Multiplicative Gradient Method: When and Why It Works

Renbo Zhao
MIT Operations Research Center
24th Midwest Optimization Meeting
University of Waterloo
October, 2022

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
\triangleright For all $j \in[m]$, let $p_{j}>0$ and $\sum_{j=1}^{m} p_{j}=1$.

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
\triangleright For all $j \in[m]$, let $p_{j}>0$ and $\sum_{j=1}^{m} p_{j}=1$.
\triangleright For all $j \in[m], a_{j} \neq 0, a_{j} \in \mathbb{R}_{+}^{n}\left(a_{j} \geq 0\right)$ and can be "sparse".

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
\triangleright For all $j \in[m]$, let $p_{j}>0$ and $\sum_{j=1}^{m} p_{j}=1$.
\triangleright For all $j \in[m], a_{j} \neq 0, a_{j} \in \mathbb{R}_{+}^{n}\left(a_{j} \geq 0\right)$ and can be "sparse".
$\triangleright \Delta_{n}:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$ is the unit simplex in \mathbb{R}^{n}.

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
\triangleright For all $j \in[m]$, let $p_{j}>0$ and $\sum_{j=1}^{m} p_{j}=1$.
\triangleright For all $j \in[m], a_{j} \neq 0, a_{j} \in \mathbb{R}_{+}^{n}\left(a_{j} \geq 0\right)$ and can be "sparse".
$\triangleright \Delta_{n}:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$ is the unit simplex in \mathbb{R}^{n}.
\triangleright Multiplicative gradient method: $x^{0} \in$ ri Δ_{n}

$$
x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right) \quad \overline{ } \quad x_{i}^{t+1}:=x_{i}^{t} \nabla_{i} F\left(x^{t}\right), \quad \forall i \in[n]
$$

Positron Emission Tomography

$$
\begin{equation*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright Known as Positron Emission Tomography (PET) in medical imaging, but has many other applications, e.g., inference of multi-dimensional Hawkes processes [ZZS13] and log-optimal investment [Cov84].
\triangleright For all $j \in[m]$, let $p_{j}>0$ and $\sum_{j=1}^{m} p_{j}=1$.
\triangleright For all $j \in[m], a_{j} \neq 0, a_{j} \in \mathbb{R}_{+}^{n}\left(a_{j} \geq 0\right)$ and can be "sparse".
$\triangleright \Delta_{n}:=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\}$ is the unit simplex in \mathbb{R}^{n}.
\triangleright Multiplicative gradient method: $x^{0} \in$ ri Δ_{n}

$$
\begin{equation*}
x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right) \quad \Longrightarrow \quad x_{i}^{t+1}:=x_{i}^{t} \nabla_{i} F\left(x^{t}\right), \quad \forall i \in[n] \tag{MG}
\end{equation*}
$$

$\triangleright(\mathrm{MG})$ does not fall under any "well-known" optimization frameworks, e.g., Newton-type method, mirror descent, etc.

The Mystery of MG

$$
\begin{gather*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}\\
x^{0} \in \mathrm{ri} \Delta_{n}, \quad x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right)
\end{gather*}
$$

(MG)

The Mystery of MG

$$
\begin{gather*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}\\
x^{0} \in \text { ri } \Delta_{n}, \quad x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right) \tag{MG}
\end{gather*}
$$

\triangleright Originally proposed by information theorists in the 1970s [Ari72] based on the EM procedure.

The Mystery of MG

$$
\begin{gather*}
\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}\\
x^{0} \in \text { ri } \Delta_{n}, \quad x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right) \tag{MG}
\end{gather*}
$$

\triangleright Originally proposed by information theorists in the 1970s [Ari72] based on the EM procedure.
\triangleright Impressive numerical performance: $x^{0}=(1 / n) e$

FW-A \& FW-E [Dvu20; ZF22]: FrankWolfe (FW) method for logarithmicallyhomogeneous self-concordant barriers (with adaptive stepsize and exact line search)

RSGM-F \& RSGM-LS [BBT17; LFN18]: Relatively smooth gradient method (with fixed stepsize and backtracking line search)

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The proof is relatively short, and is based on basic convex analysis.

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The proof is relatively short, and is based on basic convex analysis.
\triangleright But immediately some questions arose:

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The proof is relatively short, and is based on basic convex analysis.
\triangleright But immediately some questions arose:

- Why does (MG) work for PET?

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The proof is relatively short, and is based on basic convex analysis.
\triangleright But immediately some questions arose:

- Why does (MG) work for PET?
- What are the essential structures of the problem the drive the success of (MG)? Is there a general problem class that (MG) works well?

The Mystery of MG

$$
\begin{equation*}
F^{*}=\max _{x \in \Delta_{n}}\left\{F(x):=\sum_{j=1}^{m} p_{j} \ln \left(a_{j}^{\top} x\right)\right\} \tag{PET}
\end{equation*}
$$

\triangleright However, MG only has asymptotic convergence guarantees, and the convergence rate has been unknown for about 50 years.
\triangleright Zhao [Zha21] showed that (MG) has the following convergence rate:

$$
F^{*}-F\left(x^{t}\right) \leq \ln (n) / t, \quad \forall t \geq 1
$$

The proof is relatively short, and is based on basic convex analysis.
\triangleright But immediately some questions arose:

- Why does (MG) work for PET?
- What are the essential structures of the problem the drive the success of (MG)? Is there a general problem class that (MG) works well?
- And what is the interaction between the complexity of (MG) and the problem structure?

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- The problem class is best viewed via the notion of symmetric cones.

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- The problem class is best viewed via the notion of symmetric cones.
- The development and analysis of the generalized MG method are based on the framework of Euclidean Jordan algebra.

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- The problem class is best viewed via the notion of symmetric cones.
- The development and analysis of the generalized MG method are based on the framework of Euclidean Jordan algebra.
\triangleright To facilitate understanding, we first show our results when they are specialized to the following applications:
- D-optimal design
- Quantum state tomography
- Semidefinite relaxation of Boolean QP

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- The problem class is best viewed via the notion of symmetric cones.
- The development and analysis of the generalized MG method are based on the framework of Euclidean Jordan algebra.
\triangleright To facilitate understanding, we first show our results when they are specialized to the following applications:
- D-optimal design
- Quantum state tomography
- Semidefinite relaxation of Boolean QP
\triangleright In all of these applications, the objective functions involve " $\ln (\cdot)$ ", and hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on the feasible sets.

Our Main Contributions

\triangleright We identify a broad problem class and develop a generalization of the MG method, with computational guarantees.

- The problem class is best viewed via the notion of symmetric cones.
- The development and analysis of the generalized MG method are based on the framework of Euclidean Jordan algebra.
\triangleright To facilitate understanding, we first show our results when they are specialized to the following applications:
- D-optimal design
- Quantum state tomography
- Semidefinite relaxation of Boolean QP
\triangleright In all of these applications, the objective functions involve " $\ln (\cdot)$ ", and hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on the feasible sets.
\triangleright Certain first-order methods for these applications have been developed recently [Nes11; BBT17; LFN18; Dvu20; ZF22] - our generalized MG method contributes to this line of research from a different viewpoint.

D-Optimal Design (D-OPT)

$$
\begin{equation*}
\max _{x} F(x):=m^{-1} \ln \operatorname{det}\left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top}\right) \quad \text { s. t. } \quad x \in \Delta_{n} \tag{D-OPT}
\end{equation*}
$$

D-Optimal Design (D-OPT)

$$
\begin{equation*}
\max _{x} F(x):=m^{-1} \ln \operatorname{det}\left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top}\right) \quad \text { s.t. } \quad x \in \Delta_{n} \tag{D-OPT}
\end{equation*}
$$

$\triangleright a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ whose linear span is \mathbb{R}^{m}.

D-Optimal Design (D-OPT)

$$
\begin{equation*}
\max _{x} F(x):=m^{-1} \ln \operatorname{det}\left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top}\right) \quad \text { s.t. } \quad x \in \Delta_{n} \tag{D-OPT}
\end{equation*}
$$

$\triangleright a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ whose linear span is \mathbb{R}^{m}.
\triangleright In statistics, D-OPT corresponds to maximizing the the determinant of the Fisher information matrix [Fed72].

D-Optimal Design (D-OPT)

$$
\begin{equation*}
\max _{x} F(x):=m^{-1} \ln \operatorname{det}\left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top}\right) \quad \text { s.t. } \quad x \in \Delta_{n} \tag{D-OPT}
\end{equation*}
$$

$\triangleright a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ whose linear span is \mathbb{R}^{m}.
\triangleright In statistics, D-OPT corresponds to maximizing the the determinant of the Fisher information matrix [Fed72].
\triangleright In computational geometry, D-OPT arises as a Lagrangian dual problem of the minimum volume enclosing ellipsoid problem [Tod16].

D-Optimal Design (D-OPT)

$$
\begin{equation*}
\max _{x} F(x):=m^{-1} \ln \operatorname{det}\left(\sum_{i=1}^{n} x_{i} a_{i} a_{i}^{\top}\right) \quad \text { s.t. } \quad x \in \Delta_{n} \tag{D-OPT}
\end{equation*}
$$

$\triangleright a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ whose linear span is \mathbb{R}^{m}.
\triangleright In statistics, D-OPT corresponds to maximizing the the determinant of the Fisher information matrix [Fed72].
\triangleright In computational geometry, D-OPT arises as a Lagrangian dual problem of the minimum volume enclosing ellipsoid problem [Tod16].
\triangleright MG method: $x^{0} \in \mathrm{ri} \Delta_{n}, \quad x^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right)$

Quantum State Tomography (QST)

$$
\begin{array}{rl}
\max _{X} & F(X):=m^{-1} \sum_{j=1}^{q} n_{j} \ln \left(\left\langle X, a_{j} a_{j}^{H}\right\rangle\right) \tag{QST}\\
\text { s.t. } & X \in \mathbb{H}_{+}^{n}, \operatorname{tr}(X)=\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

Quantum State Tomography (QST)

$$
\begin{array}{rl}
\max _{X} & F(X):=m^{-1} \sum_{j=1}^{q} n_{j} \ln \left(\left\langle X, a_{j} a_{j}^{H}\right\rangle\right) \tag{QST}\\
\text { s.t. } & X \in \mathbb{H}_{+}^{n}, \operatorname{tr}(X)=\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

\triangleright In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].

Quantum State Tomography (QST)

$$
\begin{array}{rl}
\max _{X} & F(X):=m^{-1} \sum_{j=1}^{q} n_{j} \ln \left(\left\langle X, a_{j} a_{j}^{H}\right\rangle\right) \tag{QST}\\
\text { s.t. } & X \in \mathbb{H}_{+}^{n}, \operatorname{tr}(X)=\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

\triangleright In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].
$\triangleright a_{1}, \ldots, a_{q} \in \mathbb{C}^{n}, \sum_{j=1}^{q} a_{j} a_{j}^{H}=I_{n}$ and $\sum_{j=1}^{q} n_{j}=m$.

Quantum State Tomography (QST)

$$
\begin{array}{rl}
\max _{X} & F(X):=m^{-1} \sum_{j=1}^{q} n_{j} \ln \left(\left\langle X, a_{j} a_{j}^{H}\right\rangle\right) \tag{QST}\\
\text { s.t. } & X \in \mathbb{H}_{+}^{n}, \operatorname{tr}(X)=\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

\triangleright In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].
$\triangleright a_{1}, \ldots, a_{q} \in \mathbb{C}^{n}, \sum_{j=1}^{q} a_{j} a_{j}^{H}=I_{n}$ and $\sum_{j=1}^{q} n_{j}=m$.
$\triangleright \mathbb{H}_{+}^{n}$ denotes the cone of $n \times n$ complex Hermitian PSD matrices.

Quantum State Tomography (QST)

$$
\begin{array}{rl}
\max _{X} & F(X):=m^{-1} \sum_{j=1}^{q} n_{j} \ln \left(\left\langle X, a_{j} a_{j}^{H}\right\rangle\right) \tag{QST}\\
\text { s.t. } & X \in \mathbb{H}_{+}^{n}, \operatorname{tr}(X)=\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

\triangleright In quantum physics, this problem aims to reconstruct the state of a quantum system using the measured output of particles [Hra04].
$\triangleright a_{1}, \ldots, a_{q} \in \mathbb{C}^{n}, \sum_{j=1}^{q} a_{j} a_{j}^{H}=I_{n}$ and $\sum_{j=1}^{q} n_{j}=m$.
$\triangleright \mathbb{H}_{+}^{n}$ denotes the cone of $n \times n$ complex Hermitian PSD matrices.
\triangleright (Generalized) MG method: $X^{0} \succ 0, \operatorname{tr}\left(X^{0}\right)=1$,

$$
\begin{aligned}
& \hat{X}^{t+1}=\exp \left\{\ln \left(X^{t}\right)+\ln \left(\nabla F\left(X^{t}\right)\right)\right\} \\
& X^{t+1}=\hat{X}^{t+1} / \operatorname{tr}\left(\hat{X}^{t+1}\right)
\end{aligned}
$$

(For any $X=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{H} \succ 0, \ln (X):=\ln \left(\lambda_{i}\right) u_{i} u_{i}^{H}$. .)

Semidefinite Relaxation of Boolean QP (RBQP)

\triangleright The Boolean QP (BQP): $q^{*}:=\max _{x \in\{ \pm 1\}^{n}} x^{\top} A x$ for some $A \succ 0$.

Semidefinite Relaxation of Boolean QP (RBQP)

\triangleright The Boolean QP (BQP): $q^{*}:=\max _{x \in\{ \pm 1\}^{n}} x^{\top} A x$ for some $A \succ 0$.
\triangleright Nesterov [Nes98] showed that the semidefinite relaxation

$$
s^{*}:=\min _{y}\langle e, y\rangle \quad \text { s.t. } \quad \operatorname{Diag}(y) \succeq A
$$

provides a $(2 / \pi)$-approximation of the BQP.

Semidefinite Relaxation of Boolean QP (RBQP)

\triangleright The Boolean QP (BQP): $q^{*}:=\max _{x \in\{ \pm 1\}^{n}} x^{\top} A x$ for some $A \succ 0$.
\triangleright Nesterov [Nes98] showed that the semidefinite relaxation

$$
\begin{equation*}
s^{*}:=\min _{y}\langle e, y\rangle \quad \text { s.t. } \quad \operatorname{Diag}(y) \succeq A \tag{SDP}
\end{equation*}
$$

provides a $(2 / \pi)$-approximation of the BQP.
\triangleright Nesterov [Nes11] later showed that (SDP) above can be equivalently written in the dual form:

$$
\begin{array}{rl}
\max _{X} & F(X):=2 \ln \left(\sum_{i=1}^{n}\left\langle X, r_{i} r_{i}^{\top}\right\rangle^{1 / 2}\right) \tag{RBQP}\\
\text { s.t. } & X \in \mathbb{S}_{+}^{n},\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

where $A=R^{\top} R$ and $R:=\left[r_{1} \cdots r_{n}\right]$, and \mathbb{S}_{+}^{n} denotes the cone of $n \times n$ real symmetric PSD matrices.

Semidefinite Relaxation of Boolean QP (RBQP)

\triangleright The Boolean QP (BQP): $q^{*}:=\max _{x \in\{ \pm 1\}^{n}} x^{\top} A x$ for some $A \succ 0$.
\triangleright Nesterov [Nes98] showed that the semidefinite relaxation

$$
\begin{equation*}
s^{*}:=\min _{y}\langle e, y\rangle \quad \text { s.t. } \quad \operatorname{Diag}(y) \succeq A \tag{SDP}
\end{equation*}
$$

provides a $(2 / \pi)$-approximation of the BQP.
\triangleright Nesterov [Nes11] later showed that (SDP) above can be equivalently written in the dual form:

$$
\begin{array}{rl}
\max _{X} & F(X):=2 \ln \left(\sum_{i=1}^{n}\left\langle X, r_{i} r_{i}^{\top}\right\rangle^{1 / 2}\right) \tag{RBQP}\\
\text { s.t. } & X \in \mathbb{S}_{+}^{n},\left\langle I_{n}, X\right\rangle=1
\end{array}
$$

where $A=R^{\top} R$ and $R:=\left[r_{1} \cdots r_{n}\right]$, and \mathbb{S}_{+}^{n} denotes the cone of $n \times n$ real symmetric PSD matrices.
\triangleright MG method: $X^{0} \succ 0, \operatorname{tr}\left(X^{0}\right)=1$,

$$
\begin{aligned}
& \hat{X}^{t+1}=\exp \left\{\ln \left(X^{t}\right)+\ln \left(\nabla F\left(X^{t}\right)\right)\right\} \\
& X^{t+1}=\hat{X}^{t+1} / \operatorname{tr}\left(\hat{X}^{t+1}\right)
\end{aligned}
$$

Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [Dvu20; ZF22]: FW method for logarithmically-homogeneous self-concordant barriers
MG: (Generalized) Multiplicative gradient method (this work)
BSG [Nes11]: Barrier subgradient method

Table 1: Comparison of operations complexities (with $x^{0}=(1 / n) e$ or $\left.X^{0}=(1 / n) I_{n}\right)$

	RSGM	FW	MG	BSG	Regime
PET	$O\left(\frac{m n^{2}}{\varepsilon} \ln \left(\frac{\ln (n)}{\varepsilon}\right)\right)$	$O\left(\frac{m^{2} n}{\varepsilon}\right)$	$O\left(\frac{m n \ln (n)}{\varepsilon}\right)$	$O\left(\frac{m n^{2}}{\varepsilon^{2}} \ln ^{2}\left(\frac{n}{\varepsilon}\right)\right)$	$n=O(\exp (m))$
D-OPT	$O\left(\frac{m n^{2}}{\varepsilon} \ln \left(\frac{\ln (n n m)}{\varepsilon}\right)\right)$	$O\left(\frac{m^{2} n}{\varepsilon}\right)$	$O\left(\frac{m^{2} n \ln (n)}{\varepsilon}\right)^{\dagger}$	$O\left(\frac{m^{2} n^{2}}{\varepsilon^{2}} \ln ^{2}\left(\frac{n}{\varepsilon}\right)\right)$	
QST	$\mathrm{x} ?$	$O\left(\frac{m^{2} n^{2}}{\varepsilon}\right)$	$O\left(\frac{m n^{2} \ln (n)}{\varepsilon}\right)^{\ddagger}$	$O\left(\frac{m n^{3}}{\varepsilon^{2}} \ln ^{2}\left(\frac{n}{\varepsilon}\right)\right)$	$n=O(\exp (m))$
RBQP	$\mathrm{x} ?$	$\mathrm{x} ?$	$O\left(\frac{n^{3} \ln (n)}{\varepsilon}\right)$	$O\left(\frac{n^{4}}{\varepsilon^{2}} \ln ^{2}\left(\frac{n}{\varepsilon}\right)\right)$	

\dagger [Coh19] \ddagger [LCL21]

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.
$\triangleright \mathrm{A}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ is a linear operator, where \mathcal{K}_{2} is any regular cone.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.
$\triangleright \mathrm{A}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ is a linear operator, where \mathcal{K}_{2} is any regular cone.

- We require both $\mathrm{A}: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{2}$ and $\mathrm{A}^{*}: \operatorname{int} \mathcal{K}_{2}^{*} \rightarrow \operatorname{int} \mathcal{K}_{1}$.

A General Problem Class

$$
\begin{array}{cl}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.
$\triangleright \mathrm{A}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ is a linear operator, where \mathcal{K}_{2} is any regular cone.

- We require both $\mathrm{A}: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{2}$ and $\mathrm{A}^{*}: \operatorname{int} \mathcal{K}_{2}^{*} \rightarrow \operatorname{int} \mathcal{K}_{1}$.
$\triangleright f: \mathcal{K}_{2} \rightarrow \mathbb{R} \cup\{-\infty\}$ is concave, and is three-times differentiable and 1-logarithmically-homogeneous (1-LH) on int \mathcal{K}_{2}, namely

$$
f(t y)=f(y)+\ln t, \quad \forall y \in \operatorname{int} \mathcal{K}_{2}, \forall t>0 .
$$

A General Problem Class

$$
\begin{array}{cl}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.
$\triangleright \mathrm{A}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ is a linear operator, where \mathcal{K}_{2} is any regular cone.

- We require both $\mathrm{A}: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{2}$ and $\mathrm{A}^{*}: \operatorname{int} \mathcal{K}_{2}^{*} \rightarrow \operatorname{int} \mathcal{K}_{1}$.
$\triangleright f: \mathcal{K}_{2} \rightarrow \mathbb{R} \cup\{-\infty\}$ is concave, and is three-times differentiable and 1-logarithmically-homogeneous (1-LH) on int \mathcal{K}_{2}, namely

$$
f(t y)=f(y)+\ln t, \quad \forall y \in \operatorname{int} \mathcal{K}_{2}, \forall t>0
$$

Note that $-f$ is not necessarily a self-concordant function (or barrier).

- Consider $f(x)=2 \ln \left(\sum_{i=1}^{n} \sqrt{x_{i}}\right)$ for $x \in \mathbb{R}_{+}^{n} \backslash\{0\}$ in RBQP.

A General Problem Class

$$
\begin{array}{cl}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright \mathcal{K}_{1}$ is a symmetric cone (self-dual and homogeneous) with rank n.
$\triangleright e \in \operatorname{int} \mathcal{K}_{1}$ is the "center" of \mathcal{K}_{1}, e.g., $e=\mathbf{1}_{n}:=(1, \ldots, 1)$ if $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$ and $e=I_{n}$ if $\mathcal{K}_{1}=\mathbb{S}_{+}^{n}$.
$\triangleright \mathrm{A}: \mathcal{K}_{1} \rightarrow \mathcal{K}_{2}$ is a linear operator, where \mathcal{K}_{2} is any regular cone.

- We require both $\mathrm{A}: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{2}$ and $\mathrm{A}^{*}: \operatorname{int} \mathcal{K}_{2}^{*} \rightarrow \operatorname{int} \mathcal{K}_{1}$.
$\triangleright f: \mathcal{K}_{2} \rightarrow \mathbb{R} \cup\{-\infty\}$ is concave, and is three-times differentiable and 1-logarithmically-homogeneous (1-LH) on int \mathcal{K}_{2}, namely

$$
f(t y)=f(y)+\ln t, \quad \forall y \in \operatorname{int} \mathcal{K}_{2}, \forall t>0
$$

Note that $-f$ is not necessarily a self-concordant function (or barrier).

- Consider $f(x)=2 \ln \left(\sum_{i=1}^{n} \sqrt{x_{i}}\right)$ for $x \in \mathbb{R}_{+}^{n} \backslash\{0\}$ in RBQP.
\triangleright We require F to lie in the class of gradient log-convex functions.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

A General Problem Class

$$
\begin{array}{cl}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}$ (the dual cone of \mathcal{K}_{1})
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathbf{T} x=y$

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}\left(\right.$ the dual cone of $\left.\mathcal{K}_{1}\right)$
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathrm{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}\left(\right.$ the dual cone of $\left.\mathcal{K}_{1}\right)$
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathrm{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:
- the second-order cone \mathcal{Q}^{n+1},

A General Problem Class

$$
\begin{array}{cl}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}\left(\right.$ the dual cone of $\left.\mathcal{K}_{1}\right)$
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathbf{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:
- the second-order cone \mathcal{Q}^{n+1},
- the cone of $n \times n$ Hermitian PSD matrices over reals, complexes and quaternions,

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}\left(\right.$ the dual cone of $\left.\mathcal{K}_{1}\right)$
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathrm{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:
- the second-order cone \mathcal{Q}^{n+1},
- the cone of $n \times n$ Hermitian PSD matrices over reals, complexes and quaternions,
- the cone of 3×3 Hermitian PSD matrices over octonions (a.k.a. the 27-dimensional exceptional cone),

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}$ (the dual cone of \mathcal{K}_{1})
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathrm{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:
- the second-order cone \mathcal{Q}^{n+1},
- the cone of $n \times n$ Hermitian PSD matrices over reals, complexes and quaternions,
- the cone of 3×3 Hermitian PSD matrices over octonions (a.k.a. the 27-dimensional exceptional cone),
or the Cartesian product of these primitive cones, e.g., \mathbb{R}_{+}^{m}.

A General Problem Class

$$
\begin{array}{ll}
\max & F(x):=f(\mathrm{~A} x) \\
\text { s.t. } & x \in \mathcal{C}:=\left\{x \in \mathcal{K}_{1}:\langle e, x\rangle=1\right\} \tag{P}
\end{array}
$$

$\triangleright(\mathbb{V},\langle\cdot, \cdot\rangle)$ is a (finite-dimensional) inner-product space.
$\triangleright \mathcal{K}_{1} \subseteq \mathbb{V}$ is a symmetric cone if it is

- self-dual: $\mathcal{K}_{1}=\mathcal{K}_{1}^{*}\left(\right.$ the dual cone of $\left.\mathcal{K}_{1}\right)$
- homogeneous: for all $x, y \in \operatorname{int} \mathcal{K}_{1}$, there exists a linear automorphism T on \mathcal{K}_{1} such that $\mathrm{T} x=y$
\triangleright A symmetric cone is either one of the following five primitive cones:
- the second-order cone \mathcal{Q}^{n+1},
- the cone of $n \times n$ Hermitian PSD matrices over reals, complexes and quaternions,
- the cone of 3×3 Hermitian PSD matrices over octonions (a.k.a. the 27-dimensional exceptional cone),
or the Cartesian product of these primitive cones, e.g., \mathbb{R}_{+}^{m}.
$\triangleright \mathcal{C}$ is sometimes referred to as the "generalized unit simplex", including unit simplex, unit ℓ_{2}-ball and spectrahedron.

The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if $\nabla F: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{1}$ satisfies

$$
\begin{array}{r}
\ln (\nabla F(\lambda x+(1-\lambda) y)) \preceq_{\mathcal{K}_{1}} \lambda \ln (\nabla F(x))+(1-\lambda) \ln (\nabla F(y)) \tag{GLC}\\
\forall x, y \in \operatorname{int} \mathcal{K}_{1}, \quad \forall \lambda \in[0,1]
\end{array}
$$

The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if $\nabla F: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{1}$ satisfies

$$
\begin{array}{r}
\ln (\nabla F(\lambda x+(1-\lambda) y)) \preceq_{\mathcal{K}_{1}} \lambda \ln (\nabla F(x))+(1-\lambda) \ln (\nabla F(y)) \tag{GLC}\\
\forall x, y \in \operatorname{int} \mathcal{K}_{1}, \quad \forall \lambda \in[0,1]
\end{array}
$$

Recall that $F=f \circ \mathrm{~A}$, some examples of f that satisfy (GLC):

The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if $\nabla F: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{1}$ satisfies

$$
\begin{array}{r}
\ln (\nabla F(\lambda x+(1-\lambda) y)) \preceq_{\mathcal{K}_{1}} \lambda \ln (\nabla F(x))+(1-\lambda) \ln (\nabla F(y)) \tag{GLC}\\
\forall x, y \in \operatorname{int} \mathcal{K}_{1}, \quad \forall \lambda \in[0,1]
\end{array}
$$

Recall that $F=f \circ \mathrm{~A}$, some examples of f that satisfy (GLC):
$\triangleright \mathcal{K}_{1}=\mathbb{R}_{+}^{n}, \mathcal{K}_{2}$ is any symmetric cone with rank m, and

$$
f(y)=m^{-1} \ln \operatorname{det}(y), \quad \forall y \in \operatorname{int} \mathcal{K}_{2}
$$

(includes PET and D-OPT).

The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if $\nabla F: \operatorname{int} \mathcal{K}_{1} \rightarrow \operatorname{int} \mathcal{K}_{1}$ satisfies

$$
\begin{array}{r}
\ln (\nabla F(\lambda x+(1-\lambda) y)) \preceq_{\mathcal{K}_{1}} \lambda \ln (\nabla F(x))+(1-\lambda) \ln (\nabla F(y)) \\
\forall x, y \in \operatorname{int} \mathcal{K}_{1}, \quad \forall \lambda \in[0,1] \tag{GLC}
\end{array}
$$

Recall that $F=f \circ \mathrm{~A}$, some examples of f that satisfy (GLC):
$\triangleright \mathcal{K}_{1}=\mathbb{R}_{+}^{n}, \mathcal{K}_{2}$ is any symmetric cone with rank m, and

$$
f(y)=m^{-1} \ln \operatorname{det}(y), \quad \forall y \in \operatorname{int} \mathcal{K}_{2}
$$

(includes PET and D-OPT).
$\triangleright \mathcal{K}_{1}$ is any representable symmetric cone (all except the 27 -dimensional exceptional one), $\mathcal{K}_{2}=\mathbb{R}_{+}^{m}$ and

- $f(y)=\sum_{j=1}^{m} w_{j} \ln y_{j}$, for all $y>0$ and $w \in$ ri Δ_{m} (includes QST).
- $f(y)=\ln \|y\|_{p}:=p^{-1} \ln \left(\sum_{j=1}^{m} y_{j}^{p}\right)$, for all $y>0$ and $p \in(0,1]$ (includes RBQP).

Introducing Euclidean Jordan Algebra (EJA)

\triangleright We have developed a Generalized MG (GMG) method for this problem class.

Introducing Euclidean Jordan Algebra (EJA)

\triangleright We have developed a Generalized MG (GMG) method for this problem class.
\triangleright Our GMG method was developed and analyzed under the framework of EJA.

Introducing Euclidean Jordan Algebra (EJA)

\triangleright We have developed a Generalized MG (GMG) method for this problem class.
\triangleright Our GMG method was developed and analyzed under the framework of EJA.
\triangleright To understand this method, we will briefly review some basics of EJA.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)($ or simply $\mathbb{V})$ a EJA with rank n if

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)($ or simply $\mathbb{V})$ a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that

$$
x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V} .
$$

$\bullet\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
- $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
- $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)($ or simply $\mathbb{V})$ a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that

$$
x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}
$$

- $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
- $\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:
- the eigenvalues $\left\{\lambda_{i}(x)\right\}_{i=1}^{n}$ are real
- the "eigenvectors" $\left\{q_{i}(x)\right\}_{i=1}^{n} \subseteq \mathbb{V}$ form a Jordan frame.
\triangleright A Jordan frame $\left\{q_{i}\right\}_{i=1}^{n} \subseteq \mathbb{V}$ satisfy

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
$\bullet\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:
- the eigenvalues $\left\{\lambda_{i}(x)\right\}_{i=1}^{n}$ are real
- the "eigenvectors" $\left\{q_{i}(x)\right\}_{i=1}^{n} \subseteq \mathbb{V}$ form a Jordan frame.
\triangleright A Jordan frame $\left\{q_{i}\right\}_{i=1}^{n} \subseteq \mathbb{V}$ satisfy
- (Completeness) $\sum_{i=1}^{n} q_{i}=e$.

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
$\bullet\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:
- the eigenvalues $\left\{\lambda_{i}(x)\right\}_{i=1}^{n}$ are real
- the "eigenvectors" $\left\{q_{i}(x)\right\}_{i=1}^{n} \subseteq \mathbb{V}$ form a Jordan frame.
\triangleright A Jordan frame $\left\{q_{i}\right\}_{i=1}^{n} \subseteq \mathbb{V}$ satisfy
- (Completeness) $\sum_{i=1}^{n} q_{i}=e$.
- (Orthogonality) $q_{i} \circ q_{j}=0, \forall i \neq j, \quad i, j \in[n]$,

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
$\bullet\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:
- the eigenvalues $\left\{\lambda_{i}(x)\right\}_{i=1}^{n}$ are real
- the "eigenvectors" $\left\{q_{i}(x)\right\}_{i=1}^{n} \subseteq \mathbb{V}$ form a Jordan frame.
\triangleright A Jordan frame $\left\{q_{i}\right\}_{i=1}^{n} \subseteq \mathbb{V}$ satisfy
- (Completeness) $\sum_{i=1}^{n} q_{i}=e$.
- (Orthogonality) $q_{i} \circ q_{j}=0, \forall i \neq j, \quad i, j \in[n]$,
- (Primitiveness and Idempotency) $\left\|q_{i}\right\|=1$ and $q_{i}^{2}=q_{i}, \forall i \in[n]$,

Background of EJA

\triangleright We call $(\mathbb{V}, \circ,\langle\cdot, \cdot\rangle)$ (or simply \mathbb{V}) a EJA with rank n if

- \mathbb{V} is a vector space
- $\circ: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{V}$ is a bilinear operation on \mathbb{V} such that $x \circ y=y \circ x, \quad x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right), \quad \forall x, y \in \mathbb{V}$.
$\bullet\langle\cdot, \cdot\rangle: \mathbb{V} \times \mathbb{V} \rightarrow \mathbb{R}$ is associative: $\langle x, y \circ z\rangle=\langle x \circ y, z\rangle, \forall x, y, z \in \mathbb{V}$.
- Let $\|\cdot\|$ be the norm induced by $\langle\cdot, \cdot\rangle$.
\triangleright Let e be the identity element in \mathbb{V}, so that $x \circ e=e \circ x=x$.
\triangleright Any $x \in \mathbb{V}$ has the spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:
- the eigenvalues $\left\{\lambda_{i}(x)\right\}_{i=1}^{n}$ are real
- the "eigenvectors" $\left\{q_{i}(x)\right\}_{i=1}^{n} \subseteq \mathbb{V}$ form a Jordan frame.
\triangleright A Jordan frame $\left\{q_{i}\right\}_{i=1}^{n} \subseteq \mathbb{V}$ satisfy
- (Completeness) $\sum_{i=1}^{n} q_{i}=e$.
- (Orthogonality) $q_{i} \circ q_{j}=0, \forall i \neq j, \quad i, j \in[n]$,
- (Primitiveness and Idempotency) $\left\|q_{i}\right\|=1$ and $q_{i}^{2}=q_{i}, \forall i \in[n]$,

Background of EJA

\triangleright Define $\operatorname{tr}(x):=\sum_{i=1}^{n} \lambda_{i}(x)$ and $\operatorname{det}(x):=\prod_{i=1}^{n} \lambda_{i}(x)$.

Background of EJA

\triangleright Define $\operatorname{tr}(x):=\sum_{i=1}^{n} \lambda_{i}(x)$ and $\operatorname{det}(x):=\prod_{i=1}^{n} \lambda_{i}(x)$.
\triangleright W.L.O.G., let $\langle x, y\rangle=\operatorname{tr}(x \circ y)$ so that $\langle e, x\rangle=\operatorname{tr}(x)$.

Background of EJA

\triangleright Define $\operatorname{tr}(x):=\sum_{i=1}^{n} \lambda_{i}(x)$ and $\operatorname{det}(x):=\prod_{i=1}^{n} \lambda_{i}(x)$.
\triangleright W.L.O.G., let $\langle x, y\rangle=\operatorname{tr}(x \circ y)$ so that $\langle e, x\rangle=\operatorname{tr}(x)$.

Connection between symmetric cones and EJA:

Background of EJA

\triangleright Define $\operatorname{tr}(x):=\sum_{i=1}^{n} \lambda_{i}(x)$ and $\operatorname{det}(x):=\prod_{i=1}^{n} \lambda_{i}(x)$.
\triangleright W.L.O.G., let $\langle x, y\rangle=\operatorname{tr}(x \circ y)$ so that $\langle e, x\rangle=\operatorname{tr}(x)$.

Connection between symmetric cones and EJA:
For each symmetric cone \mathcal{K}, there exists a unique EJA \mathbb{V} such that $\mathcal{K} \subseteq \mathbb{V}$ and
$\triangleright x \in \mathcal{K} \Longleftrightarrow \lambda_{1}(x), \ldots, \lambda_{n}(x) \geq 0$
$\triangleright x \in \operatorname{int} \mathcal{K} \Longleftrightarrow \lambda_{1}(x), \ldots, \lambda_{n}(x)>0$

Background of EJA

\triangleright Define $\operatorname{tr}(x):=\sum_{i=1}^{n} \lambda_{i}(x)$ and $\operatorname{det}(x):=\prod_{i=1}^{n} \lambda_{i}(x)$.
\triangleright W.L.O.G., let $\langle x, y\rangle=\operatorname{tr}(x \circ y)$ so that $\langle e, x\rangle=\operatorname{tr}(x)$.

Connection between symmetric cones and EJA:
For each symmetric cone \mathcal{K}, there exists a unique EJA \mathbb{V} such that $\mathcal{K} \subseteq \mathbb{V}$ and
$\triangleright x \in \mathcal{K} \Longleftrightarrow \lambda_{1}(x), \ldots, \lambda_{n}(x) \geq 0$
$\triangleright x \in \operatorname{int} \mathcal{K} \Longleftrightarrow \lambda_{1}(x), \ldots, \lambda_{n}(x)>0$
The rank of \mathcal{K} is defined to be the rank of \mathbb{V}.

Generalized MG Method

Input: $x^{0} \in \operatorname{ri} \mathcal{C}$
Iterate : $\quad \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}$,

$$
x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right)
$$

Output: $\quad \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}$
(GMG)

Generalized MG Method

$$
\begin{aligned}
\text { Input }: & x^{0} \in \text { ri } \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{aligned}
$$

\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

Generalized MG Method

$$
\begin{aligned}
\text { Input }: & x^{0} \in \operatorname{ri} \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{aligned}
$$

(GMG)
\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in \operatorname{ri} \mathcal{C}$, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq \operatorname{ri} \mathcal{C}$.

Generalized MG Method

$$
\begin{aligned}
\text { Input }: & x^{0} \in \text { ri } \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{aligned}
$$

(GMG)
\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in$ ri \mathcal{C}, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq$ ri \mathcal{C}.
\triangleright If $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$, then $x=\sum_{i=1}^{n} x_{i} e_{i}$:

Generalized MG Method

$$
\begin{align*}
& \text { Input }: x^{0} \in \operatorname{ri} \mathcal{C} \\
& \text { Iterate }: \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
& \text { Output }: \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t} \\
& \hline
\end{align*}
$$

\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in \operatorname{ri} \mathcal{C}$, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq \operatorname{ri} \mathcal{C}$.
\triangleright If $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$, then $x=\sum_{i=1}^{n} x_{i} e_{i}$:

- both $\exp (\cdot)$ and $\ln (\cdot)$ are element-wise $\Longrightarrow \hat{x}^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right), \forall i \in[n]$

Generalized MG Method

$$
\begin{align*}
\text { Input }: & x^{0} \in \operatorname{ri} \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{align*}
$$

\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in$ ri \mathcal{C}, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq$ ri \mathcal{C}.
\triangleright If $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$, then $x=\sum_{i=1}^{n} x_{i} e_{i}$:

- both $\exp (\cdot)$ and $\ln (\cdot)$ are element-wise $\Longrightarrow \hat{x}^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right), \forall i \in[n]$
- $\operatorname{tr}\left(\hat{x}^{t+1}\right)=\left\langle\nabla F\left(x^{t}\right), x^{t}\right\rangle=1$ (since F is $1-\mathrm{LH}$)

Generalized MG Method

$$
\begin{align*}
\text { Input }: & x^{0} \in \text { ri } \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{align*}
$$

\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in \operatorname{ri} \mathcal{C}$, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq \operatorname{ri} \mathcal{C}$.
\triangleright If $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$, then $x=\sum_{i=1}^{n} x_{i} e_{i}$:

- both $\exp (\cdot)$ and $\ln (\cdot)$ are element-wise $\Longrightarrow \hat{x}^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right), \forall i \in[n]$
- $\operatorname{tr}\left(\hat{x}^{t+1}\right)=\left\langle\nabla F\left(x^{t}\right), x^{t}\right\rangle=1$ (since F is $1-\mathrm{LH}$)
- (GMG) becomes (MG), which only updates eigenvalues

Generalized MG Method

$$
\begin{align*}
& \text { Input }: x^{0} \in \text { ri } \mathcal{C} \\
& \text { Iterate }: \hat{x}^{t+1}:=\exp \left\{\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right\}, \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
& \text { Output }: \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t} \\
& \hline
\end{align*}
$$

\triangleright For $x \in \operatorname{int} \mathcal{K}_{1}$ with spectral decomposition $\sum_{i=1}^{n} \lambda_{i}(x) q_{i}(x)$:

$$
\exp (x)=\sum_{i=1}^{n} \exp \left(\lambda_{i}(x)\right) q_{i}(x), \quad \ln (x)=\sum_{i=1}^{n} \ln \left(\lambda_{i}(x)\right) q_{i}(x)
$$

\triangleright If $x^{0} \in$ ri \mathcal{C}, then $\left\{x^{t}\right\}_{t \geq 0} \subseteq$ ri \mathcal{C}.
\triangleright If $\mathcal{K}_{1}=\mathbb{R}_{+}^{n}$, then $x=\sum_{i=1}^{n} x_{i} e_{i}$:

- both $\exp (\cdot)$ and $\ln (\cdot)$ are element-wise $\Longrightarrow \hat{x}^{t+1}=x^{t} \circ \nabla F\left(x^{t}\right), \forall i \in[n]$
- $\operatorname{tr}\left(\hat{x}^{t+1}\right)=\left\langle\nabla F\left(x^{t}\right), x^{t}\right\rangle=1$ (since F is $1-\mathrm{LH}$)
- (GMG) becomes (MG), which only updates eigenvalues
\triangleright In general, (GMG) updates both eigenvalues and the "eigenvectors", and specializes to all the methods we've seen earlier.

Convergence Rate of (GMG)

$$
\begin{aligned}
\text { Input: } & x^{0} \in \text { riC } \\
\text { Iterate } & \hat{x}^{t+1}:=\exp \left(\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right), \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) . \\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{aligned}
$$

(GMG)

Convergence Rate of (GMG)

$$
\begin{aligned}
\text { Input: } & x^{0} \in \text { riC } \\
\text { Iterate } & \hat{x}^{t+1}:=\exp \left(\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right), \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{aligned}
$$

(GMG)

Theorem (Convergence rate of (GMG))

$$
F^{*}-F\left(\bar{x}^{T}\right) \leq \frac{\ln \lambda_{\min }^{-1}\left(x^{0}\right)}{T}, \quad \forall T \geq 1
$$

Convergence Rate of (GMG)

$$
\begin{align*}
\text { Input }: & x^{0} \in \text { ri } \mathcal{C} \\
\text { Iterate } & \hat{x}^{t+1}:=\exp \left(\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right) \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{align*}
$$

Theorem (Convergence rate of (GMG))

$$
F^{*}-F\left(\bar{x}^{T}\right) \leq \frac{\ln \lambda_{\min }^{-1}\left(x^{0}\right)}{T}, \quad \forall T \geq 1
$$

\triangleright The convergence rate is data independent - it does not depend on A.

Convergence Rate of (GMG)

$$
\begin{align*}
\text { Input }: & x^{0} \in \text { ri } \mathcal{C} \\
\text { Iterate }: & \hat{x}^{t+1}:=\exp \left(\ln \left(x^{t}\right)+\ln \left(\nabla F\left(x^{t}\right)\right)\right), \\
& x^{t+1}:=\hat{x}^{t+1} / \operatorname{tr}\left(\hat{x}^{t+1}\right) \tag{GMG}\\
\text { Output }: & \bar{x}^{T}:=(1 / T) \sum_{t=0}^{T-1} x^{t}
\end{align*}
$$

Theorem (Convergence rate of (GMG))

$$
F^{*}-F\left(\bar{x}^{T}\right) \leq \frac{\ln \lambda_{\min }^{-1}\left(x^{0}\right)}{T}, \quad \forall T \geq 1
$$

\triangleright The convergence rate is data independent - it does not depend on A.
\triangleright The optimal choice for the above bound is $x^{0}=(1 / n) e$, and we have

$$
F^{*}-F\left(\bar{x}^{T}\right) \leq \frac{\ln (n)}{T}, \quad \forall T \geq 1
$$

Recall that n is the rank of \mathcal{K}_{1}.

Future Work

\triangleright Develop other forms of the generalized MG method.
\triangleright Discover more applications of (P), particularly when \mathcal{K}_{1} or \mathcal{K}_{2} is a Cartesian product of second-order cones.
\triangleright Modify the GMG method to accommodate more complicated feasible sets.
\triangleright Efficient numerical implementation of GMG method for problems involving matrix variables.

Thank you!

References

[Ari72] S. Arimoto. "An algorithm for computing the capacity of arbitrary discrete memoryless channels". In: IEEE Trans. Inf. Theory 18.1 (1972), pp. 14-20.
[BBT17] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications". In: Math. Oper. Res. 42.2 (2017), pp. 330-348.
[Coh19] Michael B. Cohen et al. A near-optimal algorithm for approximating the John Ellipsoid. arXiv:1905.11580. 2019.
[Cov84] T. Cover. "An algorithm for maximizing expected log investment return". In: IEEE Trans. Inf. Theory 30.2 (1984), pp. 369-373.
[Dvu20] Pavel Dvurechensky et al. "Self-Concordant Analysis of Frank-Wolfe Algorithms". In: Proc. ICML. 2020, pp. 2814-2824.
[Fed72] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1972.
[FK94] J. Faraut and A. Korányi. Analysis on Symmetric Cones. Clarendon Press, 1994.
[Hra04] Zdeněk Hradil et al. "Maximum-Likelihood Methodsin Quantum Mechanics". In: Quantum State Estimation. Springer Berlin Heidelberg, 2004, pp. 59-112.
[LCL21] Chien-Ming Lin, Hao-Chung Cheng, and Yen-Huan Li. Maximum-Likelihood Quantum State Tomography by Cover's Method with Non-Asymptotic Analysis. arXiv:2110.00747. 2021.
[LFN18] Haihao. Lu, Robert M. Freund, and Yurii. Nesterov. "Relatively Smooth Convex Optimization by First-Order Methods, and Applications". In: SIAM J. Optim. 28.1 (2018), pp. 333-354.
[Nes11] Y. Nesterov. "Barrier subgradient method". In: Math. Program. (2011), 31—56.

References

[Nes98] Yu. Nesterov. "Semidefinite relaxation and nonconvex quadratic optimization". In: Optim. Methods Softw. 9.1-3 (1998), pp. 141-160.
[Tod16] Michael J. Todd. Minimum volume ellipsoids - theory and algorithms. Vol. 23. SIAM, 2016.
[TWK21] J. Tao, G. Q. Wang, and L. Kong. "The Araki-Lieb-Thirring inequality and the Golden-Thompson inequality in Euclidean Jordan algebras". In: Linear Multilinear Algebra 0.0 (2021), pp. 1-16.
[ZF22] Renbo Zhao and Robert M. Freund. Analysis of the Frank-Wolfe Method for Convex Composite Optimization involving a Logarithmically-Homogeneous Barrier. arXiv:2010.08999. 2022.
[Zha21] Renbo Zhao. Non-Asymptotic Convergence Analysis of the Multiplicative Gradient Algorithm for the Log-Optimal Investment Problems. arXiv:2109.05601. 2021.
[ZZS13] Ke Zhou, Hongyuan Zha, and Le Song. "Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes". In: Proc. AISTATS. 2013, pp. 641-649.

