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Problem Statement

Consider the following convex composite optimization problem:

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P)

B f : Rm → R ∪ {+∞} is a θ-logarithmically-homogeneous self-concordant
barrier (θ-LHSCB) for some regular cone K ⊆ Rm,

B A : Rn → Rm is a linear operator (not necessarily invertible),

B h : Rn → R ∪ {+∞} is a proper, closed and convex (but possibly
non-smooth) function, and domh is nonempty convex and compact.

B We recover the traditional problem setting for Frank-Wolfe when h is the
indicator function h := ιX of a compact convex set X .

B Assume domF 6= ∅, so at least one minimizer x∗ ∈ domF exists, and
define F ∗ := F (x∗).
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Review of the (traditional) Frank-Wolfe (FW) Method

minx∈X f(x) (tP)

B X is a nonempty convex and compact set.

B f is L-smooth w.r.t. ‖ · ‖ on X , which then implies

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+ (L/2)‖x′ − x‖2, ∀x′, x ∈ X . (LSm)

B At iteration k of FW, xk ∈ X and the method does the following:
• Compute

vk ∈ arg minx∈X 〈∇f(xk), x〉

by solving a linear-optimization sub-problem.

• Determine step-length αk ∈ [0, 1].

• Update xk+1 = (1− αk)xk + αkvk.
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Review of the (traditional) Frank-Wolfe (FW) Method

minx∈X f(x) (tP)

B The step-size αk is typically chosen in one of two ways:
• Fixed step-size, such as the standard step-size αk = 2/(k + 2), or
• Adaptive step-size, such as αk = min{Gk/Ck, 1}, where

Gk := 〈∇f(xk), xk − vk〉 and Ck := L‖vk − xk‖2.

B FW is very useful in “sparse” or otherwise “structured” optimization
where X has special structure, e.g., probability simplex or spectrahedron.

B FW has been generalized to the composite setting:
minx∈Rn [F (x) := f(Ax) + h(x)] (P)

in e.g., Bach (2015) and Nesterov (2018), where the subproblem becomes:

vk ∈ arg minx∈Rn〈∇f(Axk),Ax〉+ h(x).

However, note that all of these works assume that f is L-smooth.
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Two Motivating Papers

B Khachiyan, L.G.: Rounding of polytopes in the real number model of
computation. Mathematics of Operations Research 21(2), 307–320 (1996)
(Elegant analysis of the FW method with exact line-search for D-optimal
design)

B Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.:
Self-concordant analysis of Frank-Wolfe algorithms. Proc. ICML , pp.
2814–2824 (2020)

B Dvurechensky et al. (2020) proposed and analyzed a FW method for the whole
class of self-concordant functions. However, when specialized to D-optimal
design, their complexity bound is very different from Khachiyan’s result, and
lacks the affine-invariance property.

B We identified the logarithmic-homogeneity as the key element in Khachiyan’s
analysis, and proposed a (generalized) FW method with adaptive step-size for
the much broader problem class (P).

B Our complexity bound essentially recovers Khachiyan’s result, and is
affine-invariant (along with other desirable properties).
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θ-LHSCB (logarithmically-homogeneous self-concordant barrier)

B Let K $ Rm be a regular cone, i.e., K is closed, convex, pointed and has
nonempty interior.

B f is a θ-LHSCB on K with complexity parameter θ ≥ 1 if f is three-times
differentiable and strictly convex on intK, and satisfies

1
∣∣D3f(u)[w,w,w]

∣∣ ≤ 2(〈H(u)w,w〉)3/2 ∀u ∈ intK, ∀w ∈ Rm,
2 f(uk)→∞ for any {uk}k≥1 ⊆ intK such that uk → u ∈ bdK,
3 f(tu) = f(u)− θ ln(t) ∀u ∈ intK, ∀ t > 0 ,

where H(u) denotes the Hessian of f at u ∈ intK.

B Two prototypical examples:
• f(U) = − ln det(U) for U ∈ K := Sk

+ and θ = k,
• f(u) = −

∑m

j=1 wj ln(uj) for u ∈ K := Rm
+ and θ =

∑m

j=1 wj where
w1, . . . , wn ≥ 1.
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A Motivating Example: D-optimal Design
maxp h(p) , ln det

(∑m
i=1piaia

>
i

)
s. t.

∑m
i=1 pi = 1, pi ≥ 0, ∀ i ∈ [m]. (D-OPT)

B Problem data: {ai}m
i=1 ⊆ Rn.

B Arises in many places, including optimal experimental design, and as the dual
problem of the minimum volume enclosing ellipsoid (MVEE) problem.

B Khachiyan (1996) proposed a “barycentric coordinate ascent” method with
exact line-search, which is actually FW with exact line-search. Method works
remarkably well both in theory and practice: it computes an ε-optimal solution
of (D-OPT) in (essentially) O(n2/ε) iterations.

B The theoretical success of this method has been a mysterious outlier for more
than 20 years, since (D-OPT) does not satisfy the usual L-smooth curvature
condition in (LSm). What problem structure actually drives the complexity
bound? And might such structure exist anywhere else?

B We resolve this mystery and generalize his method to the much broader class of
problems in (P), even while relaxing the exact line-search requirement.
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Another Example: Poisson Image Deblurring with TV
Regularization

B Let an m× n matrix X denote the true representation of an image, such
that 0 ≤ Xij ≤M denotes the pixel level at location (i, j).

B Let A : Rm×n → Rm×n denote the 2D discrete convolutional (linear)
operator, which is assumed to be known.

B The observed image Y is obtained by first passing X through A, and then
is assumed to be subject to additive independent (entry-wise) Poisson
noise.

B For convenience, we also represent A in its matrix form A ∈ RN×N , where
N := mn, and vectorize Y and X into y ∈ RN and x ∈ RN , respectively.
Notation: we write x = vec(X) and X = mat(x), etc.
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Poisson Image Deblurring with TV Regularization,
continued

B We seek to recover X from Y (equivalently x from y) using
maximum-likelihood estimation on the TV-regularized problem:

minx∈RN F̄ (x) := −
∑N

l=1 yl ln(a>l x) + (
∑N

l=1 al)>x+ λTV(x)
s. t. 0 ≤ x ≤Me , (Deblur)

B (Deblur) has a (standard) total-variation (TV) regularization term to
recover a smooth image with sharp edges. The TV term is given by

TV(x) :=
∑m

i=1
∑n−1

j=1 |[mat(x)]i,j − [mat(x)]i,j+1|

+
∑m−1

i=1
∑n

j=1 |[mat(x)]i,j − [mat(x)]i+1,j | .
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Some Other Applications

B Positron emission tomography (PET)

B Optimal expected log investment (Cover (1984))

B Computation of the analytic center of a polytope
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Our Method: (generalized) Frank-Wolfe (gFW-LHSCB)

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P)

I Initialize: x0 ∈ domF , k := 0
I Repeat (until some convergence criterion is met)

vk ∈ arg minx∈Rn〈∇f(Axk),Ax〉+ h(x) (Solve Lin. subproblem)

Gk := 〈∇f(Axk),A(xk − vk)〉+ h(xk)− h(vk) (FW Gap)

Dk := Dk := ‖A(vk − xk)‖Axk (Local Distance)

αk := min
{

Gk

Dk(Gk +Dk) , 1
}

(Stepsize)

xk+1 := xk + αk(vk − xk) (Update)
k := k + 1
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Remarks on gFW-LHSCB

B When h is the indicator function h = ιX , then gFW-LHSCB specializes
exactly to the algorithm of Dvurechensky et al. (2020).

B For most applications (including all of the applications mentioned
previously), Dk in (Local Distance) can be computed in O(n) time.

B The step-size rule in (Stepsize) is derived from the “curvature property”
of a (standard) self-concordant function:

f(xk + α(vk − xk)) ≤ f(xk)− αGk + ω(αDk), (Curvature)

where ω(t) := −t− ln(1− t) for t < 1.

B Neither the algorithm nor (Curvature) use the special properties of the
barrier or the logarithmic homogeneity of f . However, these properties
drive our complexity analysis.
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Computational Guarantees

Define δk := F (xk)− F ∗ for k ≥ 0 (hence δ0 is the initial optimality gap)

Define Rh := maxx,y∈dom h |h(x)− h(y)| (the variation of h on its domain)

Theorem:

B (Iteration complexity for ε-optimality gap) Let Kε denote the number of
iterations required by gFW-LHSCB to obtain δk ≤ ε. Then:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2 max
{

1
ε
− 1
δ0

, 0
}⌉

.

B (Iteration complexity for ε-FW gap) Let FWGAPε denote the number of
iterations required by gFW-LHSCB to obtain Gk ≤ ε. Then:

FWGAPε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

24(θ +Rh)2

ε

⌉
.
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Remarks on the Computational Guarantees

B Our computational guarantees only depend on three (natural) quantities:
• the initial optimality gap δ0,
• the complexity parameter θ of the barrier f ,
• the variation of h on its domain domh (= 0 if h = ιX ).

B Comparison with Khachiyan’s results for (D-OPT):
• In (D-OPT), we have θ = n, Rh = 0, and if x0 = (1/m)e, then
δ0 ≤ n ln(m/n).

• Using the adaptive step-size, our complexity bound specializes to
O
(
n ln(m/n)(lnn+ ln ln(m/n)) + n2/ε

)
. (Ours)

• Using exact line-search, Khachiyan’s bound is
O
(
n(lnn+ ln ln(m/n)) + n2/ε

)
. (Kha)

• Observe that (Ours) has the exact same dependence on ε as (Kha), namely
O(n2/ε), but the “fixed” term is slightly inferior to (Kha) by the factor
O(ln(m/n)).
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Computational Experiments on Poisson Image
Deblurring with TV Regularization (Deblur)

minx∈RN F̄ (x) := −
∑N

l=1 yl ln(a>l x)︸ ︷︷ ︸
=f(Ax)

+ 〈
∑N

l=1 al, x〉+ λTV(x)︸ ︷︷ ︸
=h(x)

s. t. 0 ≤ x ≤Me , (Deblur)

B Very few principled first-order methods have been proposed to
solve (Deblur), because:
• f : u 7→ −

∑N

l=1 yl ln(ul) is neither Lipschitz nor L-smooth on the set
{u ∈ RN : u = Ax, 0 ≤ x ≤Me}, and

• TV(·) does not have an efficiently computable proximal operator.

B However, TV(·) is a polyhedral function, and the linear-optimization
sub-problem

vk ∈ arg min0≤x≤Me〈∇f(Axk),Ax〉+ 〈
∑N

l=1 al, x〉+ λTV(x)

can be formulated as a relatively simple LP and solved easily using a
standard LP solver such as Gurobi.
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Implementation Details/Issues

B We evaluate the numerical performance of our FW method gFW-LHSCB
(with adaptive stepsize) which we call FW-Adapt.

B It turns out that an exact line-search step-size for gFW-LHSCB can be
computed for this particular problem, which we call FW-Exact.

B We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image
of size 100× 100 (hence N = 10, 000).

B We chose the starting point x0 = vec(Y ), and we set λ = 0.01.

B We used CVXPY to (approximately) compute the optimal objective value
F̄ ∗ of (Deblur) in order to compute optimality gaps.
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computed for this particular problem, which we call FW-Exact.

B We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image
of size 100× 100 (hence N = 10, 000).

B We chose the starting point x0 = vec(Y ), and we set λ = 0.01.

B We used CVXPY to (approximately) compute the optimal objective value
F̄ ∗ of (Deblur) in order to compute optimality gaps.
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Results: Recovered Images

(a) True image X (b) Noisy image Y (c) FW-Adapt (d) FW-Exact

Figure 1:
True, noisy and recovered Shepp-Logan phantom image.
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Results: Optimality Gaps versus Time and Iterations

(a) Optimality gap versus time (in seconds) (b) Optimality gap versus iterations

Figure 2:
Comparison of empirical optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E)
for image recovery of the Shepp-Logan phantom image.

Renbo Zhao (MIT ORC) FW for Convex Composite Optimization Involving LHSCB 18 / 20



Thank you!
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Comparison with Dvurechensky et al. (2020)

B To find an ε-optimal solution, the complexity bound in Dvurechensky et al.
(2020) reads:

O
(√

L(x0)DX ,‖·‖2 ln
(
δ0/
(√

L(x0)DX ,‖·‖2

))
+ L(x0)D2

X ,‖·‖2/ε
)
, (Dvu)

where S(x0) := {x ∈ domF ∩ X : F (x) ≤ F (x0)} denotes the initial level-set
and

L(x0) := max
x∈S(x0)

‖∇2F̄ (x)‖2 < +∞ , and DX ,‖·‖2 := max
x,y∈X

‖x− y‖2 .

B Specialized to the traditional setting, our complexity bound reads:

O
(
(δ0 + θ) ln(δ0) + (θ)2/ε

)
. (Ours)

B Our bound (Ours) has the following merits:
• Affine-invariance
• Norm-invariance
• Interpretability
• Ease of parameter estimation
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