U}$ such that (BPP) has a (unique) easily computable solution.

## Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

$\triangleright \operatorname{If}_{\inf _{u \in \mathcal{U}} \varphi} \varphi(u)>-\infty$ and $\mathcal{U} \cap \operatorname{dom} \phi \cap \operatorname{dom} h_{\mathcal{U}} \neq \emptyset$, then $u^{+}$is unique and lies in $\mathcal{U}^{\circ} \cap \operatorname{dom} \varphi$.
$\triangleright$ We say $\varphi$ has a tractable BPP on $\mathcal{U}$ if there exists a DGF $h_{\mathcal{U}}$ on $\mathcal{U}$ such that (BPP) has a (unique) easily computable solution.
$\triangleright$ If $\mathbb{U}$ is a Hilbert space, then (BPP) becomes

$$
u^{\prime} \mapsto u^{+} \triangleq \operatorname{prox}_{\lambda \varphi}\left(u^{\prime}-\lambda u^{*}\right)
$$

## Primal and Dual Functions

$$
(\mathbb{P}): \min _{x \in \mathcal{X}}\left[\bar{S}(x) \triangleq \sup _{y \in \mathcal{Y}} S(x, y)\right], \quad(\mathbb{D}): \max _{y \in \mathcal{Y}}\left[\underline{S}(x) \triangleq \inf _{x \in \mathcal{X}} S(x, y)\right] .
$$

## Primal and Dual Functions

$(\mathbb{P}): \min _{x \in \mathcal{X}}\left[\bar{S}(x) \triangleq \sup _{y \in \mathcal{Y}} S(x, y)\right], \quad(\mathbb{D}): \max _{y \in \mathcal{Y}}\left[\underline{S}(x) \triangleq \inf _{x \in \mathcal{X}} S(x, y)\right]$.
$\triangleright \bar{S} \rightarrow$ primal function, $\underline{S} \rightarrow$ dual function

## Primal and Dual Functions

$(\mathbb{P}): \min _{x \in \mathcal{X}}\left[\bar{S}(x) \triangleq \sup _{y \in \mathcal{Y}} S(x, y)\right], \quad(\mathbb{D}): \max _{y \in \mathcal{Y}}\left[\underline{S}(x) \triangleq \inf _{x \in \mathcal{X}} S(x, y)\right]$.
$\triangleright \bar{S} \rightarrow$ primal function, $\underline{S} \rightarrow$ dual function
$\triangleright$ Since (SPP) has a saddle point $\left(x^{*}, y^{*}\right), x^{*}$ and $y^{*}$ are solutions of $(\mathbb{P})$ and $(\mathbb{D})$ respectively and $\bar{S}\left(x^{*}\right)=S\left(x^{*}, y^{*}\right)=\underline{S}\left(y^{*}\right)$.

## Primal and Dual Functions

$(\mathbb{P}): \min _{x \in \mathcal{X}}\left[\bar{S}(x) \triangleq \sup _{y \in \mathcal{Y}} S(x, y)\right], \quad(\mathbb{D}): \max _{y \in \mathcal{Y}}\left[\underline{S}(x) \triangleq \inf _{x \in \mathcal{X}} S(x, y)\right]$.
$\triangleright \bar{S} \rightarrow$ primal function, $\underline{S} \rightarrow$ dual function
$\triangleright$ Since (SPP) has a saddle point $\left(x^{*}, y^{*}\right), x^{*}$ and $y^{*}$ are solutions of $(\mathbb{P})$ and $(\mathbb{D})$ respectively and $\bar{S}\left(x^{*}\right)=S\left(x^{*}, y^{*}\right)=\underline{S}\left(y^{*}\right)$.
$\triangleright$ Define the duality gap

$$
G(x, y) \triangleq \bar{S}(x)-\underline{S}(y)=\sup _{x^{\prime} \in \mathcal{X}, y^{\prime} \in \mathcal{Y}} S\left(x, y^{\prime}\right)-S\left(x^{\prime}, y\right) .
$$

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## Algorithm 1: An Optimal Algorithm for $\mu=0$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$


## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$


## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h_{y}}\left(y, y^{t}\right) \quad \text { (Dual Ascent) }
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{aligned}
& y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h y}\left(y, y^{t}\right) \\
& \tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t}
\end{aligned}
$$

(Dual Ascent)
(Interpolation)

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{ll}
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h_{\mathcal{y}}}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \left.+\tau_{t}^{-1} D_{h_{\mathcal{X}}}\left(x, x^{t}\right)\right)
\end{array}
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{rrr}
y^{t+1}:= & \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h y}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& +\tau_{t}^{-1} D_{\left.h_{\mathcal{X}}\left(x, x^{t}\right)\right)} \quad \text { (Primal Descent) } \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) & \text { (Extrap.) }
\end{array}
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{rlr}
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h y}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \left.+\tau_{t}^{-1} D_{h_{\mathcal{X}}}\left(x, x^{t}\right)\right) r & \text { (Primal Descent) } \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \text { (Extrap.) } \\
\bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1} r & \text { (Primal Averaging) }
\end{array}
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{rrr}
y^{t+1}:= & \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h_{y}}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& +\tau_{t}^{-1} D_{\left.h_{\mathcal{X}}\left(x, x^{t}\right)\right)} & \text { (Primal Descent) } \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \text { (Extrap.) } \\
\bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1} & \text { (Primal Averaging) } \\
\bar{y}^{t+1}:=\left(1-\beta_{t}\right) \bar{y}^{t}+\beta_{t} y^{t+1} & \text { (Dual Averaging) }
\end{array}
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{rlr}
y^{t+1} & := & \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h_{y}}\left(y, y^{t}\right) \\
\tilde{x}^{t+1} & :=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Dual Ascent) } \\
x^{t+1} & :=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \left.+\tau_{t}^{-1} D_{h_{\mathcal{X}}}\left(x, x^{t}\right)\right) & \text { (Primal Descent) } \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \text { (Extrap.) } \\
\bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1} & \text { (Primal Averaging) } \\
\bar{y}^{t+1}:=\left(1-\beta_{t}\right) \bar{y}^{t}+\beta_{t} y^{t+1} & \text { (Dual Averaging) }
\end{array}
$$

## Algorithm 1: An Optimal Algorithm for $\mu=0$

- Input: Interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right), t=1$
- Repeat (until some convergence criterion is met)

$$
\begin{array}{rlr}
y^{t+1} & := & \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{h_{\mathcal{Y}}}\left(y, y^{t}\right) \\
\tilde{x}^{t+1} & :=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Dual Ascent) } \\
x^{t+1} & :=\underset{x \in \mathcal{X}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \left.+\tau_{t}^{-1} D_{h_{\mathcal{X}}}\left(x, x^{t}\right)\right) & \text { (Primal Descent) } \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \text { (Extrap.) } \\
\bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1} & \text { (Primal Averaging) } \\
\bar{y}^{t+1}:=\left(1-\beta_{t}\right) \bar{y}^{t}+\beta_{t} y^{t+1} & \text { (Dual Averaging) }
\end{array}
$$

- Output: $\left(\bar{x}^{t}, \bar{y}^{t}\right)$


## Definitions and Assumptions

## Definitions and Assumptions

$\triangleright$ Bregman diameters:

$$
\Omega_{h_{\mathcal{X}}} \triangleq \sup _{x \in \mathcal{X}, x^{\prime} \in \mathcal{X}^{\circ}} D_{h_{\mathcal{X}}}\left(x, x^{\prime}\right), \quad \Omega_{h \mathcal{Y}} \triangleq \sup _{y \in \mathcal{Y}, y^{\prime} \in \mathcal{Y}^{\circ}} D_{h_{\mathcal{Y}}}\left(y, y^{\prime}\right) .
$$

## Definitions and Assumptions

$\triangleright$ Bregman diameters:

$$
\Omega_{h_{\mathcal{X}}} \triangleq \sup _{x \in \mathcal{X}, x^{\prime} \in \mathcal{X}^{\circ}} D_{h_{\mathcal{X}}}\left(x, x^{\prime}\right), \quad \Omega_{h_{\mathcal{Y}}} \triangleq \sup _{y \in \mathcal{Y}, y^{\prime} \in \mathcal{Y}^{\circ}} D_{h \mathcal{Y}}\left(y, y^{\prime}\right)
$$

$\triangleright$ Gradient noises at iteration $t$ :

$$
\begin{aligned}
& \delta_{y, \Phi}^{t} \triangleq \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right)-\nabla_{y} \Phi\left(x^{t}, y^{t}\right), \\
& \delta_{x, \Phi}^{t} \triangleq \hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)-\nabla_{x} \Phi\left(x^{t}, y^{t+1}\right), \\
& \delta_{x, f}^{t} \triangleq \hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right)-\nabla f\left(\tilde{x}^{t+1}\right) .
\end{aligned}
$$

Assumptions 1 (On Constraint Sets)
(A) The Bregman diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ are bounded.
(B) The set $\mathcal{X}$ is bounded and the Bregman diameter $\Omega_{h y}$ is bounded.

## Definitions and Assumptions

## Assumptions 2 (On Gradient Noises)

Define $\mathbb{E}_{t}[\cdot] \triangleq \mathbb{E}\left[\cdot \mid \mathcal{F}_{t}\right]$. For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ and any $t \in \mathbb{N}$, there exist positive constants $\sigma_{y, \Phi}, \sigma_{x, \Phi}$ and $\sigma_{x, f}$ such that
(A) (Unbiasedness) $\quad \mathbb{E}_{t-1}\left[\delta_{y, \Phi}^{t}\right]=0, \mathbb{E}_{t-1}\left[\delta_{x, \Phi}^{t}\right]=0, \mathbb{E}_{t-1}\left[\delta_{x, f}^{t}\right]=0$ a.s.,
(B) (Bounded variance) $\mathbb{E}_{t-1}\left[\left\|\delta_{y, \Phi}^{t}\right\|_{*}^{2}\right] \leq \sigma_{y, \Phi}^{2}, \mathbb{E}_{t-1}\left[\left\|\delta_{x, \Phi}^{t}\right\|_{*}^{2}\right] \leq \sigma_{x, \Phi}^{2}$, $\mathbb{E}_{t-1}\left[\left\|\delta_{x, f}^{t}\right\|_{*}^{2}\right] \leq \sigma_{x, f}^{2}$ a.s.,
© (Sub-Gaussian distributions)

$$
\begin{aligned}
& \mathbb{E}_{t-1}\left[\exp \left(\left\|\delta_{y, \Phi}^{t}\right\|_{*}^{2} / \sigma_{y, \Phi}^{2}\right)\right] \leq \exp (1), \mathbb{E}_{t-1}\left[\exp \left(\left\|\delta_{x, \Phi}^{t}\right\|_{*}^{2} / \sigma_{x, \Phi}^{2}\right)\right] \leq \exp (1), \\
& \mathbb{E}_{t-1}\left[\exp \left(\left\|\delta_{x, f}^{t}\right\|_{*}^{2} / \sigma_{x, f}^{2}\right)\right] \leq \exp (1) \text { a.s.. }
\end{aligned}
$$

## Convergence Results

## Theorem 1

Let Assumptions 1(A) and 2(A) hold. In Algorithm 1, for any $t \in \mathbb{N}$, choose

$$
\begin{aligned}
& \theta_{t}=\frac{t-1}{t}, \quad \beta_{t}=\frac{2}{t+1}, \quad \alpha_{t}=\frac{1}{16\left(L_{y x}+L_{y y}+\rho \sigma_{y, \Phi} \sqrt{t}\right)}, \\
& \tau_{t}=\frac{t}{2\left(2 L+\left(L_{x x}+L_{y x}\right) t+\rho^{\prime}\left(\sigma_{x, \Phi}+\sigma_{x, f}\right) t^{3 / 2}\right)},
\end{aligned}
$$

where $\rho, \rho^{\prime}>0$ are constants independent of the parameters of interest, i.e., $\left(L, L_{x x}, L_{y x}, L_{y y}, \sigma_{x, f}, \sigma_{x, \Phi}, \sigma_{y, \Phi}, t\right)$.
(1) If Assumption 2(B) also holds, then for any $T \geq 3$, we have

$$
\begin{aligned}
& \mathbb{E}\left[G\left(\bar{x}^{T}, \bar{y}^{T}\right)\right] \leq B_{\mathrm{e}}(T) \triangleq \frac{16 L}{T(T-1)} \Omega_{h_{\mathcal{X}}}+\frac{8\left(L_{x x}+L_{y x}\right)}{T} \Omega_{h_{\mathcal{X}}} \\
& +\frac{128\left(L_{y x}+L_{y y}\right)}{T} \Omega_{h_{\mathcal{Y}}}+\frac{8 \sigma_{y, \Phi}}{\sqrt{T}}\left(\frac{1}{\rho}+16 \rho \Omega_{h_{\mathcal{Y}}}\right)+\frac{8\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)}{\sqrt{T}}\left(\frac{1}{\rho^{\prime}}+\rho^{\prime} \Omega_{h_{\mathcal{X}}}\right) .
\end{aligned}
$$

## Convergence Results

Thus, the oracle complexity of obtaining an $\epsilon$-expected duality gap is

$$
O\left(\sqrt{L / \epsilon}+\left(L_{x x}+L_{y x}+L_{y y}\right) / \epsilon+\left(\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}\right) / \epsilon^{2}\right) .
$$

(2) Let $\nu \in(0,1 / 6]$. If Assumption 2(C) also holds, then w.p. at least $1-6 \nu$,

$$
\begin{aligned}
G\left(\bar{x}^{T}, \bar{y}^{T}\right) \leq B_{\mathrm{e}}(T) & +\frac{8 \sigma_{y, \Phi}}{\sqrt{T}}\left(\frac{\log (1 / \nu)}{\rho}+\sqrt{\log (1 / \nu) \Omega_{h_{y}}}\right) \\
& +\frac{8\left(\sigma_{x, \Phi}+\sigma_{x, f}\right)}{\sqrt{T}}\left(\frac{\log (1 / \nu)}{\rho^{\prime}}+\sqrt{\log (1 / \nu) \Omega_{h_{\chi}}}\right) .
\end{aligned}
$$

Thus, the oracle complexity of obtaining an $\epsilon$-duality gap w.p. $\geq 1-\nu$ is

$$
O\left(\sqrt{\frac{L}{\epsilon}}+\frac{L_{x x}+L_{y x}+L_{y y}}{\epsilon}+\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}+\sigma_{y, \Phi}^{2}}{\epsilon^{2}} \log \left(\frac{1}{\nu}\right)\right) .
$$

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme

## (5) Future Directions

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme

## (5) Future Directions

## Restart Scheme for Strongly Convex Minimization

## Restart Scheme for Strongly Convex Minimization

$\triangleright$ Most of the subroutines need to satisfy: For any starting point $\bar{x}^{1}$ and any $\epsilon, \delta>0$, there exists $T \in \mathbb{N}$ such that

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq \delta \quad \Longrightarrow \quad \mathbb{E}\left[f\left(\bar{x}^{T}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

where $\bar{x}^{T}$ denotes the $T$-th iterate produced by the subroutine.

## Restart Scheme for Strongly Convex Minimization

$\triangleright$ Most of the subroutines need to satisfy: For any starting point $\bar{x}^{1}$ and any $\epsilon, \delta>0$, there exists $T \in \mathbb{N}$ such that

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq \delta \quad \Longrightarrow \quad \mathbb{E}\left[f\left(\bar{x}^{T}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

where $\bar{x}^{T}$ denotes the $T$-th iterate produced by the subroutine.
$\triangleright$ By the strong convexity of $f$, we can bound

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq(2 / \mu) \mathbb{E}\left[f\left(\bar{x}^{1}\right)-f\left(x^{*}\right)\right]
$$

and thus establish a recursion.

## Restart Scheme for Strongly Convex Minimization

$\triangleright$ Most of the subroutines need to satisfy:
For any starting point $\bar{x}^{1}$ and any $\epsilon, \delta>0$, there exists $T \in \mathbb{N}$ such that

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq \delta \quad \Longrightarrow \quad \mathbb{E}\left[f\left(\bar{x}^{T}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

where $\bar{x}^{T}$ denotes the $T$-th iterate produced by the subroutine.
$\triangleright$ By the strong convexity of $f$, we can bound

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq(2 / \mu) \mathbb{E}\left[f\left(\bar{x}^{1}\right)-f\left(x^{*}\right)\right]
$$

and thus establish a recursion.
$\triangleright$ However, this does not work for SPP (convergence measured by duality gap, and only diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ appear in the bound)

## Restart Scheme for Strongly Convex Minimization

$\triangleright$ Most of the subroutines need to satisfy:
For any starting point $\bar{x}^{1}$ and any $\epsilon, \delta>0$, there exists $T \in \mathbb{N}$ such that

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq \delta \quad \Longrightarrow \quad \mathbb{E}\left[f\left(\bar{x}^{T}\right)-f\left(x^{*}\right)\right] \leq \epsilon
$$

where $\bar{x}^{T}$ denotes the $T$-th iterate produced by the subroutine.
$\triangleright$ By the strong convexity of $f$, we can bound

$$
\mathbb{E}\left[\left\|\bar{x}^{1}-x^{*}\right\|^{2}\right] \leq(2 / \mu) \mathbb{E}\left[f\left(\bar{x}^{1}\right)-f\left(x^{*}\right)\right]
$$

and thus establish a recursion.
$\triangleright$ However, this does not work for SPP (convergence measured by duality gap, and only diameters $\Omega_{h_{\mathcal{X}}}$ and $\Omega_{h_{\mathcal{Y}}}$ appear in the bound)
$\Longrightarrow$ New schemes need to be developed.

## Rescaled Distance Generating Function (DGF)

## Rescaled Distance Generating Function (DGF)

$\triangleright$ Fix any $x_{\mathrm{c}} \in \mathcal{X}^{o}$ and define $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right) \triangleq R \mathcal{X}+x_{\mathrm{c}}$, where $R>0$.

## Rescaled Distance Generating Function (DGF)

$\triangleright$ Fix any $x_{\mathrm{c}} \in \mathcal{X}^{o}$ and define $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right) \triangleq R \mathcal{X}+x_{\mathrm{c}}$, where $R>0$.
$\triangleright$ Define a rescaled DGFs on $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)$ :

$$
\begin{equation*}
\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right) . \tag{2}
\end{equation*}
$$

## Rescaled Distance Generating Function (DGF)

$\triangleright$ Fix any $x_{\mathrm{c}} \in \mathcal{X}^{o}$ and define $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right) \triangleq R \mathcal{X}+x_{\mathrm{c}}$, where $R>0$.
$\triangleright$ Define a rescaled DGFs on $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)$ :

$$
\begin{equation*}
\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right) . \tag{2}
\end{equation*}
$$

$\triangleright$ The corresponding Bregman distances are

## Rescaled Distance Generating Function (DGF)

$\triangleright$ Fix any $x_{\mathrm{c}} \in \mathcal{X}^{o}$ and define $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right) \triangleq R \mathcal{X}+x_{\mathrm{c}}$, where $R>0$.
$\triangleright$ Define a rescaled DGFs on $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)$ :

$$
\begin{equation*}
\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right) . \tag{2}
\end{equation*}
$$

$\triangleright$ The corresponding Bregman distances are

$$
D_{\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{C}}, R\right)}}\left(x, x^{\prime}\right)=R^{2}\left\{h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)-h_{\mathcal{X}}\left(\frac{x^{\prime}-x_{\mathrm{c}}}{R}\right)-\left\langle\nabla h_{\mathcal{X}}\left(\frac{x^{\prime}-x_{\mathrm{c}}}{R}\right), \frac{x-x^{\prime}}{R}\right\rangle\right\} .
$$

$\triangleright$ Define $\mathcal{B}\left(x_{\mathrm{c}}, R\right) \triangleq\left\{x \in \mathbb{X}:\left\|x-x_{\mathrm{c}}\right\| \leq R\right\}$. If $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$, then

$$
\sup _{x \in \mathcal{X} \cap \mathcal{B}\left(x_{\mathrm{x}}, R\right)} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x_{c}, R\right)}}\left(x, x_{\mathrm{c}}\right) \leq R^{2} \Omega_{h_{\mathcal{X}}}^{\prime},
$$

$$
\text { where } \Omega_{h_{\mathcal{X}}}^{\prime} \triangleq \sup _{z \in \mathcal{B}(0,1)} D_{h_{\mathcal{X}}}(z, 0)<+\infty .
$$

## Rescaled Distance Generating Function (DGF)

$\triangleright$ Fix any $x_{\mathrm{c}} \in \mathcal{X}^{o}$ and define $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right) \triangleq R \mathcal{X}+x_{\mathrm{c}}$, where $R>0$.
$\triangleright$ Define a rescaled DGFs on $\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)$ :

$$
\begin{equation*}
\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}(x) \triangleq R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right) . \tag{2}
\end{equation*}
$$

$\triangleright$ The corresponding Bregman distances are

$$
D_{\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}}\left(x, x^{\prime}\right)=R^{2}\left\{h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)-h_{\mathcal{X}}\left(\frac{x^{\prime}-x_{\mathrm{c}}}{R}\right)-\left\langle\nabla h_{\mathcal{X}}\left(\frac{x^{\prime}-x_{\mathrm{c}}}{R}\right), \frac{x-x^{\prime}}{R}\right\rangle\right\} .
$$

$\triangleright$ Define $\mathcal{B}\left(x_{\mathrm{c}}, R\right) \triangleq\left\{x \in \mathbb{X}:\left\|x-x_{\mathrm{c}}\right\| \leq R\right\}$. If $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$, then

$$
\begin{aligned}
& \sup _{x \in \mathcal{X} \cap \mathcal{B}\left(x_{\mathrm{c}}, R\right)} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}}\left(x, x_{\mathrm{c}}\right) \leq R^{2} \Omega_{h_{\mathcal{X}}}^{\prime} \\
& \text { where } \Omega_{h_{\mathcal{X}}}^{\prime} \triangleq \sup _{z \in \mathcal{B}(0,1)} D_{h_{\mathcal{X}}}(z, 0)<+\infty
\end{aligned}
$$

$\triangleright$ If $\mathbb{X}$ is a Hilbert space and $h_{\mathcal{X}}=(1 / 2)\|\cdot\|^{2}$, then

$$
\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}(x)=(1 / 2)\left\|x-x_{\mathrm{c}}\right\|^{2}, \quad D_{\tilde{h}_{\overline{\mathcal{X}}\left(x_{\mathrm{c}}, R\right)}}\left(x, x^{\prime}\right)=(1 / 2)\left\|x-x^{\prime}\right\|^{2}
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$


## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$


## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{0}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$


## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h}_{y}}\left(y, y^{t}\right) \quad \text { (Dual Ascent) }
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
\begin{array}{lr}
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h} y}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) }
\end{array}
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
\begin{array}{rlr}
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h} y}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \quad+\tau_{t}^{-1} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}}\left(x, x^{t}\right) & \text { (Primal Descent) }
\end{array}
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
\begin{array}{rlr}
y^{t+1}:=\arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h} y}\left(y, y^{t}\right) & \text { (Dual Ascent) } \\
\tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} & \text { (Interpolation) } \\
x^{t+1}:=\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
\quad+\tau_{t}^{-1} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}}\left(x, x^{t}\right) \quad \text { (Primal Descent) } \\
& \\
s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \quad \text { (Extrap.) }
\end{array}
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
\begin{aligned}
& y^{t+1}:= \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h} \mathcal{Y}}\left(y, y^{t}\right) \\
& \tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} \quad \text { (Dual Ascent) } \\
& x^{t+1}:= \quad \underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \quad+\tau_{t}^{-1} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}\left(x, x^{t}\right)} \\
& \text { (Primal Descent) } \\
& s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \quad \text { (Extrap.) } \\
& \bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1}, \quad \bar{y}^{t+1}:=\left(1-\beta_{t}\right) \bar{y}^{t}+\beta_{t} y^{t+1} \quad \text { (Averaging) }
\end{aligned}
$$

## Algorithm 1R: Algorithm 1 with Rescaled Geometry

- Input: Starting primal variable $x^{0} \in \mathcal{X}^{o}$, radius $R$, primal constraint set $\mathcal{X}^{\prime}\left(\mathcal{X}^{\prime} \subseteq \mathcal{X}\right)$, number of iterations $T$, interp. seq. $\left\{\beta_{t}\right\}_{t \in \mathbb{N}}$, dual stepsizes $\left\{\alpha_{t}\right\}_{t \in \mathbb{N}}$, primal stepsizes $\left\{\tau_{t}\right\}_{t \in \mathbb{N}}$, relaxation seq. $\left\{\theta_{t}\right\}_{t \in \mathbb{N}}$, DGFs $h_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $h_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$
- Init: $\left(x^{1}, y^{1}\right) \in \mathcal{X}^{o} \times \mathcal{Y}^{o}, \bar{x}^{1}=x^{1}, \bar{y}^{1}=y^{1}, s^{1}=\hat{\nabla}_{y} \Phi\left(x^{1}, y^{1}, \zeta_{y}^{1}\right)$
- Define: $\overline{\mathcal{X}}\left(x^{1}, R\right)$ and $\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}$ using $h_{\mathcal{X}}, x^{1}$ and $R$
- For $t=1, \ldots, T-1$

$$
\begin{aligned}
& y^{t+1}:= \arg \min _{y \in \mathcal{Y}} J(y)-\left\langle s^{t}, y-y^{t}\right\rangle+\alpha_{t}^{-1} D_{\tilde{h}_{\mathcal{Y}}}\left(y, y^{t}\right) \\
& \tilde{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t} \quad \text { (Dual Ascent) } \\
& x^{t+1}:=\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle\hat{\nabla}_{x} \Phi\left(x^{t}, y^{t+1}, \zeta_{x}^{t}\right)+\hat{\nabla} f\left(\tilde{x}^{t+1}, \xi^{t}\right), x-x^{t}\right\rangle \\
& \quad+\tau_{t}^{-1} D_{\tilde{h}_{\overline{\mathcal{X}}\left(x^{1}, R\right)}\left(x, x^{t}\right)} \quad \text { (Primal Descent) } \\
& s^{t+1}:=\left(1+\theta_{t+1}\right) \hat{\nabla}_{y} \Phi\left(x^{t+1}, y^{t+1}, \zeta_{y}^{t+1}\right)-\theta_{t+1} \hat{\nabla}_{y} \Phi\left(x^{t}, y^{t}, \zeta_{y}^{t}\right) \quad \text { (Extrap.) } \\
& \bar{x}^{t+1}:=\left(1-\beta_{t}\right) \bar{x}^{t}+\beta_{t} x^{t+1}, \quad \bar{y}^{t+1}:=\left(1-\beta_{t}\right) \bar{y}^{t}+\beta_{t} y^{t+1} \quad \text { (Averaging) }
\end{aligned}
$$

- Output: $\left(\bar{x}^{T}, \bar{y}^{T}\right)$


## Easily Computable Solutions

$$
\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle x^{*}, x\right\rangle+\tau_{t}^{-1} R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)
$$

Has an easily computable solution if

## Easily Computable Solutions

$$
\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle x^{*}, x\right\rangle+\tau_{t}^{-1} R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)
$$

Has an easily computable solution if

$$
\triangleright g \equiv 0 \text { and } \mathcal{X}^{\prime}=\mathcal{X}=\mathbb{X}
$$

## Easily Computable Solutions

$$
\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle x^{*}, x\right\rangle+\tau_{t}^{-1} R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)
$$

Has an easily computable solution if
$\triangleright g \equiv 0$ and $\mathcal{X}^{\prime}=\mathcal{X}=\mathbb{X}$,
$\triangleright \mathbb{X}$ is a Hilbert space

## Easily Computable Solutions

$$
\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle x^{*}, x\right\rangle+\tau_{t}^{-1} R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)
$$

Has an easily computable solution if
$\triangleright g \equiv 0$ and $\mathcal{X}^{\prime}=\mathcal{X}=\mathbb{X}$,
$\triangleright \mathbb{X}$ is a Hilbert space

- $\mathcal{X}^{\prime}=\mathcal{X}$ and $h_{\mathcal{X}}=(1 / 2)\|\cdot\|_{\mathbb{X}}^{2}$,


## Easily Computable Solutions

$$
\underset{x \in \mathcal{X}^{\prime}}{\arg \min } g(x)+\left\langle x^{*}, x\right\rangle+\tau_{t}^{-1} R^{2} h_{\mathcal{X}}\left(\frac{x-x_{\mathrm{c}}}{R}\right)
$$

Has an easily computable solution if
$\triangleright g \equiv 0$ and $\mathcal{X}^{\prime}=\mathcal{X}=\mathbb{X}$,
$\triangleright \mathbb{X}$ is a Hilbert space

- $\mathcal{X}^{\prime}=\mathcal{X}$ and $h_{\mathcal{X}}=(1 / 2)\|\cdot\|_{\mathbb{X}}^{2}$,
- $g \equiv 0, \mathcal{X}^{\prime}=$ any set with easily computable projection, $h_{\mathcal{X}}=(1 / 2)\|\cdot\|_{\mathbb{X}}^{2}$.


## Convergence Results for Algorithm 1R

## Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$, and let Assumptions 1(B), 2(A) and 2(C) hold. Fix any $\varsigma \in(0,1 / 6]$. In Algorithm $1 R$, choose $\mathcal{X}^{\prime}$ such that $x^{*} \in \mathcal{X}^{\prime}$ and $D_{\mathcal{X}^{\prime}} \leq R$, and choose

## Convergence Results for Algorithm 1R

## Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$, and let Assumptions $1(B)$, 2(A) and 2(C) hold. Fix any $\varsigma \in(0,1 / 6]$. In Algorithm $1 R$, choose $\mathcal{X}^{\prime}$ such that $x^{*} \in \mathcal{X}^{\prime}$ and $D_{\mathcal{X}^{\prime}} \leq R$, and choose
$T \geq\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}, 4096 L_{y x}(\mu R)^{-1} \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}\right.\right.$, $128^{2} L_{y y}\left(\mu R^{2}\right)^{-1} \Omega_{h y}, 512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}(\mu R)^{-2}\left(4 \sqrt{(1+\log (1 / \nu)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \nu)}\right)^{2}$,
$\left.\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \nu)) \Omega_{h y}}+2 \sqrt{\log (1 / \nu) \Omega_{h y}}\right)^{2}\right\}\right]$.

## Convergence Results for Algorithm 1R

## Theorem 2

Assume that $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$, and let Assumptions $1(B)$, 2(A) and 2(C) hold. Fix any $\varsigma \in(0,1 / 6]$. In Algorithm $1 R$, choose $\mathcal{X}^{\prime}$ such that $x^{*} \in \mathcal{X}^{\prime}$ and $D_{\mathcal{X}^{\prime}} \leq R$, and choose
$T \geq\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}, 4096 L_{y x}(\mu R)^{-1} \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}\right.\right.$,
$128^{2} L_{y y}\left(\mu R^{2}\right)^{-1} \Omega_{h y}, 512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}(\mu R)^{-2}\left(4 \sqrt{(1+\log (1 / \nu)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \nu)}\right)^{2}$,
$\left.\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \nu)) \Omega_{h y}}+2 \sqrt{\log (1 / \nu) \Omega_{h y}}\right)^{2}\right\}\right]$.
If we choose $R \geq 2\left\|x^{0}-x^{*}\right\|,\left\{\beta_{t}\right\}_{t \in[T]}$ and $\left\{\theta_{t}\right\}_{t \in[T]}$ as in Theorem 1, and $\alpha_{t}=\alpha$ and $\tau_{t}=t \tau$ for any $t \in[T]$, where

$$
\begin{aligned}
& \alpha=1 /\left(16\left(\eta^{-1} L_{y x}+L_{y y}+\rho \sigma_{y, \Phi} \sqrt{T}\right)\right), \quad \rho=(4 R)^{-1} \sqrt{(1+\log (1 / \varsigma)) /\left(2 \Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}\right)}, \\
& \tau=1 /\left(4 L+2\left(L_{x x}+\eta L_{y x}\right) T+\rho^{\prime}\left(\sigma_{x, \Phi}+\sigma_{x, f}\right) T^{3 / 2}\right), \quad \eta=(4 / R) \sqrt{\Omega_{h_{\mathcal{Y}}} / \Omega_{h_{\mathcal{X}}}^{\prime}}, \\
& \rho^{\prime}=(8 R)^{-1} \sqrt{(1+\log (1 / \varsigma)) /\left(\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}\right),}
\end{aligned}
$$

## Convergence Results for Algorithm 1R

then w.p. at least $1-6 \nu$,

$$
G\left(\bar{x}^{T}, \bar{y}^{T}\right) \leq B_{R}^{\mathrm{det}}(T)+B_{R}^{\operatorname{var}}(T) \leq \mu R^{2} / 16,
$$

## Convergence Results for Algorithm 1R

then w.p. at least $1-6 \nu$,

$$
G\left(\bar{x}^{T}, \bar{y}^{T}\right) \leq B_{R}^{\mathrm{det}}(T)+B_{R}^{\mathrm{var}}(T) \leq \mu R^{2} / 16
$$

where

$$
\begin{aligned}
B_{R}^{\mathrm{det}}(T) \triangleq & \frac{16 L R^{2}}{T(T-1)} \Omega_{h_{\mathcal{X}}}^{\prime}+\frac{8 L_{x x} R^{2}}{T-1} \Omega_{h_{\mathcal{X}}}^{\prime} \\
& +\frac{8 L_{y x} R}{T-1}\left(\sqrt{\left.\eta_{x} / \eta_{y} \Omega_{h_{\mathcal{X}}}^{\prime}+16 \sqrt{\eta_{y} / \eta_{x}} \Omega_{h_{\mathcal{y}}}\right)+\frac{128 L_{y y}}{T} \Omega_{h \mathcal{y}}}\right. \\
B_{R}^{\mathrm{var}}(T) \triangleq & \frac{4\left(\sigma_{x, \Phi}+\sigma_{x, f}\right) R}{\sqrt{T}}\left\{4 \sqrt{(1+\log (1 / \nu)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \nu)}\right\} \\
& +\frac{4 \sigma_{y, \Phi}}{\sqrt{T}}\left\{8 \sqrt{2(1+\log (1 / \nu)) \Omega_{h_{\mathcal{Y}}}}+2 \sqrt{\log (1 / \nu) \Omega_{h_{\mathcal{y}}}}\right\}
\end{aligned}
$$

## Convergence Results for Algorithm 1R

then w.p. at least $1-6 \nu$,

$$
G\left(\bar{x}^{T}, \bar{y}^{T}\right) \leq B_{R}^{\mathrm{det}}(T)+B_{R}^{\mathrm{var}}(T) \leq \mu R^{2} / 16
$$

where

$$
\begin{aligned}
B_{R}^{\mathrm{det}}(T) \triangleq & \frac{16 L R^{2}}{T(T-1)} \Omega_{h_{\mathcal{X}}}^{\prime}+\frac{8 L_{x x} R^{2}}{T-1} \Omega_{h_{\mathcal{X}}}^{\prime} \\
& +\frac{8 L_{y x} R}{T-1}\left(\sqrt{\left.\eta_{x} / \eta_{y} \Omega_{h_{\mathcal{X}}}^{\prime}+16 \sqrt{\eta_{y} / \eta_{x}} \Omega_{h_{\mathcal{y}}}\right)+\frac{128 L_{y y}}{T} \Omega_{h \mathcal{y}}}\right. \\
B_{R}^{\mathrm{var}}(T) \triangleq & \frac{4\left(\sigma_{x, \Phi}+\sigma_{x, f}\right) R}{\sqrt{T}}\left\{4 \sqrt{(1+\log (1 / \nu)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \nu)}\right\} \\
& +\frac{4 \sigma_{y, \Phi}}{\sqrt{T}}\left\{8 \sqrt{2(1+\log (1 / \nu)) \Omega_{h y}}+2 \sqrt{\log (1 / \nu) \Omega_{h \mathcal{y}}}\right\}
\end{aligned}
$$

Furthermore, $\left\|\bar{x}^{T}-x^{*}\right\| \leq \sqrt{(2 / \mu)\left(B_{R}^{\mathrm{det}}(T)+B_{R}^{\mathrm{var}}(T)\right)} \leq R /(2 \sqrt{2})$ w.p. at least $1-6 \nu$.

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme

## (5) Future Directions

## Algorithm 2: Stochastic Restart Scheme

## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$, $K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$, $K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$, $K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$
- For $k=1, \ldots, K$


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$, $K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$
- For $k=1, \ldots, K$
- $T_{k}:=\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right.\right.$,
$512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}\left(\mu R_{k}\right)^{-2}\left(4 \sqrt{(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \varsigma)}\right)^{2}$,
$128^{2} L_{y y}\left(\mu R_{k}^{2}\right)^{-1} \Omega_{h_{\mathcal{y}}}, 4096 L_{y x}\left(\mu R_{k}\right)^{-1} \sqrt{\Omega_{h_{x}}^{\prime} \Omega_{h_{\mathcal{y}}}}$,
$\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R_{k}^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \varsigma)) \Omega_{h_{\nu}}}+2 \sqrt{\log (1 / \varsigma) \Omega_{h_{\nu}}}\right)^{2}\right\} 7$.


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$, $K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$
- For $k=1, \ldots, K$
- $T_{k}:=\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right.\right.$,

$$
\begin{aligned}
& 512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}\left(\mu R_{k}\right)^{-2}\left(4 \sqrt{(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \varsigma)}\right)^{2}, \\
& 128^{2} L_{y y}\left(\mu R_{k}^{2}\right)^{-1} \Omega_{h_{\mathcal{Y}}}, 4096 L_{y x}\left(\mu R_{k}\right)^{-1} \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}, \\
& \left.\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R_{k}^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{Y}}}}+2 \sqrt{\log (1 / \varsigma) \Omega_{h_{\mathcal{Y}}}}\right)^{2}\right\}\right]
\end{aligned}
$$

- Run Algorithm 1S for $T_{k}$ iterations with starting primal variable $x_{k}$, radius $R_{k}$, constraint set $\mathcal{X}_{k}=\left\{x \in \mathcal{X}:\left\|x-x_{k}\right\| \leq R_{k} / 2\right\}$ and other input parameters set as in Theorem 2 , with output $\left(\bar{x}_{k}^{T_{k}}, \bar{y}_{k}^{T_{k}}\right)$.


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$,
$K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$
- For $k=1, \ldots, K$
- $T_{k}:=\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right.\right.$,

$$
\begin{aligned}
& 512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}\left(\mu R_{k}\right)^{-2}\left(4 \sqrt{(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \varsigma)}\right)^{2}, \\
& 128^{2} L_{y y}\left(\mu R_{k}^{2}\right)^{-1} \Omega_{h_{\mathcal{Y}}}, 4096 L_{y x}\left(\mu R_{k}\right)^{-1} \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}, \\
& \left.\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R_{k}^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{Y}}}}+2 \sqrt{\log (1 / \varsigma) \Omega_{h_{\mathcal{Y}}}}\right)^{2}\right\}\right] .
\end{aligned}
$$

- Run Algorithm 1S for $T_{k}$ iterations with starting primal variable $x_{k}$, radius $R_{k}$, constraint set $\mathcal{X}_{k}=\left\{x \in \mathcal{X}:\left\|x-x_{k}\right\| \leq R_{k} / 2\right\}$ and other input parameters set as in Theorem 2, with output ( $\bar{x}_{k}^{T_{k}}, \bar{y}_{k}^{T_{k}}$ ).
- $R_{k+1}:=R_{k} / \sqrt{2}, x_{k+1}:=\bar{x}_{k}^{T_{k}}$.


## Algorithm 2: Stochastic Restart Scheme

- Input: Diameter estimate $U \geq D_{\mathcal{X}}$, starting primal variable $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon>0$, error probability $\nu \in(0,1]$,
$K=\left\lceil\max \left\{0, \log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\}\right\rceil+1, \varsigma=\nu /(6 K)$
- Init: $R_{1}=2 U, x_{1}=x_{0}, y_{0} \in \mathcal{Y}^{o}$
- For $k=1, \ldots, K$
- $T_{k}:=\left\lceil\max \left\{3,64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}, 2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right.\right.$,

$$
\begin{aligned}
& 512^{2}\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}\left(\mu R_{k}\right)^{-2}\left(4 \sqrt{(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{X}}}^{\prime}}+2 \sqrt{\log (1 / \varsigma)}\right)^{2}, \\
& 128^{2} L_{y y}\left(\mu R_{k}^{2}\right)^{-1} \Omega_{h_{\mathcal{Y}}}, 4096 L_{y x}\left(\mu R_{k}\right)^{-1} \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}, \\
& \left.\left.512^{2} \sigma_{y, \Phi}^{2}\left(\mu R_{k}^{2}\right)^{-2}\left(8 \sqrt{2(1+\log (1 / \varsigma)) \Omega_{h_{\mathcal{Y}}}}+2 \sqrt{\log (1 / \varsigma) \Omega_{h_{\mathcal{Y}}}}\right)^{2}\right\}\right]
\end{aligned}
$$

- Run Algorithm 1S for $T_{k}$ iterations with starting primal variable $x_{k}$, radius $R_{k}$, constraint set $\mathcal{X}_{k}=\left\{x \in \mathcal{X}:\left\|x-x_{k}\right\| \leq R_{k} / 2\right\}$ and other input parameters set as in Theorem 2, with output ( $\bar{x}_{k}^{T_{k}}, \bar{y}_{k}^{T_{k}}$ ).
- $R_{k+1}:=R_{k} / \sqrt{2}, x_{k+1}:=\bar{x}_{k}^{T_{k}}$.
- Output: $\left(x_{K+1}, y_{K+1}\right)$

$$
\begin{aligned}
& G\left(x_{k}^{\text {out }}, y_{k}^{\text {out }}\right) \leq \frac{\mu R_{k}^{2}}{16}=\frac{\mu R_{k-1}^{2}}{32} \text { w.p. } \geq(1-6 \varsigma)^{k} \\
& \text { - } x_{k}^{\text {out }} \\
& R_{k}=R_{k-1} / \sqrt{2} \\
& R_{k-1} \\
& \text { - } x_{k-1}^{\text {out }} \\
& G\left(x_{k-1}^{\text {out }}, y_{k-1}^{\text {out }}\right) \leq \frac{\mu R_{k-1}^{2}}{16} \\
& \text { w.p. } \geq(1-6 \varsigma)^{k-1}
\end{aligned}
$$

## Oracle Complexity

## Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon \in\left(0, \mu U^{2} / 4\right]$ and error probability $\nu \in(0,1]$, it holds that $G\left(x_{K+1}, y_{K+1}\right) \leq \epsilon$ w.p. at least $1-\nu$.

## Oracle Complexity

## Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions $1(B)$, 2(A) and 2(C) hold. In Algorithm 2, for any $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon \in\left(0, \mu U^{2} / 4\right]$ and error probability $\nu \in(0,1]$, it holds that $G\left(x_{K+1}, y_{K+1}\right) \leq \epsilon w . p$. at least $1-\nu$.
Furthermore, the number of oracle calls

$$
\begin{aligned}
& C_{\epsilon}^{\text {st }} \leq\left(3+64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}+2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right)\left(\left[\log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right]+1\right) \\
& +256^{2}\left(L_{y x} / \sqrt{\mu \epsilon}\right) \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{y}}}+64^{2}\left(L_{y y} / \epsilon\right) \Omega_{h_{\mathcal{Y}}} \\
& +1024^{2}\left\{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2} /(\epsilon \mu)\right\}\left\{\left(4 \Omega_{h_{\mathcal{X}}}^{\prime}+1\right) \log \left(6\left[\log _{2}\left(\mu U^{2}(4 \epsilon)^{-1}\right)+2\right] / \nu\right)+4 \Omega_{h_{\mathcal{X}}}^{\prime}\right\} \\
& +1024^{2}\left(\sigma_{y, \Phi}^{2} / \epsilon^{2}\right)\left\{1+\log \left(6\left[\log _{2}\left(\mu U^{2}(4 \epsilon)^{-1}\right)+2\right] / \nu\right)\right\} \Omega_{h_{\mathcal{Y}}}
\end{aligned}
$$

## Oracle Complexity

## Theorem 3

Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions $1(B)$, 2(A) and 2(C) hold. In Algorithm 2, for any $x_{0} \in \mathcal{X}^{o}$, desired accuracy $\epsilon \in\left(0, \mu U^{2} / 4\right]$ and error probability $\nu \in(0,1]$, it holds that $G\left(x_{K+1}, y_{K+1}\right) \leq \epsilon w . p$. at least $1-\nu$.
Furthermore, the number of oracle calls

$$
\begin{aligned}
& C_{\epsilon}^{\mathrm{st}} \leq\left(3+64 \sqrt{(L / \mu) \Omega_{h_{\mathcal{X}}}^{\prime}}+2048\left(L_{x x} / \mu\right) \Omega_{h_{\mathcal{X}}}^{\prime}\right)\left(\left[\log _{2}\left(\mu U^{2} /(4 \epsilon)\right)\right\rceil+1\right) \\
& +256^{2}\left(L_{y x} / \sqrt{\mu \epsilon}\right) \sqrt{\Omega_{h_{\mathcal{X}}}^{\prime} \Omega_{h_{\mathcal{Y}}}}+64^{2}\left(L_{y y} / \epsilon\right) \Omega_{h_{\mathcal{Y}}} \\
& +1024^{2}\left\{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2} /(\epsilon \mu)\right\}\left\{\left(4 \Omega_{h_{\mathcal{X}}}^{\prime}+1\right) \log \left(6\left[\log _{2}\left(\mu U^{2}(4 \epsilon)^{-1}\right)+2\right] / \nu\right)+4 \Omega_{h_{\mathcal{X}}}^{\prime}\right\} \\
& +1024^{2}\left(\sigma_{y, \Phi}^{2} / \epsilon^{2}\right)\left\{1+\log \left(6\left[\log _{2}\left(\mu U^{2}(4 \epsilon)^{-1}\right)+2\right] / \nu\right)\right\} \Omega_{h_{\mathcal{Y}}} \\
& =O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\epsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \epsilon}}+\frac{L_{y y}}{\epsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \epsilon}+\frac{\sigma_{y, \Phi}^{2}}{\epsilon^{2}}\right) \log \left(\frac{\log (1 / \epsilon)}{\nu}\right)\right) .
\end{aligned}
$$

## Complexity of convergence in expectation

## Complexity of convergence in expectation

$\triangleright$ Assume that dom $g$ and dom $J$ are closed.

## Complexity of convergence in expectation

$\triangleright$ Assume that dom $g$ and dom $J$ are closed.
$\triangleright$ By compactness of $\mathcal{X}$ and $\mathcal{Y}$, invoke Berge's maximum theorem to conclude that $\bar{S}$ and $\underline{S}$ are continuous on $\mathcal{X} \cap \operatorname{dom} g$ and $\mathcal{Y} \cap \operatorname{dom} J$, respectively, so there exists $\Gamma<+\infty$ such that

## Complexity of convergence in expectation

$\triangleright$ Assume that dom $g$ and dom $J$ are closed.
$\triangleright$ By compactness of $\mathcal{X}$ and $\mathcal{Y}$, invoke Berge's maximum theorem to conclude that $\bar{S}$ and $\underline{S}$ are continuous on $\mathcal{X} \cap \operatorname{dom} g$ and $\mathcal{Y} \cap \operatorname{dom} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$
\begin{aligned}
& \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \sup _{y \in \operatorname{dom} J \cap \mathcal{Y}} G(x, y) \\
= & \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \bar{S}(x)-\inf _{y \in \operatorname{dom} J \cap \mathcal{Y}} \underline{S}(y) \leq \Gamma
\end{aligned}
$$

## Complexity of convergence in expectation

$\triangleright$ Assume that dom $g$ and dom $J$ are closed.
$\triangleright$ By compactness of $\mathcal{X}$ and $\mathcal{Y}$, invoke Berge's maximum theorem to conclude that $\bar{S}$ and $\underline{S}$ are continuous on $\mathcal{X} \cap \operatorname{dom} g$ and $\mathcal{Y} \cap \operatorname{dom} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$
\begin{aligned}
& \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \sup _{y \in \operatorname{dom} J \cap \mathcal{Y}} G(x, y) \\
= & \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \bar{S}(x)-\inf _{y \in \operatorname{dom} J \cap \mathcal{Y}} \underline{S}(y) \leq \Gamma .
\end{aligned}
$$

Theorem 4
Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_{0} \in \mathcal{X}^{\circ}$ and $\varepsilon \in\left(0, \mu U^{2} / 2\right]$, choose $\nu=\min \{\varepsilon /(2 \Gamma), 1\}$ and $K=\left\lceil\log _{2}\left(\mu U^{2} /(2 \varepsilon)\right)\right\rceil+1$. Then it holds that $\mathbb{E}\left[G\left(x_{K+1}, y_{K+1}\right)\right] \leq \varepsilon$.

## Complexity of convergence in expectation

$\triangleright$ Assume that dom $g$ and dom $J$ are closed.
$\triangleright$ By compactness of $\mathcal{X}$ and $\mathcal{Y}$, invoke Berge's maximum theorem to conclude that $\bar{S}$ and $\underline{S}$ are continuous on $\mathcal{X} \cap \operatorname{dom} g$ and $\mathcal{Y} \cap \operatorname{dom} J$, respectively, so there exists $\Gamma<+\infty$ such that

$$
\begin{aligned}
& \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \sup _{y \in \operatorname{dom} J \cap \mathcal{Y}} G(x, y) \\
= & \sup _{x \in \operatorname{dom} g \cap \mathcal{X}} \bar{S}(x)-\inf _{y \in \operatorname{dom} J \cap \mathcal{Y}} \underline{S}(y) \leq \Gamma .
\end{aligned}
$$

## Theorem 4

Assume $\mathcal{B}(0,1) \subseteq \operatorname{dom} h_{\mathcal{X}}$ and let Assumptions 1(B), 2(A) and 2(C) hold. In Algorithm 2, for any $x_{0} \in \mathcal{X}^{\circ}$ and $\varepsilon \in\left(0, \mu U^{2} / 2\right]$, choose $\nu=\min \{\varepsilon /(2 \Gamma), 1\}$ and $K=\left\lceil\log _{2}\left(\mu U^{2} /(2 \varepsilon)\right)\right\rceil+1$. Then it holds that $\mathbb{E}\left[G\left(x_{K+1}, y_{K+1}\right)\right] \leq \varepsilon$. Furthermore, the oracle complexity is

$$
O\left(\left(\sqrt{\frac{L}{\mu}}+\frac{L_{x x}}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)+\frac{L_{y x}}{\sqrt{\mu \varepsilon}}+\frac{L_{y y}}{\varepsilon}+\left(\frac{\left(\sigma_{x, f}+\sigma_{x, \Phi}\right)^{2}}{\mu \varepsilon}+\frac{\sigma_{y, \Phi}^{2}}{\varepsilon^{2}}\right) \log \left(\frac{1}{\varepsilon}\right)\right)
$$

## (1) Introduction

Problem Setup
Main Contribution
(2) Preliminaries
(3) Algorithm for $\mu=0$
(4) Restart Scheme for $\mu>0$

Subroutine
Stochastic Restart Scheme
(5) Future Directions

## Future Directions

## Future Directions

$\triangleright$ Lower bounds on the complexities of $L_{x x}$ and $L_{y y}$.

## Future Directions

$\triangleright$ Lower bounds on the complexities of $L_{x x}$ and $L_{y y}$.
$\triangleright$ In the strongly convex case $(\mu>0)$ :

## Future Directions

$\triangleright$ Lower bounds on the complexities of $L_{x x}$ and $L_{y y}$.
$\triangleright$ In the strongly convex case $(\mu>0)$ :

- Relax the sub-Gaussian assumption on the gradient noises.


## Future Directions

$\triangleright$ Lower bounds on the complexities of $L_{x x}$ and $L_{y y}$.
$\triangleright$ In the strongly convex case $(\mu>0)$ :

- Relax the sub-Gaussian assumption on the gradient noises.
- Remove the additional $\log (1 / \epsilon)$ factors in the oracle complexities of $\sigma_{x, f}, \sigma_{x, \Phi}$ and $\sigma_{y, \Phi}$, in obtaining the $\epsilon$-expected duality gap.


## Thank you!

