
A Primal Dual Smoothing Framework for
Max-Structured Nonconvex Optimization

Renbo Zhao
Operations Research Center, Massachusetts Institute of Technology

INFORMS Annual Meeting
Nov 2020

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 1 / 30



1 Introduction
Problem Setup
Non-Euclidean Geometry
Main Contribution

2 Preliminaries

3 Primal Dual Smoothing Framework
Algorithm
Solving sub-problem
Complexity

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 2 / 30



1 Introduction
Problem Setup
Non-Euclidean Geometry
Main Contribution

2 Preliminaries

3 Primal Dual Smoothing Framework
Algorithm
Solving sub-problem
Complexity

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 3 / 30



1 Introduction
Problem Setup
Non-Euclidean Geometry
Main Contribution

2 Preliminaries

3 Primal Dual Smoothing Framework
Algorithm
Solving sub-problem
Complexity

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 4 / 30



Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

q∗ , min
x∈X⊆X

{
q(x) , f(x) + r(x)

}
, f(x) , max

y∈Y⊆Y
Φ(x, y)− g(y), (P)

B X and Y are finite-dimensional real normed spaces.

B X and Y are nonempty, closed and convex sets, and Y is bounded.

B q is bounded below, i.e., q∗ > −∞.

B r : X→ R , R ∪ {+∞} and g : Y→ R are closed, convex and proper.

B r and g are Mr- and Mg-Lipschitz on X and Y, respectively, with easily
computable Bregman proximal projections.
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Assumptions on Φ

The function Φ : X× Y→ [−∞,+∞] satisfies the following assumptions.

B For any x ∈ X , Φ(x, ·) is concave on Y.

B For any y ∈ Y, Φ(·, y) is γ-weakly convex on X for some γ ∈ (0, Lxx]:

−(γ/2) ‖x′ − x‖2 ≤ Φ(x′, y)−Φ(x, y)− 〈∇xΦ(x, y), x′ − x〉, ∀x, x′ ∈ X .

B Φ(·, ·) is jointly continuous on X × Y.

B Φ(·, ·) is differentiable on X × Y, and for any x, x′ ∈ X and y, y′ ∈ Y:

‖∇xΦ(x, y)−∇xΦ(x′, y)‖∗ ≤ Lxx‖x− x′‖,
‖∇xΦ(x, y)−∇xΦ(x, y′)‖∗ ≤ Lxy‖y − y′‖,
‖∇yΦ(x, y)−∇yΦ(x′, y)‖∗ ≤ Lxy‖x− x′‖,
‖∇yΦ(x, y)−∇yΦ(x, y′)‖∗ ≤ Lyy‖y − y′‖.
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Application: Distributionally Robust Optimization

min
x∈X

max
p∈P

Eξ∼p[`(x, ξ)] + r(x), Eξ∼p[`(x, ξ)] =
∑n
i=1 pi`(x, ξi).

B Let (Ξ,B, p̄) be a probability space, where Ξ , {ξ1, . . . , ξn}.

B Let ` : X× Ξ→ R be a loss function such that `(x, ξ) returns the loss of
decision x ∈ X given the (random) parameter ξ ∈ Ξ.

B Let `(·, ξ) be L(ξ)-smooth on X , i.e., `(·, ξ) is differentiable with
L(ξ)-Lipschitz gradient on X .

B Let P denotes the uncertainty set that contains p̄ as a nominal
distribution, e.g., P , {p ∈ ∆n : dTV(p, p̄) ≤ αX }.

B r : X→ R is a regularizer, e.g., ‖ · ‖1.
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Other applications

B Generative adversarial training with “simple” discriminator

B Dual problem of composite optimization

B Minimizing the largest eigenvalue of factorized matrices
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Non-Euclidean Geometry

B Let U ⊆ U be nonempty, closed and convex, where U is a
finite-dimensional real normed space.

B We call hU a distance generating function (DGF) on U if
• it is essentially smooth, i.e., cont. differentiable on int domhU 6= ∅,

and for any uk → u ∈ bdU , ‖∇hU (uk)‖∗ → +∞,
• it is continuous and 1-s.c. on U ,
• it generates the Bregman distance

DhU (u, u′) , hU (u)− hU (u′)− 〈∇hU (u′), u− u′〉
that satisfies DhU (u, u′) ≥ (1/2) ‖u− u′‖2.

B Example: U = (Rn, ‖·‖1), U = ∆n , {u ∈ Rn+ :
∑n
i=1 ui = 1},

hU =
∑n
i=1 ui log ui, DhU (u, u′) ≥ (1/2) ‖u− u′‖2

1.
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Bregman Proximal Projection (BPP)

Let u′ ∈ Uo, u∗ ∈ U∗ and ϕ : U→ R be CCP.

u′ 7→ u+ , arg minu∈U ϕ(u) + 〈u∗, u〉+ λ−1DhU (u, u′) (BPP)

B We say ϕ has an easily computable proximal operator if there exists a
DGF hU on U such that (BPP) has a (unique) easily computable solution.

B If U is a Hilbert space, then (BPP) becomes

u′ 7→ u+ , proxλϕ(u′ − λu∗).

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 11 / 30



Bregman Proximal Projection (BPP)

Let u′ ∈ Uo, u∗ ∈ U∗ and ϕ : U→ R be CCP.

u′ 7→ u+ , arg minu∈U ϕ(u) + 〈u∗, u〉+ λ−1DhU (u, u′) (BPP)

B We say ϕ has an easily computable proximal operator if there exists a
DGF hU on U such that (BPP) has a (unique) easily computable solution.

B If U is a Hilbert space, then (BPP) becomes

u′ 7→ u+ , proxλϕ(u′ − λu∗).

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 11 / 30



Bregman Proximal Projection (BPP)

Let u′ ∈ Uo, u∗ ∈ U∗ and ϕ : U→ R be CCP.

u′ 7→ u+ , arg minu∈U ϕ(u) + 〈u∗, u〉+ λ−1DhU (u, u′) (BPP)

B We say ϕ has an easily computable proximal operator if there exists a
DGF hU on U such that (BPP) has a (unique) easily computable solution.

B If U is a Hilbert space, then (BPP) becomes

u′ 7→ u+ , proxλϕ(u′ − λu∗).

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 11 / 30



Bregman Proximal Projection (BPP)

Let u′ ∈ Uo, u∗ ∈ U∗ and ϕ : U→ R be CCP.

u′ 7→ u+ , arg minu∈U ϕ(u) + 〈u∗, u〉+ λ−1DhU (u, u′) (BPP)

B We say ϕ has an easily computable proximal operator if there exists a
DGF hU on U such that (BPP) has a (unique) easily computable solution.

B If U is a Hilbert space, then (BPP) becomes

u′ 7→ u+ , proxλϕ(u′ − λu∗).

Renbo Zhao (MIT ORC) Primal Dual Nonconvex Smoothing 11 / 30



Near-stationary point

B Let ωX : X→ R be a DGF on X . Let ω be twice differentiable on X ′ and
βX -smooth on X , i.e., supx∈X ‖∇2ωX (x)‖ ≤ βX .

B x ∈ X an ε-near-stationary point of (P) if for any λ > 0,

‖x− prox(q, x, λ)‖ ≤ ελ/βX ,
prox(q, x, λ) , arg minx′∈X q(x′) + λ−1DωX (x′, x).

B Note that ‖x− prox(q, x, λ)‖ ≤ ελ/βX ⇒ dist
(
0, ∂q

(
prox(q, x, λ)

))
≤ ε.

In other words, prox(q, x, λ) is an approximate stationary point of (P),
and x is O(ε)-close to prox(q, x, λ).

B We refer to solving (P) as finding an ε-near-stationary point of (P).
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First-Order Oracles

B There exist a primal first-order oracle OP and a dual first-order oracle
OD that take in any (x, y) ∈ X × Y and returns ∇xΦ(x, y) and
∇yΦ(x, y), respectively.

B We use the primal and dual oracle complexities required by a certain
algorithm to obtain an ε-near-stationary point to measure its
performance.
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Main Contribution

B Propose a primal dual smoothing framework for solving (P) that unifies
two approaches, i.e., dual-then-primal and primal-then-dual smoothing.
• It solves (P) in its full generality, and improves the best-known

complexity (Theku. et al., 2019) even in the restricted setting, i.e.,
f ≡ 0, r ≡ 0 and both X and Y are Euclidean .

B As the cornerstone of our framework, we propose an efficient method for
solving a class of convex-concave saddle-point problems with primal
strong convexity, with significantly improved dual complexity.
• In this method, we develop the first non-Euclidean inexact

accelerated proximal gradient (APG) method for strongly convex
composite optimization.
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Comparison with Theku. et al. (2019)

f ≡ 0, r ≡ 0 and both X and Y are Euclidean

Algorithms Primal Oracle Comp.

Theku. et al. O
(
(Lxx + Lxy + Lyy)2ε−3 log2(ε−1)

)
Our method O

(√
γ(Lxx + γ)

(√
Lyyγ + Lxy

)
ε−3 log2(ε−1)

)
Algorithms Dual Oracle Comp.

Theku. et al. O
(
(Lxx + Lxy + Lyy)2ε−3 log2(ε−1)

)
Our method O

(
γ
(√

Lyyγ + Lxy

)
ε−3 log(ε−1)

)
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Fréchet sub-differential and derivative

B Define the Fréchet subdifferential of f at x ∈ dom f , denoted by ∂f(x), as

∂f(x) ,
{
x∗ ∈ X∗ : lim inf

h→0

f(x+ h)− f(x)− 〈x∗, h〉
‖h‖

≥ 0
}
.

In other words, x∗ ∈ ∂f(x) ⇔ f(x+ h) ≥ f(x) + 〈x∗, h〉+ o(‖h‖).

B When f is convex, ∂f becomes the convex sub-differential.

B Define the Fréchet derivative of f (or simply, gradient) at x, denoted by
∇f(x), as the unique element in X∗ that satisfies

lim
h→0

f(x+ h)− f(x)− 〈∇f(x), h〉
‖h‖

= 0.

In other words, f(x+ h) = f(x) + 〈∇f(x), h〉+ o(‖h‖).
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Smoothing

Define the dually smoothed f , with dual smoothing parameter ρ > 0, as

fρ(x) = max
y∈Y

[
φD
ρ (x, y) , Φ(x, y)− g(y)− ρωY(y)

]
, (DS)

where ωY : Y→ R is the DGF on Y.

Lemma 1

B ∇fρ(x) = ∇xΦ(x, y∗ρ(x)).

B ∇fρ is Lρ-Lipschitz on X , where Lρ , Lxx + L2
xy/ρ.

Lemma 2

Both of the functions f and fρ are γ-weakly convex on X .
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Primal Dual Smoothing Framework

For any ρ, λ > 0, x′ ∈ X and x ∈ X o, we define

Qλ(x′;x) , q(x′) + λ−1DωX (x′;x),
qλ(x) , infx′∈X Q

λ(x′;x), (λ-Moreau env. of q)
prox(q, x, λ) , arg minx′∈X Q

λ(x′;x),

qρ(x) , fρ(x) + r(x), (ρ-dually smoothed q)
Qλρ(x′;x) , qρ(x′) + λ−1DωX (x′;x),

qλρ (x) , infx′∈X Q
λ
ρ(x′;x), (λ-Moreau env. of qρ)

prox(qρ, x, λ) , arg minx′∈X Q
λ
ρ(x′;x).
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Primal Dual Smoothing Framework

I Input: Accuracy parameter η > 0, smoothing parameters λ = 1/(2γ),
ρ = η/(4ΩY(ωY))

I Init: k = 0, x1 ∈ X o

I Repeat

I k := k + 1.

I Find xk+1 ∈ X o such that Qλρ(xk+1;xk) ≤ qλρ (xk) + η.

I Until:
‖xk+1 − xk‖ ≤ 4

√
λη.

I Output: xk
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Two approaches

B (Dual-then-primal) Perform dual smoothing on q to obtain qρ, and then
apply proximal point method (PPM) on qρ.

B (Primal-then-dual) Apply PPM directly on q, and then in solving the
sub-problem, perform dual smoothing.

B Different analyses, but the same result.

Theorem 3

Let K denote the terminating iteration. For any ε > 0, if we set the accuracy
parameter η = ε2λ/(64β2

X ), then ‖xK − prox(q, xK , λ)‖ ≤ ελ/βX , i.e., xK is
an ε-near stationary point of (P).

Theorem 4
The method terminates with no more than K̄ ,

⌈
2(q(x1)− q∗)/(13η)

⌉
iterations.

Proof sketch: if ‖xk+1 − xk‖ > 4
√
λη, then q(xk+1) ≤ q(xk)− (13/2)η.
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Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

minx∈Xmaxy∈Y r(x) + λ−1DωX (x;xk) + Φ(x, y)− g(y)− ρωY(y),

where λ = 1/(2γ), ρ = η/(4ΩY(ωY)).

B Develop an efficient method to obtain (x, y) ∈ X × Y such that the
duality gap falls below η.

B Based on a newly developed non-Euclidean inexact accelerated proximal
gradient (APG) method for strongly convex composite optimization.

B Apply this method to the dual function, to find a dual point with dual
gap ≤ η/2, and solve for a primal point with primal gap ≤ η/2.

B This is conceptually simple, but with relatively complicated details
(hence omitted).
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Comparison with other methods

Algorithms Primal Oracle Comp. Dual Oracle Comp.

Restart O(ε−1) O(ε−1)

EGT-type O(ε−1/2 log(ε−1)) O(ε−1 log(ε−1))

Our method O(ε−1/2 log2(ε−1)) O(ε−1/2 log(ε−1))
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Overall Oracle Complexities

Based on the oracle complexities of our sub-problem solver, we can obtain the
overall complexities of the smoothing framework.

Theorem 5
For any ε > 0, choose η = ε2λ/(18β2

X ). Then it takes no more than

O
(√

γ(Lxx + γ)
(√

Lyyγ + Lxy
)
ε−3 log2(ε−1)

)
primal oracle calls and

O
(
γ
(√

Lyyγ + Lxy
)
ε−3 log(ε−1)

)
dual oracle calls to find an ε-near-stationary point of (P).
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Thank you!

https://arxiv.org/abs/2003.04375
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