An Inexact Primal Dual Smoothing Framework for Large-Scale Non-Bilinear Saddle Point Problems

L. T. K. Hien ${ }^{1}$, Renbo Zhao ${ }^{2}$, William B. Haskell ${ }^{3}$
${ }^{1}$ Department of Mathematics and OR, University of Mons, Belgium
${ }^{2}$ Operations Research Center, MIT, MA
${ }^{3}$ Krannert School of Management, Purdue University, IN

INFORMS Annual Meeting
Seattle, WA, Oct. 2019

Problem Setup

$\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\}$
(SPP)

Problem Setup

$\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\}$
$\triangleright\left(\mathbb{E}_{1},\|\cdot\|_{\mathbb{E}_{1}}\right)$ and $\left(\mathbb{E}_{2},\|\cdot\| \|_{\mathbb{E}_{2}}\right)$ are finite-dimensional real normed spaces, with dual spaces $\left(\mathbb{E}_{1}^{*},\|\cdot\|_{\mathbb{E}_{1}^{*}}\right)$ and $\left(\mathbb{E}_{2}^{*},\|\cdot\| \|_{\mathbb{E}_{2}}\right)$.

Problem Setup

$\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\}$
$\triangleright\left(\mathbb{E}_{1},\|\cdot\|_{\mathbb{E}_{1}}\right)$ and $\left(\mathbb{E}_{2},\|\cdot\| \|_{\mathbb{E}_{2}}\right)$ are finite-dimensional real normed spaces, with dual spaces $\left(\mathbb{E}_{1}^{*},\|\cdot\|_{\mathbb{E}_{1}^{*}}\right)$ and $\left(\mathbb{E}_{2}^{*},\|\cdot\|_{\mathbb{E}_{2}^{*}}\right)$.
$\triangleright \mathcal{X} \subseteq \mathbb{E}_{1}$ and $\Lambda \subseteq \mathbb{E}_{2}$ are nonempty, convex and compact.

Problem Setup

$\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\}$
$\triangleright\left(\mathbb{E}_{1},\|\cdot\|_{\mathbb{E}_{1}}\right)$ and $\left(\mathbb{E}_{2},\|\cdot\|_{\mathbb{E}_{2}}\right)$ are finite-dimensional real normed spaces, with dual spaces $\left(\mathbb{E}_{1}^{*},\|\cdot\|_{\mathbb{E}_{1}^{*}}\right)$ and $\left(\mathbb{E}_{2}^{*},\|\cdot\| \|_{\mathbb{E}_{2}^{*}}\right)$.
$\triangleright \mathcal{X} \subseteq \mathbb{E}_{1}$ and $\Lambda \subseteq \mathbb{E}_{2}$ are nonempty, convex and compact.
$\triangleright f, g$ and h are convex, closed and proper (CCP) functions.

Problem Setup

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\} \tag{SPP}
\end{equation*}
$$

$\triangleright\left(\mathbb{E}_{1},\|\cdot\|_{\mathbb{E}_{1}}\right)$ and $\left(\mathbb{E}_{2},\|\cdot\|_{\mathbb{E}_{2}}\right)$ are finite-dimensional real normed spaces, with dual spaces $\left(\mathbb{E}_{1}^{*},\|\cdot\|_{\mathbb{E}_{1}^{*}}\right)$ and $\left(\mathbb{E}_{2}^{*},\|\cdot\|_{\mathbb{E}_{2}^{*}}\right)$.
$\triangleright \mathcal{X} \subseteq \mathbb{E}_{1}$ and $\Lambda \subseteq \mathbb{E}_{2}$ are nonempty, convex and compact.
$\triangleright f, g$ and h are convex, closed and proper (CCP) functions.
$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on $\mathcal{X}(\mu>0)$, i.e., $\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}^{2}, \forall x, x^{\prime} \in X$.

Problem Setup

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \Lambda}\{S(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)-h(\lambda)\} \tag{SPP}
\end{equation*}
$$

$\triangleright\left(\mathbb{E}_{1},\|\cdot\|_{\mathbb{E}_{1}}\right)$ and $\left(\mathbb{E}_{2},\|\cdot\|_{\mathbb{E}_{2}}\right)$ are finite-dimensional real normed spaces, with dual spaces $\left(\mathbb{E}_{1}^{*},\|\cdot\|_{\mathbb{E}_{1}^{*}}\right)$ and $\left(\mathbb{E}_{2}^{*},\|\cdot\|_{\mathbb{E}_{2}^{*}}\right)$.
$\triangleright \mathcal{X} \subseteq \mathbb{E}_{1}$ and $\Lambda \subseteq \mathbb{E}_{2}$ are nonempty, convex and compact.
$\triangleright f, g$ and h are convex, closed and proper (CCP) functions.
$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on $\mathcal{X}(\mu>0)$, i.e., $\frac{\mu}{2}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}^{2} \leq f(x)-f\left(x^{\prime}\right)-\left\langle\nabla f\left(x^{\prime}\right), x-x^{\prime}\right\rangle \leq \frac{L}{2}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}^{2}, \forall x, x^{\prime} \in X$.
$\triangleright g$ and h have easily computable proximal operators.

Problem Setup (Cont'd)

$$
\Phi(x, \lambda):=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

For any $i \in[n]$:

Problem Setup (Cont'd)

$$
\Phi(x, \lambda):=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

For any $i \in[n]$:
$\triangleright \Phi_{i}(\cdot, \lambda)$ is convex and $\Phi_{i}(x, \cdot)$ is concave for any $(x, \lambda) \in \mathcal{X} \times \Lambda$.

Problem Setup (Cont'd)

$$
\Phi(x, \lambda):=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

For any $i \in[n]$:
$\triangleright \Phi_{i}(\cdot, \lambda)$ is convex and $\Phi_{i}(x, \cdot)$ is concave for any $(x, \lambda) \in \mathcal{X} \times \Lambda$.
$\triangleright \Phi_{i}$ is $\left(L_{x x}^{i}, L_{x \lambda}^{i}, L_{\lambda \lambda}^{i}\right)$-smooth, i.e., for any $x, x^{\prime} \in \mathcal{X}$ and $\lambda, \lambda^{\prime} \in \Lambda$,

$$
\begin{aligned}
& \left\|\nabla_{x} \Phi_{i}(x, \lambda)-\nabla_{x} \Phi_{i}\left(x^{\prime}, \lambda\right)\right\|_{\mathbb{E}_{1}^{*}} \leq L_{x x}^{i}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}, \\
& \left\|\nabla_{x} \Phi_{i}(x, \lambda)-\nabla_{x} \Phi_{i}\left(x, \lambda^{\prime}\right)\right\|_{\mathbb{E}_{1}^{*}} \leq L_{x \lambda}^{i}\left\|\lambda-\lambda^{\prime}\right\|_{\mathbb{E}_{2}}, \\
& \left\|\nabla_{\lambda} \Phi_{i}(x, \lambda)-\nabla_{\lambda} \Phi_{i}\left(x^{\prime}, \lambda\right)\right\|_{\mathbb{E}_{2}^{*}} \leq L_{x \lambda}^{i}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}, \\
& \left\|\nabla_{\lambda} \Phi_{i}(x, \lambda)-\nabla_{\lambda} \Phi_{i}\left(x, \lambda^{\prime}\right)\right\|_{\mathbb{E}_{2}^{*}} \leq L_{\lambda \lambda}^{i}\left\|\lambda-\lambda^{\prime}\right\|_{\mathbb{E}_{2}} .
\end{aligned}
$$

Problem Setup (Cont'd)

$$
\Phi(x, \lambda):=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

For any $i \in[n]$:
$\triangleright \Phi_{i}(\cdot, \lambda)$ is convex and $\Phi_{i}(x, \cdot)$ is concave for any $(x, \lambda) \in \mathcal{X} \times \Lambda$.
$\triangleright \Phi_{i}$ is $\left(L_{x x}^{i}, L_{x \lambda}^{i}, L_{\lambda \lambda}^{i}\right)$-smooth, i.e., for any $x, x^{\prime} \in \mathcal{X}$ and $\lambda, \lambda^{\prime} \in \Lambda$,

$$
\begin{aligned}
& \left\|\nabla_{x} \Phi_{i}(x, \lambda)-\nabla_{x} \Phi_{i}\left(x^{\prime}, \lambda\right)\right\|_{\mathbb{E}_{1}^{*}} \leq L_{x x}^{i}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}}, \\
& \left\|\nabla_{x} \Phi_{i}(x, \lambda)-\nabla_{x} \Phi_{i}\left(x, \lambda^{\prime}\right)\right\|_{\mathbb{E}_{1}^{*}} \leq L_{x \lambda}^{i}\left\|\lambda-\lambda^{\prime}\right\|_{\mathbb{E}_{2}}, \\
& \left\|\nabla_{\lambda} \Phi_{i}(x, \lambda)-\nabla_{\lambda} \Phi_{i}\left(x^{\prime}, \lambda\right)\right\|_{\mathbb{E}_{2}^{*}} \leq L_{x \lambda}^{i}\left\|x-x^{\prime}\right\|_{\mathbb{E}_{1}} \\
& \left\|\nabla_{\lambda} \Phi_{i}(x, \lambda)-\nabla_{\lambda} \Phi_{i}\left(x, \lambda^{\prime}\right)\right\|_{\mathbb{E}_{2}^{*}} \leq L_{\lambda \lambda}^{i}\left\|\lambda-\lambda^{\prime}\right\|_{\mathbb{E}_{2}} .
\end{aligned}
$$

$\triangleright \Phi$ is $\left(L_{x x}, L_{x \lambda}, L_{\lambda \lambda}\right)$-smooth, where $L_{x x} \leq(1 / n) \sum_{i=1}^{n} L_{x x}^{i}$,

$$
L_{\lambda x} \leq(1 / n) \sum_{i=1}^{n} L_{x \lambda}^{i}, L_{\lambda \lambda} \leq(1 / n) \sum_{i=1}^{n} L_{\lambda \lambda}^{i} .
$$

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } \quad g_{i}(x) \leq 0, \forall i \in[n]
$$

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } \quad g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } \quad g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } \quad g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

\triangleright Any saddle point of (Lag) is an optimal primal-dual pair.

Application I: Constrained Optimization

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } \quad g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

\triangleright Any saddle point of (Lag) is an optimal primal-dual pair.
$\triangleright \mathbb{R}_{+}^{n}$ is unbounded: allowed since different convergence criteria (other than duality gap) is used.

Application II: Maximum Margin Clustering

Application II: Maximum Margin Clustering

\triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$

Application II: Maximum Margin Clustering

\triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$
$\triangleright n$ noisy samples $\left\{\mathcal{S}_{i}\right\}_{i=1}^{n}$ of \mathcal{D} consisting of m objects with kernel matrices $\left\{K_{i}\right\}_{i=1}^{n} \subseteq \mathbb{S}_{+}^{m}$

Application II: Maximum Margin Clustering

\triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$
$\triangleright n$ noisy samples $\left\{\mathcal{S}_{i}\right\}_{i=1}^{n}$ of \mathcal{D} consisting of m objects with kernel matrices $\left\{K_{i}\right\}_{i=1}^{n} \subseteq \mathbb{S}_{+}^{m}$
\triangleright Find a label kernel matrix $M \in \mathbb{S}_{+}^{m}$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_{1} or \mathcal{D}_{2}

Application II: Maximum Margin Clustering

\triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$
$\triangleright n$ noisy samples $\left\{\mathcal{S}_{i}\right\}_{i=1}^{n}$ of \mathcal{D} consisting of m objects with kernel matrices $\left\{K_{i}\right\}_{i=1}^{n} \subseteq \mathbb{S}_{+}^{m}$
\triangleright Find a label kernel matrix $M \in \mathbb{S}_{+}^{m}$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_{1} or \mathcal{D}_{2}

$$
\min _{M \in \mathbb{M}} \max _{\lambda_{i} \in \Lambda, \forall i \in[n]} \frac{1}{n} \sum_{i=1}^{n}\left[-\left\langle\lambda_{i} \lambda_{i}^{T}, K_{i} \circ M+\alpha I\right\rangle+2 \lambda_{i}^{T} e\right],
$$

Application II: Maximum Margin Clustering

\triangleright Set \mathcal{D} of m objects consisting of two unknown disjoint subsets $\mathcal{D}_{1} \cup \mathcal{D}_{2}=\mathcal{D}$
$\triangleright n$ noisy samples $\left\{\mathcal{S}_{i}\right\}_{i=1}^{n}$ of \mathcal{D} consisting of m objects with kernel matrices $\left\{K_{i}\right\}_{i=1}^{n} \subseteq \mathbb{S}_{+}^{m}$
\triangleright Find a label kernel matrix $M \in \mathbb{S}_{+}^{m}$ that assigns $z \in \mathcal{D}$ to \mathcal{D}_{1} or \mathcal{D}_{2}

$$
\min _{M \in \mathbb{M}} \max _{\lambda_{i} \in \Lambda, \forall i \in[n]} \frac{1}{n} \sum_{i=1}^{n}\left[-\left\langle\lambda_{i} \lambda_{i}^{T}, K_{i} \circ M+\alpha I\right\rangle+2 \lambda_{i}^{T} e\right],
$$

where

$$
\begin{aligned}
\mathrm{M} & :=\left\{M \in \mathbb{S}_{+}^{m}: \operatorname{diag}(M)=e,\left|e^{T} M\right| \leq l\right\} \\
\Lambda & :=\left\{\lambda \in \mathbb{R}^{m}: 0 \leq \lambda_{i} \leq C, \forall i \in[m]\right\} \\
l, C & : \text { finite constants }
\end{aligned}
$$

Application III: Distributionally Robust Optimization

Application III: Distributionally Robust Optimization

\triangleright Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^{d}$

Application III: Distributionally Robust Optimization

\triangleright Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^{d}$
\triangleright Random variable ξ with realizations $\Xi:=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$

Application III: Distributionally Robust Optimization

\triangleright Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^{d}$
\triangleright Random variable ξ with realizations $\Xi:=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$
\triangleright Convex and compact distributional uncertainty set \mathcal{P}, each element P is a probability distribution with support Ξ

Application III: Distributionally Robust Optimization

\triangleright Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^{d}$
\triangleright Random variable ξ with realizations $\Xi:=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$
\triangleright Convex and compact distributional uncertainty set \mathcal{P}, each element P is a probability distribution with support Ξ
\triangleright For each $i \in[n], \mu_{i}$-strongly convex loss function $f\left(\cdot, \xi_{i}\right)$

Application III: Distributionally Robust Optimization

\triangleright Convex and compact decision set $\mathcal{X} \subseteq \mathbb{R}^{d}$
\triangleright Random variable ξ with realizations $\Xi:=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$
\triangleright Convex and compact distributional uncertainty set \mathcal{P}, each element P is a probability distribution with support Ξ
\triangleright For each $i \in[n], \mu_{i}$-strongly convex loss function $f\left(\cdot, \xi_{i}\right)$

$$
\min _{x \in \mathcal{X}} \max _{P \in \mathcal{P}} \sum_{i=1}^{n} p_{i} f\left(x, \xi_{i}\right)
$$

Background (SPP)

Background (SPP)

\triangleright Sion's minimax theorem ensures (SPP) has at least one saddle point $\left(x^{*}, \lambda^{*}\right) \in X \times \Lambda$, i.e.,

$$
S\left(x^{*}, \lambda\right) \leq S\left(x^{*}, \lambda^{*}\right) \leq S\left(x, \lambda^{*}\right), \quad \forall(x, \lambda) \in X \times \Lambda
$$

Background (SPP)

\triangleright Sion's minimax theorem ensures (SPP) has at least one saddle point $\left(x^{*}, \lambda^{*}\right) \in X \times \Lambda$, i.e.,

$$
S\left(x^{*}, \lambda\right) \leq S\left(x^{*}, \lambda^{*}\right) \leq S\left(x, \lambda^{*}\right), \quad \forall(x, \lambda) \in X \times \Lambda .
$$

\triangleright For any $(x, \lambda) \in X \times \Lambda$, define

$$
\begin{aligned}
& \widehat{\psi}^{\mathrm{P}}(x)=\max _{\lambda \in \Lambda} \Phi(x, \lambda)-H(\lambda) \\
& \psi^{\mathrm{P}}(x):=\max _{\lambda \in \Lambda} S(x, \lambda)=f(x)+g(x)+\widehat{\psi}^{\mathrm{P}}(x) \quad \text { (Primal func.) } \\
& \widehat{\psi}^{\mathrm{D}}(\lambda)=\min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda) \\
& \psi^{\mathrm{D}}(\lambda)=\min _{x \in \mathcal{X}} S(x, \lambda)=\widehat{\psi}^{\mathrm{D}}(\lambda)-h(\lambda) . \\
& \Delta(x, \lambda)=\psi^{\mathrm{P}}(x)-\psi^{\mathrm{D}}(\lambda) . \\
& \text { (Dual func.) } \\
& \text { (Duality gap) }
\end{aligned}
$$

Background (SPP)

\triangleright Sion's minimax theorem ensures (SPP) has at least one saddle point $\left(x^{*}, \lambda^{*}\right) \in X \times \Lambda$, i.e.,

$$
S\left(x^{*}, \lambda\right) \leq S\left(x^{*}, \lambda^{*}\right) \leq S\left(x, \lambda^{*}\right), \quad \forall(x, \lambda) \in X \times \Lambda .
$$

\triangleright For any $(x, \lambda) \in X \times \Lambda$, define

$$
\begin{aligned}
& \widehat{\psi}^{\mathrm{P}}(x):=\max _{\lambda \in \Lambda} \Phi(x, \lambda)-H(\lambda) \\
& \psi^{\mathrm{P}}(x):=\max _{\lambda \in \Lambda} S(x, \lambda)=f(x)+g(x)+\widehat{\psi}^{\mathrm{P}}(x) \quad \text { (Primal func.) } \\
& \widehat{\psi}^{\mathrm{D}}(\lambda):=\min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda) \\
& \psi^{\mathrm{D}}(\lambda)=\min _{x \in \mathcal{X}} S(x, \lambda)=\widehat{\psi}^{\mathrm{D}}(\lambda)-h(\lambda) . \\
& \Delta(x, \lambda)=\psi^{\mathrm{P}}(x)-\psi^{\mathrm{D}}(\lambda) . \\
& \text { (Dual func.) }
\end{aligned}
$$

\triangleright The saddle point $\left(x^{*}, \lambda^{*}\right)$ exists $\Rightarrow \psi^{\mathrm{P}}\left(x^{*}\right)=\Phi\left(x^{*}, \lambda^{*}\right)=\psi^{\mathrm{D}}\left(\lambda^{*}\right)$.

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

$$
\Uparrow
$$

There exists a Legendre function $\omega: \mathbb{E}_{2} \rightarrow \overline{\mathbb{R}}$ that is 1-s.c. and continuous on Λ, such that for any $\xi \in \mathbb{E}_{2}^{*}$ and $\tau>0$,

$$
\begin{equation*}
\min _{\lambda \in \Lambda} h(\lambda)+\langle\xi, \lambda\rangle+\tau^{-1} \omega(\lambda) \tag{BPP}
\end{equation*}
$$

has easily computable solution.

Background (Bregman Proximal Projection)

The (non-smooth) function h have easily computable proximal operators.

$$
\Uparrow
$$

There exists a Legendre function $\omega: \mathbb{E}_{2} \rightarrow \overline{\mathbb{R}}$ that is 1 -s.c. and continuous on Λ, such that for any $\xi \in \mathbb{E}_{2}^{*}$ and $\tau>0$,

$$
\begin{equation*}
\min _{\lambda \in \Lambda} h(\lambda)+\langle\xi, \lambda\rangle+\tau^{-1} \omega(\lambda) \tag{BPP}
\end{equation*}
$$

has easily computable solution.

The same applies to the (non-smooth) function g.

Background (Smoothing)

For any $(x, \lambda) \in X \times \Lambda$, define

$$
\begin{array}{rlr}
S_{\rho}(x, \lambda) & :=S(x, \lambda)-\rho \omega(\lambda) & \text { (Regularized saddle func.) } \\
\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} \Phi(x, \lambda)-h(\lambda)-\rho \omega(\lambda) \\
\psi_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} S_{\rho}(x, \lambda) & \\
& =f(x)+g(x)+\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & \text { (Smoothed primal func.) } \\
\Delta_{\rho}(x, \lambda) & :=\psi_{\rho}^{\mathrm{P}}(x)-\psi^{\mathrm{D}}(\lambda) \quad \text { (Smoothed duality gap) }
\end{array}
$$

Background (Smoothing)

For any $(x, \lambda) \in X \times \Lambda$, define

$$
\begin{array}{rlr}
S_{\rho}(x, \lambda) & :=S(x, \lambda)-\rho \omega(\lambda) & \text { (Regularized saddle func.) } \\
\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} \Phi(x, \lambda)-h(\lambda)-\rho \omega(\lambda) \\
\psi_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} S_{\rho}(x, \lambda) & \\
& =f(x)+g(x)+\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & \text { (Smoothed primal func.) } \\
\Delta_{\rho}(x, \lambda) & :=\psi_{\rho}^{\mathrm{P}}(x)-\psi^{\mathrm{D}}(\lambda) \quad \text { (Smoothed duality gap) }
\end{array}
$$

Recall $\widehat{\psi}^{\mathrm{D}}(\lambda):=\min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda)$ and f is μ-s.c. on \mathcal{X}. Define $x^{*}(\lambda):=\arg \min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda)$.

Background (Smoothing)

For any $(x, \lambda) \in X \times \Lambda$, define

$$
\begin{array}{rlr}
S_{\rho}(x, \lambda) & :=S(x, \lambda)-\rho \omega(\lambda) & \text { (Regularized saddle func.) } \\
\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} \Phi(x, \lambda)-h(\lambda)-\rho \omega(\lambda) \\
\psi_{\rho}^{\mathrm{P}}(x) & :=\max _{\lambda \in \Lambda} S_{\rho}(x, \lambda) & \\
& =f(x)+g(x)+\widehat{\psi}_{\rho}^{\mathrm{P}}(x) & \text { (Smoothed primal func.) } \\
\Delta_{\rho}(x, \lambda) & :=\psi_{\rho}^{\mathrm{P}}(x)-\psi^{\mathrm{D}}(\lambda) \quad \text { (Smoothed duality gap) }
\end{array}
$$

Recall $\widehat{\psi}^{\mathrm{D}}(\lambda):=\min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda)$ and f is μ-s.c. on \mathcal{X}.
Define $x^{*}(\lambda):=\arg \min _{x \in \mathcal{X}} f(x)+g(x)+\Phi(x, \lambda)$.
Lemma 1 (Smoothness of $\widehat{\psi}^{\mathrm{D}}$)
The function $\widehat{\psi}^{\mathrm{D}}$ is differentiable on \mathbb{E}_{2} and $\nabla \widehat{\psi}^{\mathrm{D}}(\lambda)=\nabla_{\lambda} \Phi\left(x^{*}(\lambda), \lambda\right)$, for any $\lambda \in \mathbb{E}_{2}$. In addition, $\nabla \widehat{\psi}^{\mathrm{D}}$ is L_{D}-Lipschitz on \mathbb{E}_{2}, where

$$
L_{\mathrm{D}}:=L_{\lambda \lambda}+2 L_{\lambda x}^{2} / \mu
$$

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{N}_{1}, \mathrm{~N}_{2}$: deterministic first-order solvers. Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$

Repeat (until some convergence criterion is met)

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{N}_{1}, \mathrm{~N}_{2}$: deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} . \tag{DS1}
\end{equation*}
$$

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathbf{N}_{1}, \mathrm{~N}_{2}$: deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} . \tag{DS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathbf{N}_{1}, \mathbf{N}_{2}$: deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} . \tag{DS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use N_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \leq \gamma_{k} \tag{PS}
\end{equation*}
$$

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathbf{N}_{1}, \mathbf{N}_{2}$: deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} . \tag{DS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use N_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \leq \gamma_{k} \tag{PS}
\end{equation*}
$$

- $x^{k+1}:=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}:=\tau_{k} \rho_{k}$.

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{N}_{1}, \mathrm{~N}_{2}$: deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} \tag{DS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use N_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \leq \gamma_{k} \tag{PS}
\end{equation*}
$$

- $x^{k+1}:=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}:=\tau_{k} \rho_{k}$.
- Use N_{1} to find $\tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k+1}}^{\mathrm{P}}\left(x^{k+1}\right)-S_{\rho_{k+1}}\left(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right)\right) \leq \eta_{k} \tag{DS2}
\end{equation*}
$$

Deterministic Smoothing Framework (DSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences; $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{N}_{1}, \mathrm{~N}_{2}:$ deterministic first-order solvers.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use N_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \leq \eta_{k} . \tag{DS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use N_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \leq \gamma_{k} \tag{PS}
\end{equation*}
$$

- $x^{k+1}:=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}:=\tau_{k} \rho_{k}$.
- Use N_{1} to find $\tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right) \in \Lambda$ such that

$$
\begin{equation*}
\psi_{\rho_{k+1}}^{\mathrm{P}}\left(x^{k+1}\right)-S_{\rho_{k+1}}\left(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right)\right) \leq \eta_{k} . \tag{DS2}
\end{equation*}
$$

- $\lambda^{k+1}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right), k:=k+1$.

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

$\triangleright(\mathrm{PS})$ is μ-s.c., $\left(L+L_{x x}\right)$-smooth, composite.

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

$\triangleright(\mathrm{PS})$ is μ-s.c., $\left(L+L_{x x}\right)$-smooth, composite.
\triangleright The constraint set \mathcal{X} is compact.

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

$\triangleright(\mathrm{PS})$ is μ-s.c., $\left(L+L_{x x}\right)$-smooth, composite.
\triangleright The constraint set \mathcal{X} is compact.
\triangleright Use optimal first-order solver, e.g., APG in [Nesterov'13].

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

$\triangleright(\mathrm{PS})$ is μ-s.c., $\left(L+L_{x x}\right)$-smooth, composite.
\triangleright The constraint set \mathcal{X} is compact.
\triangleright Use optimal first-order solver, e.g., APG in [Nesterov'13].
$\triangleright \kappa_{\mathcal{X}}:=\left(L+L_{x x}\right) / \mu$ and $D_{\mathcal{X}}:=\max _{x, x^{\prime} \in \mathcal{X}}\left\|x-x^{\prime}\right\|<+\infty$, then

$$
P\left(\tilde{x}^{N}, \lambda\right)-P^{*}(\lambda) \leq L_{P}\left(1+\sqrt{\kappa_{\mathcal{X}} / 2}\right)^{-2(N-1)} D_{\mathcal{X}}^{2}
$$

Solving Sub-problems Inexactly

$$
\begin{equation*}
\min _{x \in \mathcal{X}}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\} \tag{PS}
\end{equation*}
$$

\triangleright (PS) is μ-s.c., $\left(L+L_{x x}\right)$-smooth, composite.
\triangleright The constraint set \mathcal{X} is compact.
\triangleright Use optimal first-order solver, e.g., APG in [Nesterov'13].
$\triangleright \kappa_{\mathcal{X}}:=\left(L+L_{x x}\right) / \mu$ and $D_{\mathcal{X}}:=\max _{x, x^{\prime} \in \mathcal{X}}\left\|x-x^{\prime}\right\|<+\infty$, then

$$
P\left(\tilde{x}^{N}, \lambda\right)-P^{*}(\lambda) \leq L_{P}\left(1+\sqrt{\kappa_{\mathcal{X}} / 2}\right)^{-2(N-1)} D_{\mathcal{X}}^{2}
$$

$N \geq\left\lceil\sqrt{\kappa \mathcal{X}} \log \left(L_{P} D_{X}^{2} / \epsilon\right)\right\rceil \Longrightarrow P\left(\tilde{x}^{N}, \lambda\right)-P^{*}(\lambda) \leq \epsilon$.
No need to know $P^{*}(\lambda)$ or $x^{*}(\lambda)$!

Outer Iteration Complexity

Theorem 2 (Outer Iteration Complexity of DSF)
If we choose $\rho_{0}=8 L_{\mathrm{D}}\left(L_{\mathrm{D}}=L_{\lambda \lambda}+2 L_{\lambda x}^{2} / \mu\right)$ and for any $k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\tau_{k}=\frac{k+1}{k+3}, \quad \gamma_{k}=\frac{\varepsilon}{4(k+3)} \quad \text { and } \quad \eta_{k}=\frac{\varepsilon}{4(k+3)}, \tag{1}
\end{equation*}
$$

then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$
\begin{equation*}
\Delta\left(x^{K}, \lambda^{K}\right) \leq \frac{32 L_{\mathrm{D}} D_{\Lambda}^{2}+2 \Delta\left(x^{0}, \lambda^{0}\right)}{(K+1)(K+2)}+\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

Outer Iteration Complexity

Theorem 2 (Outer Iteration Complexity of DSF)

If we choose $\rho_{0}=8 L_{\mathrm{D}}\left(L_{\mathrm{D}}=L_{\lambda \lambda}+2 L_{\lambda x}^{2} / \mu\right)$ and for any $k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\tau_{k}=\frac{k+1}{k+3}, \quad \gamma_{k}=\frac{\varepsilon}{4(k+3)} \quad \text { and } \quad \eta_{k}=\frac{\varepsilon}{4(k+3)}, \tag{1}
\end{equation*}
$$

then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$
\begin{equation*}
\Delta\left(x^{K}, \lambda^{K}\right) \leq \frac{32 L_{\mathrm{D}} D_{\Lambda}^{2}+2 \Delta\left(x^{0}, \lambda^{0}\right)}{(K+1)(K+2)}+\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

Thus, to achieve an ε-duality gap, the outer iteration complexity is $O\left(\sqrt{L_{\mathrm{D}} / \varepsilon}\right)=O\left(\sqrt{L_{\lambda \lambda} / \varepsilon}+L_{\lambda x} / \sqrt{\mu \varepsilon}\right)$.

Inner Iteration Complexity (Oracle Complexity)

Theorem 3 (Oracle complexity of DSF)

For any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$, let $C_{\operatorname{det}}^{\mathrm{P}}$ and $C_{\mathrm{det}}^{\mathrm{D}}$ denote the primal and dual oracle complexities to achieve an ε-duality gap, respectively. Then we have

$$
\begin{aligned}
C_{\mathrm{det}}^{\mathrm{P}} & =O\left(n \sqrt{\kappa \mathcal{X} L_{\mathrm{D}} / \varepsilon} \log \left(\left(L+L_{x x}\right) L_{\mathrm{D}} / \varepsilon\right)\right) \\
C_{\mathrm{det}}^{\mathrm{D}} & =O\left(n\left(\sqrt{L_{\lambda \lambda} L_{\mathrm{D}}} / \varepsilon\right) \log \left(L_{\lambda \lambda} L_{\mathrm{D}} / \varepsilon\right)\right)
\end{aligned}
$$

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.

Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.

Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.

Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use M_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathbb{E}\left[S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \mid \mathcal{F}_{k, 1}\right] \leq \gamma_{k} \quad \text { a.s. } \tag{rPS}
\end{equation*}
$$

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use M_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathbb{E}\left[S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \mid \mathcal{F}_{k, 1}\right] \leq \gamma_{k} \quad \text { a.s. } \tag{rPS}
\end{equation*}
$$

- $x^{k+1}=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}=\tau_{k} \rho_{k}$.

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use M_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathbb{E}\left[S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \mid \mathcal{F}_{k, 1}\right] \leq \gamma_{k} \quad \text { a.s. } \tag{rPS}
\end{equation*}
$$

- $x^{k+1}=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}=\tau_{k} \rho_{k}$.
- Use M_{1} to find $\tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right) \in \Lambda$ such that

$$
\mathbb{E}\left[\psi_{\rho_{k+1}}^{\mathrm{P}}\left(x^{k+1}\right)-S_{\rho_{k+1}}\left(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right)\right) \mid \mathcal{F}_{k, 2}\right] \leq \eta_{k} \quad \text { a.s. } \quad(\mathrm{rDS} 2)
$$

Randomized Smoothing Framework (RSF)

Input: ρ_{0} : smoothing parameter; $\left\{\eta_{k}\right\}_{k \geq 0},\left\{\gamma_{k}\right\}_{k \geq 0}$: error sequences, $\left\{\tau_{k}\right\}_{k \geq 0}$: interpolation sequence; $\mathrm{M}_{1}, \mathrm{M}_{2}$: randomized subroutines.
Initialize: $x^{0} \in \mathcal{X}, \lambda^{0} \in \Lambda$ and $k=0$
Repeat (until some convergence criterion is met)

- Use M_{1} to find $\tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k}}^{\mathrm{P}}\left(x^{k}\right)-S_{\rho_{k}}\left(x^{k}, \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)\right) \mid \mathcal{F}_{k, 0}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS1}
\end{equation*}
$$

- $\hat{\lambda}^{k}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k}, \eta_{k}}\left(x^{k}\right)$.
- Use M_{2} to find $\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right) \in \mathcal{X}$ such that

$$
\begin{equation*}
\mathbb{E}\left[S\left(\tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \hat{\lambda}^{k}\right)-\psi^{\mathrm{D}}\left(\hat{\lambda}^{k}\right) \mid \mathcal{F}_{k, 1}\right] \leq \gamma_{k} \quad \text { a.s. } \tag{rPS}
\end{equation*}
$$

- $x^{k+1}=\tau_{k} x^{k}+\left(1-\tau_{k}\right) \tilde{x}_{\gamma_{k}}\left(\hat{\lambda}^{k}\right), \rho_{k+1}=\tau_{k} \rho_{k}$.
- Use M_{1} to find $\tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right) \in \Lambda$ such that

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\rho_{k+1}}^{\mathrm{P}}\left(x^{k+1}\right)-S_{\rho_{k+1}}\left(x^{k+1}, \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right)\right) \mid \mathcal{F}_{k, 2}\right] \leq \eta_{k} \quad \text { a.s. } \tag{rDS2}
\end{equation*}
$$

- $\lambda^{k+1}:=\tau_{k} \lambda^{k}+\left(1-\tau_{k}\right) \tilde{\lambda}_{\rho_{k+1}, \eta_{k}}\left(x^{k+1}\right), k:=k+1$.

Solving Subproblems Inexactly

$$
\min _{x \in X}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\}, \quad \Phi(x, \lambda)=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

Solving Subproblems Inexactly

$$
\min _{x \in X}\{P(x, \lambda):=f(x)+g(x)+\Phi(x, \lambda)\}, \quad \Phi(x, \lambda)=\frac{1}{n} \sum_{i=1}^{n} \Phi_{i}(x, \lambda)
$$

\triangleright Recall $\kappa_{\mathcal{X}}:=\left(L+L_{x x}\right) / \mu$. Use optimal randomized first-order solver, e.g., RPDG in [Lan \& Zhou'18], we have

$$
N=\Omega((n+\sqrt{n \kappa \mathcal{X}}) \log (1 / \epsilon)) \Longrightarrow \mathbb{E}\left[P\left(\tilde{x}^{N}, \lambda\right)-P^{*}(\lambda)\right] \leq \epsilon
$$

Outer Iteration Complexity

Theorem 4 (Outer Iteration Complexity of RSF)
If we choose $\rho_{0}=8 L_{\mathrm{D}}\left(L_{\mathrm{D}}=L_{\lambda \lambda}+2 L_{\lambda x}^{2} / \mu\right)$ and for any $k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\tau_{k}=\frac{k+1}{k+3}, \quad \gamma_{k}=\frac{\varepsilon}{4(k+3)} \quad \text { and } \quad \eta_{k}=\frac{\varepsilon}{4(k+3)}, \tag{3}
\end{equation*}
$$

then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{E}\left[\Delta\left(x^{K}, \lambda^{K}\right)\right] \leq \frac{32 L_{\mathrm{D}} D_{\Lambda}^{2}+2 \Delta\left(x^{0}, \lambda^{0}\right)}{(K+1)(K+2)}+\frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

Outer Iteration Complexity

Theorem 4 (Outer Iteration Complexity of RSF)

If we choose $\rho_{0}=8 L_{\mathrm{D}}\left(L_{\mathrm{D}}=L_{\lambda \lambda}+2 L_{\lambda x}^{2} / \mu\right)$ and for any $k \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\tau_{k}=\frac{k+1}{k+3}, \quad \gamma_{k}=\frac{\varepsilon}{4(k+3)} \quad \text { and } \quad \eta_{k}=\frac{\varepsilon}{4(k+3)} \tag{3}
\end{equation*}
$$

then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$ and $K \in \mathbb{N}$,

$$
\begin{equation*}
\mathbb{E}\left[\Delta\left(x^{K}, \lambda^{K}\right)\right] \leq \frac{32 L_{\mathrm{D}} D_{\Lambda}^{2}+2 \Delta\left(x^{0}, \lambda^{0}\right)}{(K+1)(K+2)}+\frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

Thus, to achieve an ε-expected duality gap, the outer iteration complexity is $O\left(\sqrt{L_{\mathrm{D}} / \varepsilon}\right)=O\left(\sqrt{L_{\lambda \lambda} / \varepsilon}+L_{\lambda x} / \sqrt{\mu \varepsilon}\right)$.

Inner Iteration Complexity (Oracle Complexity)

Theorem 5 (Oracle complexity of RSF)

For any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \Lambda$, let $C_{\text {stoc }}^{\mathrm{P}}$ and $C_{\text {stoc }}^{\mathrm{D}}$ denote the primal and dual oracle complexities to achieve an ε-expected duality gap, respectively. Then we have

$$
\begin{aligned}
& C_{\mathrm{stoc}}^{\mathrm{P}}=O\left((n+\sqrt{n \kappa \mathcal{X}}) \sqrt{\frac{L_{\mathrm{D}}}{\varepsilon}} \log \left(\frac{\kappa \mathcal{X} L_{\mathrm{D}}(n+\sqrt{n \kappa \mathcal{X}})}{\varepsilon}\right)\right), \\
& C_{\mathrm{stoc}}^{\mathrm{D}}=O\left(\left(n \sqrt{\frac{L_{\mathrm{D}}}{\varepsilon}}+\frac{\sqrt{n L_{\lambda \lambda} L_{\mathrm{D}}}}{\varepsilon}\right) \log \left(\frac{L_{\lambda \lambda}\left(n+\sqrt{n L_{\lambda \lambda} / L_{\mathrm{D}}}\right)}{\varepsilon}\right)\right) .
\end{aligned}
$$

Comparison of Oracle Complexities

Figure 1: Each $\Phi_{i}(x, \cdot)$ is concave (not necessarily linear).

Algorithms	Primal Oracle Comp.	Dual Oracle Comp.
PDHG-type [HA18]	$O(n / \varepsilon)$	$O(n / \varepsilon)$
Mirror-Prox [Nem05]	$O(n / \varepsilon)$	$O(n / \varepsilon)$
Det. IPDS	$\widetilde{O}(n \sqrt{\kappa \mathcal{X} / \varepsilon})$	$\widetilde{O}(n / \varepsilon)$
Rand. IPDS	$\widetilde{O}((n+\sqrt{n \kappa \mathcal{X}}) / \sqrt{\varepsilon})$	$\widetilde{O}(n / \sqrt{\varepsilon}+\sqrt{n} / \varepsilon)$

Constrained Optimization Revisited

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \quad \text { s.t. } g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.

Constrained Optimization Revisited

$$
\min _{x \in \mathcal{X}} f(x)+r(x) \text { s.t. } g_{i}(x) \leq 0, \forall i \in[n]
$$

$\triangleright f$ is μ-strongly convex (s.c.) and L-smooth on \mathcal{X}.
$\triangleright r$ is CCP with an easily computable proximal operator.
\triangleright For each $i \in[n], g_{i}$ is convex and α_{i}-smooth on \mathcal{X}.
\triangleright Slater condition holds \Rightarrow no duality gap and an optimal primal-dual pair $\left(x^{*}, \lambda^{*}\right)$ exists.
$\triangleright \bar{x} \in \mathcal{X}$ is an ε-optimal and ε-feasible solution if

$$
f(\bar{x})-f\left(x^{*}\right) \leq \varepsilon, \quad \text { and } \quad\left[g_{i}(\bar{x})\right]_{+} \leq \varepsilon, \forall i \in[n] .
$$

Lagrangian Form

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

Although $\Lambda=\mathbb{R}_{+}^{n}$ is unbounded, but

Lagrangian Form

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

Although $\Lambda=\mathbb{R}_{+}^{n}$ is unbounded, but
\triangleright The dual smoothing sub-problem has closed-form solution:

$$
\left(\left[g_{i}(x)\right]_{+} / \rho\right)_{i=1}^{n}=\arg \max _{\lambda \in \mathbb{R}_{+}^{n}} \sum_{i=1}^{n} \lambda_{i} g_{i}(x)-(\rho / 2)\|\lambda\|_{2}^{2}
$$

\Longrightarrow No need for first-order solver, and frameworks implementable.

Lagrangian Form

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

Although $\Lambda=\mathbb{R}_{+}^{n}$ is unbounded, but
\triangleright The dual smoothing sub-problem has closed-form solution:

$$
\left(\left[g_{i}(x)\right]_{+} / \rho\right)_{i=1}^{n}=\arg \max _{\lambda \in \mathbb{R}_{+}^{n}} \sum_{i=1}^{n} \lambda_{i} g_{i}(x)-(\rho / 2)\|\lambda\|_{2}^{2}
$$

\Longrightarrow No need for first-order solver, and frameworks implementable.
\triangleright Primal sub-optimality and constraint violation are used as convergence criteria, not duality gap.

Lagrangian Form

$$
\begin{equation*}
\min _{x \in \mathcal{X}} \max _{\lambda \in \mathbb{R}_{+}^{n}}\left\{S(x, \lambda)=f(x)+r(x)+(1 / n) \sum_{i=1}^{n} n \lambda_{i} g_{i}(x)\right\} \tag{Lag}
\end{equation*}
$$

Although $\Lambda=\mathbb{R}_{+}^{n}$ is unbounded, but
\triangleright The dual smoothing sub-problem has closed-form solution:

$$
\left(\left[g_{i}(x)\right]_{+} / \rho\right)_{i=1}^{n}=\arg \max _{\lambda \in \mathbb{R}_{+}^{n}} \sum_{i=1}^{n} \lambda_{i} g_{i}(x)-(\rho / 2)\|\lambda\|_{2}^{2}
$$

\Longrightarrow No need for first-order solver, and frameworks implementable.
\triangleright Primal sub-optimality and constraint violation are used as convergence criteria, not duality gap.
$\triangleright L_{x x}(\lambda)=\sum_{i=1}^{n} \lambda_{i} \alpha_{i}$ is unbounded \Longrightarrow Bound $\left\|\hat{\lambda}^{k}\right\|_{\infty}$ adaptively.

Convergence Rate of DSF for Constrained Opt.

Theorem 6 (Convergence Rate of DSF)

Let $\left(x^{*}, \lambda^{*}\right) \in \mathcal{X} \times \mathbb{R}_{+}^{n}$ be a saddle point of (Lag). If we apply DSF to solving (Lag), then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \mathbb{R}_{+}^{n}$,

$$
\begin{aligned}
& f\left(x^{K}\right)-f\left(x^{*}\right) \leq \frac{2\left[\Delta_{\rho_{0}}\left(x^{0}, \lambda^{0}\right)\right]_{+}}{(K+1)(K+2)}+\frac{\varepsilon}{2} \\
& {\left[g_{i}\left(x^{K}\right)\right]_{+} \leq \frac{16\left(\lambda_{i}^{*}+\left\|\lambda^{*}\right\|_{2}\right) L_{\mathrm{D}}+8 \sqrt{L_{\mathrm{D}}\left[\Delta_{\rho_{0}}\left(x^{0}, \lambda^{0}\right)\right]_{+}}}{(K+1)(K+2)}+\frac{4 \sqrt{L_{\mathrm{D}} \varepsilon}}{K+1}}
\end{aligned}
$$

for any $K \in \mathbb{N}$ and $i \in[m]$.

Oracle Complexity of DSF for Constrained Opt.

$$
M:=\sum_{i=1}^{n} \alpha_{i} D_{\mathcal{X}}+\inf _{x \in \mathcal{X}}\left\|\nabla g_{i}(x)\right\|_{*} \quad \text { and } \quad \alpha:=\sum_{i=1}^{n} \alpha_{i} .
$$

Oracle Complexity of DSF for Constrained Opt.

$$
M:=\sum_{i=1}^{n} \alpha_{i} D_{\mathcal{X}}+\inf _{x \in \mathcal{X}}\left\|\nabla g_{i}(x)\right\|_{*} \quad \text { and } \quad \alpha:=\sum_{i=1}^{n} \alpha_{i} .
$$

Lemma 7 (Bound on $\left\|\hat{\lambda}^{k}\right\|_{\infty}$)
If we apply DSF to (Lag), then for any $k \in \mathbb{N}$,

$$
\left\|\hat{\lambda}^{k}\right\|_{\infty}=O(1+k \sqrt{\varepsilon \mu} / M)
$$

Oracle Complexity of DSF for Constrained Opt.

$$
M:=\sum_{i=1}^{n} \alpha_{i} D_{\mathcal{X}}+\inf _{x \in \mathcal{X}}\left\|\nabla g_{i}(x)\right\|_{*} \quad \text { and } \quad \alpha:=\sum_{i=1}^{n} \alpha_{i} .
$$

Lemma 7 (Bound on $\left\|\hat{\lambda}^{k}\right\|_{\infty}$)
If we apply DSF to (Lag), then for any $k \in \mathbb{N}$,

$$
\left\|\hat{\lambda}^{k}\right\|_{\infty}=O(1+k \sqrt{\varepsilon \mu} / M)
$$

Theorem 8 (Oracle Complexity of DSF)
For any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \mathbb{R}_{+}$, the oracle complexity of DSF to obtain an ε-optimal and ε-feasible solution is

$$
O\left(\frac{n M}{\sqrt{\mu \varepsilon}} \sqrt{(L+\alpha) / \mu} \log \left(\frac{L+\alpha}{\varepsilon}\right)\right)
$$

Convergence Rate of RSF for Constrained Opt.

Theorem 9 (Convergence Rate of RSF)

Let $\left(x^{*}, \lambda^{*}\right) \in \mathcal{X} \times \mathbb{R}_{+}^{n}$ be a saddle point of (Lag). If we apply RSF to solving (Lag), then for any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \mathbb{R}_{+}^{n}$,

$$
\begin{aligned}
\mathbb{E}\left[f\left(x^{K}\right)\right]-f\left(x^{*}\right) \leq \frac{2\left[\Delta_{\rho_{0}}\left(x^{0}, \lambda^{0}\right)\right]_{+}}{(K+1)(K+2)}+\frac{\varepsilon}{2}, \\
\mathbb{E}\left[\left[g_{i}\left(x^{K}\right)\right]_{+}\right] \leq \frac{16\left(\lambda_{i}^{*}+\left\|\lambda^{*}\right\|_{2}\right) L_{\mathrm{D}}+8 \sqrt{L_{\mathrm{D}}\left[\Delta_{\rho_{0}}\left(x^{0}, \lambda^{0}\right)\right]_{+}}}{(K+1)(K+2)}+\frac{4 \sqrt{L_{\mathrm{D}} \varepsilon}}{K+1}
\end{aligned}
$$

for any $K \in \mathbb{N}$ and $i \in[m]$.

Oracle Complexity of RSF for Constrained Opt.

Theorem 10 (Oracle Complexity of RSF)

For any starting point $\left(x^{0}, \lambda^{0}\right) \in \mathcal{X} \times \mathbb{R}_{+}$, the oracle complexity of $R S F$ to obtain an ε-optimal and ε-feasible solution is

$$
O\left(\frac{\sqrt{n} M}{\sqrt{\mu \varepsilon}}(\sqrt{n}+\sqrt{(L+\alpha) / \mu}) \log \left(\frac{n M(L+\alpha)}{\mu \varepsilon}\right)\right)
$$

Thank you!

References

[HA18] Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A Primal-Dual Algorithm for General Convex-Concave Saddle Point Problems. arXiv:1803.01401. 2018.
[Nem05] Arkadi Nemirovski. "Prox-Method with Rate of Convergence $O(1 / t)$ for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems". In: SIAM J. Optim. 15.1 (2005), pp. 229-251.

