A Primal Dual Smoothing Framework for Max-Structured Nonconvex Optimization

Renbo Zhao

Operations Research Center, Massachusetts Institute of Technology

INFORMS Annual Meeting
Nov 2020
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution

(2) Preliminaries

(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y), \tag{P}
\end{equation*}
$$

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y) \tag{P}
\end{equation*}
$$

$\triangleright \mathbb{X}$ and \mathbb{Y} are finite-dimensional real normed spaces.

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y) \tag{P}
\end{equation*}
$$

$\triangleright \mathbb{X}$ and \mathbb{Y} are finite-dimensional real normed spaces.
$\triangleright \mathcal{X}$ and \mathcal{Y} are nonempty, closed and convex sets, and \mathcal{Y} is bounded.

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y) \tag{P}
\end{equation*}
$$

$\triangleright \mathbb{X}$ and \mathbb{Y} are finite-dimensional real normed spaces.
$\triangleright \mathcal{X}$ and \mathcal{Y} are nonempty, closed and convex sets, and \mathcal{Y} is bounded.
$\triangleright q$ is bounded below, i.e., $q^{*}>-\infty$.

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y) \tag{P}
\end{equation*}
$$

$\triangleright \mathbb{X}$ and \mathbb{Y} are finite-dimensional real normed spaces.
$\triangleright \mathcal{X}$ and \mathcal{Y} are nonempty, closed and convex sets, and \mathcal{Y} is bounded.
$\triangleright q$ is bounded below, i.e., $q^{*}>-\infty$.
$\triangleright r: \mathbb{X} \rightarrow \overline{\mathbb{R}} \triangleq \mathbb{R} \cup\{+\infty\}$ and $g: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ are closed, convex and proper.

Problem Statement

Consider the following nonconvex nonsmooth optimization problem:

$$
\begin{equation*}
q^{*} \triangleq \min _{x \in \mathcal{X} \subseteq \mathbb{X}}\{q(x) \triangleq f(x)+r(x)\}, \quad f(x) \triangleq \max _{y \in \mathcal{Y} \subseteq \mathbb{Y}} \Phi(x, y)-g(y) \tag{P}
\end{equation*}
$$

$\triangleright \mathbb{X}$ and \mathbb{Y} are finite-dimensional real normed spaces.
$\triangleright \mathcal{X}$ and \mathcal{Y} are nonempty, closed and convex sets, and \mathcal{Y} is bounded.
$\triangleright q$ is bounded below, i.e., $q^{*}>-\infty$.
$\triangleright r: \mathbb{X} \rightarrow \overline{\mathbb{R}} \triangleq \mathbb{R} \cup\{+\infty\}$ and $g: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ are closed, convex and proper.
$\triangleright r$ and g are $M_{r^{-}}$and $M_{g^{\prime}}$-Lipschitz on \mathcal{X} and \mathcal{Y}, respectively, with easily computable Bregman proximal projections.

Assumptions on Φ

The function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ satisfies the following assumptions.

Assumptions on Φ

The function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ satisfies the following assumptions.
\triangleright For any $x \in \mathcal{X}, \Phi(x, \cdot)$ is concave on \mathcal{Y}.

Assumptions on Φ

The function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ satisfies the following assumptions.
\triangleright For any $x \in \mathcal{X}, \Phi(x, \cdot)$ is concave on \mathcal{Y}.
\triangleright For any $y \in \mathcal{Y}, \Phi(\cdot, y)$ is γ-weakly convex on \mathcal{X} for some $\gamma \in\left(0, L_{x x}\right]$:

$$
-(\gamma / 2)\left\|x^{\prime}-x\right\|^{2} \leq \Phi\left(x^{\prime}, y\right)-\Phi(x, y)-\left\langle\nabla_{x} \Phi(x, y), x^{\prime}-x\right\rangle, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

Assumptions on Φ

The function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ satisfies the following assumptions.
\triangleright For any $x \in \mathcal{X}, \Phi(x, \cdot)$ is concave on \mathcal{Y}.
\triangleright For any $y \in \mathcal{Y}, \Phi(\cdot, y)$ is γ-weakly convex on \mathcal{X} for some $\gamma \in\left(0, L_{x x}\right]$:

$$
-(\gamma / 2)\left\|x^{\prime}-x\right\|^{2} \leq \Phi\left(x^{\prime}, y\right)-\Phi(x, y)-\left\langle\nabla_{x} \Phi(x, y), x^{\prime}-x\right\rangle, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

$\triangleright \Phi(\cdot, \cdot)$ is jointly continuous on $\mathcal{X} \times \mathcal{Y}$.

Assumptions on Φ

The function $\Phi: \mathbb{X} \times \mathbb{Y} \rightarrow[-\infty,+\infty]$ satisfies the following assumptions.
\triangleright For any $x \in \mathcal{X}, \Phi(x, \cdot)$ is concave on \mathcal{Y}.
\triangleright For any $y \in \mathcal{Y}, \Phi(\cdot, y)$ is γ-weakly convex on \mathcal{X} for some $\gamma \in\left(0, L_{x x}\right]$:

$$
-(\gamma / 2)\left\|x^{\prime}-x\right\|^{2} \leq \Phi\left(x^{\prime}, y\right)-\Phi(x, y)-\left\langle\nabla_{x} \Phi(x, y), x^{\prime}-x\right\rangle, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

$\triangleright \Phi(\cdot, \cdot)$ is jointly continuous on $\mathcal{X} \times \mathcal{Y}$.
$\triangleright \Phi(\cdot, \cdot)$ is differentiable on $\mathcal{X} \times \mathcal{Y}$, and for any $x, x^{\prime} \in \mathcal{X}$ and $y, y^{\prime} \in \mathcal{Y}$:

$$
\begin{aligned}
& \left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x^{\prime}, y\right)\right\|_{*} \leq L_{x x}\left\|x-x^{\prime}\right\|, \\
& \left\|\nabla_{x} \Phi(x, y)-\nabla_{x} \Phi\left(x, y^{\prime}\right)\right\|_{*} \leq L_{x y}\left\|y-y^{\prime}\right\|, \\
& \left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x^{\prime}, y\right)\right\|_{*} \leq L_{x y}\left\|x-x^{\prime}\right\|, \\
& \left\|\nabla_{y} \Phi(x, y)-\nabla_{y} \Phi\left(x, y^{\prime}\right)\right\|_{*} \leq L_{y y}\left\|y-y^{\prime}\right\| .
\end{aligned}
$$

Application: Distributionally Robust Optimization

$\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right)$.

Application: Distributionally Robust Optimization

$\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right)$.
\triangleright Let $(\Xi, \mathcal{B}, \bar{p})$ be a probability space, where $\Xi \triangleq\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.

Application: Distributionally Robust Optimization

$\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right)$.
\triangleright Let $(\Xi, \mathcal{B}, \bar{p})$ be a probability space, where $\Xi \triangleq\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
\triangleright Let $\ell: \mathbb{X} \times \Xi \rightarrow \mathbb{R}$ be a loss function such that $\ell(x, \xi)$ returns the loss of decision $x \in \mathcal{X}$ given the (random) parameter $\xi \in \Xi$.

Application: Distributionally Robust Optimization

$$
\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right) .
$$

\triangleright Let $(\Xi, \mathcal{B}, \bar{p})$ be a probability space, where $\Xi \triangleq\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
\triangleright Let $\ell: \mathbb{X} \times \Xi \rightarrow \mathbb{R}$ be a loss function such that $\ell(x, \xi)$ returns the loss of decision $x \in \mathcal{X}$ given the (random) parameter $\xi \in \Xi$.
\triangleright Let $\ell(\cdot, \xi)$ be $L(\xi)$-smooth on \mathcal{X}, i.e., $\ell(\cdot, \xi)$ is differentiable with $L(\xi)$-Lipschitz gradient on \mathcal{X}.

Application: Distributionally Robust Optimization

$$
\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right) .
$$

\triangleright Let $(\Xi, \mathcal{B}, \bar{p})$ be a probability space, where $\Xi \triangleq\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
\triangleright Let $\ell: \mathbb{X} \times \Xi \rightarrow \mathbb{R}$ be a loss function such that $\ell(x, \xi)$ returns the loss of decision $x \in \mathcal{X}$ given the (random) parameter $\xi \in \Xi$.
\triangleright Let $\ell(\cdot, \xi)$ be $L(\xi)$-smooth on \mathcal{X}, i.e., $\ell(\cdot, \xi)$ is differentiable with $L(\xi)$-Lipschitz gradient on \mathcal{X}.
\triangleright Let \mathcal{P} denotes the uncertainty set that contains \bar{p} as a nominal distribution, e.g., $\mathcal{P} \triangleq\left\{p \in \Delta_{n}: d_{\mathrm{TV}}(p, \bar{p}) \leq \alpha_{\mathcal{X}}\right\}$.

Application: Distributionally Robust Optimization

$$
\min _{x \in \mathcal{X}} \max _{p \in \mathcal{P}} \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]+r(x), \quad \mathbb{E}_{\xi \sim p}[\ell(x, \xi)]=\sum_{i=1}^{n} p_{i} \ell\left(x, \xi_{i}\right) .
$$

\triangleright Let $(\Xi, \mathcal{B}, \bar{p})$ be a probability space, where $\Xi \triangleq\left\{\xi_{1}, \ldots, \xi_{n}\right\}$.
\triangleright Let $\ell: \mathbb{X} \times \Xi \rightarrow \mathbb{R}$ be a loss function such that $\ell(x, \xi)$ returns the loss of decision $x \in \mathcal{X}$ given the (random) parameter $\xi \in \Xi$.
\triangleright Let $\ell(\cdot, \xi)$ be $L(\xi)$-smooth on \mathcal{X}, i.e., $\ell(\cdot, \xi)$ is differentiable with $L(\xi)$-Lipschitz gradient on \mathcal{X}.
\triangleright Let \mathcal{P} denotes the uncertainty set that contains \bar{p} as a nominal distribution, e.g., $\mathcal{P} \triangleq\left\{p \in \Delta_{n}: d_{\mathrm{TV}}(p, \bar{p}) \leq \alpha_{\mathcal{X}}\right\}$.
$\triangleright r: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ is a regularizer, e.g., $\|\cdot\|_{1}$.

Other applications

Other applications

\triangleright Generative adversarial training with "simple" discriminator

Other applications

\triangleright Generative adversarial training with "simple" discriminator
\triangleright Dual problem of composite optimization

Other applications

\triangleright Generative adversarial training with "simple" discriminator
\triangleright Dual problem of composite optimization
\triangleright Minimizing the largest eigenvalue of factorized matrices
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Non-Euclidean Geometry

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
\triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
\triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

- it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
\triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

- it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous and 1-s.c. on \mathcal{U},

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
\triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

- it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous and 1-s.c. on \mathcal{U},
- it generates the Bregman distance

$$
D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \triangleq h_{\mathcal{U}}(u)-h_{\mathcal{U}}\left(u^{\prime}\right)-\left\langle\nabla h_{\mathcal{U}}\left(u^{\prime}\right), u-u^{\prime}\right\rangle
$$

that satisfies $D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \geq(1 / 2)\left\|u-u^{\prime}\right\|^{2}$.

Non-Euclidean Geometry

\triangleright Let $\mathcal{U} \subseteq \mathbb{U}$ be nonempty, closed and convex, where \mathbb{U} is a finite-dimensional real normed space.
\triangleright We call $h_{\mathcal{U}}$ a distance generating function (DGF) on \mathcal{U} if

- it is essentially smooth, i.e., cont. differentiable on int dom $h_{\mathcal{U}} \neq \emptyset$, and for any $u_{k} \rightarrow u \in \operatorname{bd} \mathcal{U},\left\|\nabla h_{\mathcal{U}}\left(u_{k}\right)\right\|_{*} \rightarrow+\infty$,
- it is continuous and 1-s.c. on \mathcal{U},
- it generates the Bregman distance

$$
D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \triangleq h_{\mathcal{U}}(u)-h_{\mathcal{U}}\left(u^{\prime}\right)-\left\langle\nabla h_{\mathcal{U}}\left(u^{\prime}\right), u-u^{\prime}\right\rangle
$$

that satisfies $D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \geq(1 / 2)\left\|u-u^{\prime}\right\|^{2}$.
\triangleright Example: $\mathbb{U}=\left(\mathbb{R}^{n},\|\cdot\|_{1}\right), \mathcal{U}=\Delta_{n} \triangleq\left\{u \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} u_{i}=1\right\}$, $h_{\mathcal{U}}=\sum_{i=1}^{n} u_{i} \log u_{i}, D_{h u}\left(u, u^{\prime}\right) \geq(1 / 2)\left\|u-u^{\prime}\right\|_{1}^{2}$.

Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right)
$$

Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

\triangleright We say φ has an easily computable proximal operator if there exists a DGF $h_{\mathcal{U}}$ on \mathcal{U} such that (BPP) has a (unique) easily computable solution.

Bregman Proximal Projection (BPP)

Let $u^{\prime} \in \mathcal{U}^{o}, u^{*} \in \mathbb{U}^{*}$ and $\varphi: \mathbb{U} \rightarrow \overline{\mathbb{R}}$ be CCP.

$$
\begin{equation*}
u^{\prime} \mapsto u^{+} \triangleq \arg \min _{u \in \mathcal{U}} \varphi(u)+\left\langle u^{*}, u\right\rangle+\lambda^{-1} D_{h_{\mathcal{U}}}\left(u, u^{\prime}\right) \tag{BPP}
\end{equation*}
$$

\triangleright We say φ has an easily computable proximal operator if there exists a DGF $h_{\mathcal{U}}$ on \mathcal{U} such that (BPP) has a (unique) easily computable solution.
\triangleright If \mathbb{U} is a Hilbert space, then (BPP) becomes

$$
u^{\prime} \mapsto u^{+} \triangleq \operatorname{prox}_{\lambda \varphi}\left(u^{\prime}-\lambda u^{*}\right) .
$$

Near-stationary point

Near-stationary point

\triangleright Let $\omega_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ be a DGF on \mathcal{X}. Let ω be twice differentiable on \mathcal{X}^{\prime} and $\beta_{\mathcal{X}}$-smooth on \mathcal{X}, i.e., $\sup _{x \in \mathcal{X}}\left\|\nabla^{2} \omega_{\mathcal{X}}(x)\right\| \leq \beta_{\mathcal{X}}$.

Near-stationary point

\triangleright Let $\omega_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ be a DGF on \mathcal{X}. Let ω be twice differentiable on \mathcal{X}^{\prime} and $\beta_{\mathcal{X}}$-smooth on \mathcal{X}, i.e., $\sup _{x \in \mathcal{X}}\left\|\nabla^{2} \omega_{\mathcal{X}}(x)\right\| \leq \beta_{\mathcal{X}}$.
$\triangleright x \in \mathcal{X}$ an ε-near-stationary point of (P) if for any $\lambda>0$,

$$
\begin{aligned}
& \|x-\operatorname{prox}(q, x, \lambda)\| \leq \varepsilon \lambda / \beta_{\mathcal{X}} \\
& \operatorname{prox}(q, x, \lambda) \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} q\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime}, x\right)
\end{aligned}
$$

Near-stationary point

\triangleright Let $\omega_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ be a DGF on \mathcal{X}. Let ω be twice differentiable on \mathcal{X}^{\prime} and $\beta_{\mathcal{X}}$-smooth on \mathcal{X}, i.e., $\sup _{x \in \mathcal{X}}\left\|\nabla^{2} \omega_{\mathcal{X}}(x)\right\| \leq \beta_{\mathcal{X}}$.
$\triangleright x \in \mathcal{X}$ an ε-near-stationary point of (P) if for any $\lambda>0$,

$$
\begin{aligned}
& \|x-\operatorname{prox}(q, x, \lambda)\| \leq \varepsilon \lambda / \beta_{\mathcal{X}} \\
& \operatorname{prox}(q, x, \lambda) \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} q\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime}, x\right) .
\end{aligned}
$$

\triangleright Note that $\|x-\operatorname{prox}(q, x, \lambda)\| \leq \varepsilon \lambda / \beta_{\mathcal{X}} \Rightarrow \operatorname{dist}(0, \partial q(\operatorname{prox}(q, x, \lambda))) \leq \varepsilon$. In other words, $\operatorname{prox}(q, x, \lambda)$ is an approximate stationary point of (P), and x is $O(\varepsilon)$-close to $\operatorname{prox}(q, x, \lambda)$.

Near-stationary point

\triangleright Let $\omega_{\mathcal{X}}: \mathbb{X} \rightarrow \overline{\mathbb{R}}$ be a DGF on \mathcal{X}. Let ω be twice differentiable on \mathcal{X}^{\prime} and $\beta_{\mathcal{X}}$-smooth on \mathcal{X}, i.e., $\sup _{x \in \mathcal{X}}\left\|\nabla^{2} \omega_{\mathcal{X}}(x)\right\| \leq \beta_{\mathcal{X}}$.
$\triangleright x \in \mathcal{X}$ an ε-near-stationary point of (P) if for any $\lambda>0$,

$$
\begin{aligned}
& \|x-\operatorname{prox}(q, x, \lambda)\| \leq \varepsilon \lambda / \beta_{\mathcal{X}} \\
& \operatorname{prox}(q, x, \lambda) \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} q\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime}, x\right)
\end{aligned}
$$

\triangleright Note that $\|x-\operatorname{prox}(q, x, \lambda)\| \leq \varepsilon \lambda / \beta_{\mathcal{X}} \Rightarrow \operatorname{dist}(0, \partial q(\operatorname{prox}(q, x, \lambda))) \leq \varepsilon$. In other words, $\operatorname{prox}(q, x, \lambda)$ is an approximate stationary point of (P), and x is $O(\varepsilon)$-close to $\operatorname{prox}(q, x, \lambda)$.
\triangleright We refer to solving (P) as finding an ε-near-stationary point of (P).

First-Order Oracles

First-Order Oracles

\triangleright There exist a primal first-order oracle \mathscr{O}^{P} and a dual first-order oracle \mathscr{O}^{D} that take in any $(x, y) \in \mathcal{X} \times \mathcal{Y}$ and returns $\nabla_{x} \Phi(x, y)$ and $\nabla_{y} \Phi(x, y)$, respectively.

First-Order Oracles

\triangleright There exist a primal first-order oracle \mathscr{O}^{P} and a dual first-order oracle \mathscr{O}^{D} that take in any $(x, y) \in \mathcal{X} \times \mathcal{Y}$ and returns $\nabla_{x} \Phi(x, y)$ and $\nabla_{y} \Phi(x, y)$, respectively.
\triangleright We use the primal and dual oracle complexities required by a certain algorithm to obtain an ε-near-stationary point to measure its performance.
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Main Contribution

Main Contribution

\triangleright Propose a primal dual smoothing framework for solving (P) that unifies two approaches, i.e., dual-then-primal and primal-then-dual smoothing.

Main Contribution

\triangleright Propose a primal dual smoothing framework for solving (P) that unifies two approaches, i.e., dual-then-primal and primal-then-dual smoothing.

- It solves (P) in its full generality, and improves the best-known complexity (Theku. et al., 2019) even in the restricted setting, i.e., $f \equiv 0, r \equiv 0$ and both \mathbb{X} and \mathbb{Y} are Euclidean.

Main Contribution

\triangleright Propose a primal dual smoothing framework for solving (P) that unifies two approaches, i.e., dual-then-primal and primal-then-dual smoothing.

- It solves (P) in its full generality, and improves the best-known complexity (Theku. et al., 2019) even in the restricted setting, i.e., $f \equiv 0, r \equiv 0$ and both \mathbb{X} and \mathbb{Y} are Euclidean.
\triangleright As the cornerstone of our framework, we propose an efficient method for solving a class of convex-concave saddle-point problems with primal strong convexity, with significantly improved dual complexity.

Main Contribution

\triangleright Propose a primal dual smoothing framework for solving (P) that unifies two approaches, i.e., dual-then-primal and primal-then-dual smoothing.

- It solves (P) in its full generality, and improves the best-known complexity (Theku. et al., 2019) even in the restricted setting, i.e., $f \equiv 0, r \equiv 0$ and both \mathbb{X} and \mathbb{Y} are Euclidean.
\triangleright As the cornerstone of our framework, we propose an efficient method for solving a class of convex-concave saddle-point problems with primal strong convexity, with significantly improved dual complexity.
- In this method, we develop the first non-Euclidean inexact accelerated proximal gradient (APG) method for strongly convex composite optimization.

Comparison with Theku. et al. (2019)

$f \equiv 0, r \equiv 0$ and both \mathbb{X} and \mathbb{Y} are Euclidean

Algorithms	Primal Oracle Comp.
Theku. et al.	$O\left(\left(L_{x x}+L_{x y}+L_{y y}\right)^{2} \varepsilon^{-3} \log ^{2}\left(\varepsilon^{-1}\right)\right)$
Our method	$O\left(\sqrt{\gamma\left(L_{x x}+\gamma\right)}\left(\sqrt{L_{y y} \gamma}+L_{x y}\right) \varepsilon^{-3} \log ^{2}\left(\varepsilon^{-1}\right)\right)$

Algorithms	Dual Oracle Comp.
Theku. et al.	$O\left(\left(L_{x x}+L_{x y}+L_{y y}\right)^{2} \varepsilon^{-3} \log ^{2}\left(\varepsilon^{-1}\right)\right)$
Our method	$O\left(\gamma\left(\sqrt{L_{y y} \gamma}+L_{x y}\right) \varepsilon^{-3} \log \left(\varepsilon^{-1}\right)\right)$

(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution

(2) Preliminaries

(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Fréchet sub-differential and derivative

Fréchet sub-differential and derivative

\triangleright Define the Fréchet subdifferential of f at $x \in \operatorname{dom} f$, denoted by $\partial f(x)$, as

$$
\partial f(x) \triangleq\left\{x^{*} \in \mathbb{X}^{*}: \liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)-\left\langle x^{*}, h\right\rangle}{\|h\|} \geq 0\right\}
$$

In other words, $x^{*} \in \partial f(x) \Leftrightarrow f(x+h) \geq f(x)+\left\langle x^{*}, h\right\rangle+o(\|h\|)$.

Fréchet sub-differential and derivative

\triangleright Define the Fréchet subdifferential of f at $x \in \operatorname{dom} f$, denoted by $\partial f(x)$, as

$$
\partial f(x) \triangleq\left\{x^{*} \in \mathbb{X}^{*}: \liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)-\left\langle x^{*}, h\right\rangle}{\|h\|} \geq 0\right\}
$$

In other words, $x^{*} \in \partial f(x) \Leftrightarrow f(x+h) \geq f(x)+\left\langle x^{*}, h\right\rangle+o(\|h\|)$.
\triangleright When f is convex, ∂f becomes the convex sub-differential.

Fréchet sub-differential and derivative

\triangleright Define the Fréchet subdifferential of f at $x \in \operatorname{dom} f$, denoted by $\partial f(x)$, as

$$
\partial f(x) \triangleq\left\{x^{*} \in \mathbb{X}^{*}: \liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)-\left\langle x^{*}, h\right\rangle}{\|h\|} \geq 0\right\} .
$$

In other words, $x^{*} \in \partial f(x) \Leftrightarrow f(x+h) \geq f(x)+\left\langle x^{*}, h\right\rangle+o(\|h\|)$.
\triangleright When f is convex, ∂f becomes the convex sub-differential.
\triangleright Define the Fréchet derivative of f (or simply, gradient) at x, denoted by $\nabla f(x)$, as the unique element in \mathbb{X}^{*} that satisfies

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)-\langle\nabla f(x), h\rangle}{\|h\|}=0 .
$$

In other words, $f(x+h)=f(x)+\langle\nabla f(x), h\rangle+o(\|h\|)$.

Smoothing

Smoothing

Define the dually smoothed f, with dual smoothing parameter $\rho>0$, as

$$
\begin{equation*}
f_{\rho}(x)=\max _{y \in \mathcal{Y}}\left[\phi_{\rho}^{\mathrm{D}}(x, y) \triangleq \Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y)\right] \tag{DS}
\end{equation*}
$$

where $\omega_{\mathcal{Y}}: \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ is the DGF on \mathcal{Y}.
Lemma 1
$\triangleright \nabla f_{\rho}(x)=\nabla_{x} \Phi\left(x, y_{\rho}^{*}(x)\right)$.
$\triangleright \nabla f_{\rho}$ is L_{ρ}-Lipschitz on \mathcal{X}, where $L_{\rho} \triangleq L_{x x}+L_{x y}^{2} / \rho$.
Lemma 2
Both of the functions f and f_{ρ} are γ-weakly convex on \mathcal{X}.
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution
(2) Preliminaries
(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Primal Dual Smoothing Framework

For any $\rho, \lambda>0, x^{\prime} \in \mathcal{X}$ and $x \in \mathcal{X}^{o}$, we define

$$
\begin{array}{rlr}
Q^{\lambda}\left(x^{\prime} ; x\right) & \triangleq q\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime} ; x\right), \\
q^{\lambda}(x) & \triangleq \inf _{x^{\prime} \in \mathcal{X}} Q^{\lambda}\left(x^{\prime} ; x\right), & \quad \text { (} \lambda \text {-Moreau env. of } q) \\
\operatorname{prox}(q, x, \lambda) & \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} Q^{\lambda}\left(x^{\prime} ; x\right), & \\
q_{\rho}(x) & \triangleq f_{\rho}(x)+r(x), & \\
Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right) & \triangleq q_{\rho}\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime} ; x\right), \\
q_{\rho}^{\lambda}(x) & \triangleq \inf _{x^{\prime} \in \mathcal{X}} Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right), & \\
\operatorname{prox}\left(q_{\rho}, x, \lambda\right) & \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right) .
\end{array}
$$

Primal Dual Smoothing Framework

For any $\rho, \lambda>0, x^{\prime} \in \mathcal{X}$ and $x \in \mathcal{X}^{o}$, we define

$$
\begin{aligned}
Q^{\lambda}\left(x^{\prime} ; x\right) & \triangleq q\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime} ; x\right) \\
q^{\lambda}(x) & \triangleq \inf _{x^{\prime} \in \mathcal{X}} Q^{\lambda}\left(x^{\prime} ; x\right) \\
\operatorname{prox}(q, x, \lambda) & \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} Q^{\lambda}\left(x^{\prime} ; x\right), \\
q_{\rho}(x) & \triangleq f_{\rho}(x)+r(x) \\
Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right) & \triangleq q_{\rho}\left(x^{\prime}\right)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x^{\prime} ; x\right), \\
q_{\rho}^{\lambda}(x) & \triangleq \inf _{x^{\prime} \in \mathcal{X}} Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right) \\
\operatorname{prox}\left(q_{\rho}, x, \lambda\right) & \triangleq \arg \min _{x^{\prime} \in \mathcal{X}} Q_{\rho}^{\lambda}\left(x^{\prime} ; x\right)
\end{aligned}
$$

$$
\text { (} \rho \text {-dually smoothed } q \text {) }
$$

$$
\left(\lambda \text {-Moreau env. of } q_{\rho}\right)
$$

Primal Dual Smoothing Framework

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$
- Repeat

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$
- Repeat
- $k:=k+1$.

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$
- Repeat
- $k:=k+1$.
- Find $x_{k+1} \in \mathcal{X}^{o}$ such that $Q_{\rho}^{\lambda}\left(x_{k+1} ; x_{k}\right) \leq q_{\rho}^{\lambda}\left(x_{k}\right)+\eta$.

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$
- Repeat
- $k:=k+1$.
- Find $x_{k+1} \in \mathcal{X}^{o}$ such that $Q_{\rho}^{\lambda}\left(x_{k+1} ; x_{k}\right) \leq q_{\rho}^{\lambda}\left(x_{k}\right)+\eta$.
- Until:

$$
\left\|x_{k+1}-x_{k}\right\| \leq 4 \sqrt{\lambda \eta} .
$$

Primal Dual Smoothing Framework

- Input: Accuracy parameter $\eta>0$, smoothing parameters $\lambda=1 /(2 \gamma)$, $\rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$
- Init: $k=0, x_{1} \in \mathcal{X}^{o}$
- Repeat
- $k:=k+1$.
- Find $x_{k+1} \in \mathcal{X}^{o}$ such that $Q_{\rho}^{\lambda}\left(x_{k+1} ; x_{k}\right) \leq q_{\rho}^{\lambda}\left(x_{k}\right)+\eta$.
- Until:

$$
\left\|x_{k+1}-x_{k}\right\| \leq 4 \sqrt{\lambda \eta} .
$$

- Output: x_{k}

Two approaches

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.
\triangleright (Primal-then-dual) Apply PPM directly on q, and then in solving the sub-problem, perform dual smoothing.

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.
\triangleright (Primal-then-dual) Apply PPM directly on q, and then in solving the sub-problem, perform dual smoothing.
\triangleright Different analyses, but the same result.

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.
\triangleright (Primal-then-dual) Apply PPM directly on q, and then in solving the sub-problem, perform dual smoothing.
\triangleright Different analyses, but the same result.

Theorem 3

Let K denote the terminating iteration. For any $\varepsilon>0$, if we set the accuracy parameter $\eta=\varepsilon^{2} \lambda /\left(64 \beta_{\mathcal{X}}^{2}\right)$, then $\left\|x_{K}-\operatorname{prox}\left(q, x_{K}, \lambda\right)\right\| \leq \varepsilon \lambda / \beta_{\mathcal{X}}$, i.e., x_{K} is an ε-near stationary point of (P).

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.
\triangleright (Primal-then-dual) Apply PPM directly on q, and then in solving the sub-problem, perform dual smoothing.
\triangleright Different analyses, but the same result.

Theorem 3

Let K denote the terminating iteration. For any $\varepsilon>0$, if we set the accuracy parameter $\eta=\varepsilon^{2} \lambda /\left(64 \beta_{\mathcal{X}}^{2}\right)$, then $\left\|x_{K}-\operatorname{prox}\left(q, x_{K}, \lambda\right)\right\| \leq \varepsilon \lambda / \beta_{\mathcal{X}}$, i.e., x_{K} is an ε-near stationary point of (P).

Theorem 4
The method terminates with no more than $\bar{K} \triangleq\left\lceil 2\left(q\left(x_{1}\right)-q^{*}\right) /(13 \eta)\right\rceil$ iterations.

Two approaches

\triangleright (Dual-then-primal) Perform dual smoothing on q to obtain q_{ρ}, and then apply proximal point method (PPM) on q_{ρ}.
\triangleright (Primal-then-dual) Apply PPM directly on q, and then in solving the sub-problem, perform dual smoothing.
\triangleright Different analyses, but the same result.

Theorem 3

Let K denote the terminating iteration. For any $\varepsilon>0$, if we set the accuracy parameter $\eta=\varepsilon^{2} \lambda /\left(64 \beta_{\mathcal{X}}^{2}\right)$, then $\left\|x_{K}-\operatorname{prox}\left(q, x_{K}, \lambda\right)\right\| \leq \varepsilon \lambda / \beta_{\mathcal{X}}$, i.e., x_{K} is an ε-near stationary point of (P).

Theorem 4
The method terminates with no more than $\bar{K} \triangleq\left\lceil 2\left(q\left(x_{1}\right)-q^{*}\right) /(13 \eta)\right\rceil$ iterations.

Proof sketch: if $\left\|x_{k+1}-x_{k}\right\|>4 \sqrt{\lambda \eta}$, then $q\left(x_{k+1}\right) \leq q\left(x_{k}\right)-(13 / 2) \eta$.
(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution

(2) Preliminaries

(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} r(x)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x ; x_{k}\right)+\Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y),
$$

where $\lambda=1 /(2 \gamma), \rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$.

Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} r(x)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x ; x_{k}\right)+\Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y),
$$

where $\lambda=1 /(2 \gamma), \rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$.
\triangleright Develop an efficient method to obtain $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that the duality gap falls below η.

Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} r(x)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x ; x_{k}\right)+\Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y),
$$

where $\lambda=1 /(2 \gamma), \rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{y}\right)\right)$.
\triangleright Develop an efficient method to obtain $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that the duality gap falls below η.
\triangleright Based on a newly developed non-Euclidean inexact accelerated proximal gradient (APG) method for strongly convex composite optimization.

Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} r(x)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x ; x_{k}\right)+\Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y),
$$

where $\lambda=1 /(2 \gamma), \rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$.
\triangleright Develop an efficient method to obtain $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that the duality gap falls below η.
\triangleright Based on a newly developed non-Euclidean inexact accelerated proximal gradient (APG) method for strongly convex composite optimization.
\triangleright Apply this method to the dual function, to find a dual point with dual gap $\leq \eta / 2$, and solve for a primal point with primal gap $\leq \eta / 2$.

Solving sub-problem

The sub-problem is indeed a convex-concave saddle-point problem, i.e.,

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} r(x)+\lambda^{-1} D_{\omega_{\mathcal{X}}}\left(x ; x_{k}\right)+\Phi(x, y)-g(y)-\rho \omega_{\mathcal{Y}}(y),
$$

where $\lambda=1 /(2 \gamma), \rho=\eta /\left(4 \Omega_{\mathcal{Y}}\left(\omega_{\mathcal{Y}}\right)\right)$.
\triangleright Develop an efficient method to obtain $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that the duality gap falls below η.
\triangleright Based on a newly developed non-Euclidean inexact accelerated proximal gradient (APG) method for strongly convex composite optimization.
\triangleright Apply this method to the dual function, to find a dual point with dual gap $\leq \eta / 2$, and solve for a primal point with primal gap $\leq \eta / 2$.
\triangleright This is conceptually simple, but with relatively complicated details (hence omitted).

Comparison with other methods

Algorithms	Primal Oracle Comp.	Dual Oracle Comp.
Restart	$O\left(\varepsilon^{-1}\right)$	$O\left(\varepsilon^{-1}\right)$
EGT-type	$O\left(\varepsilon^{-1 / 2} \log \left(\varepsilon^{-1}\right)\right)$	$O\left(\varepsilon^{-1} \log \left(\varepsilon^{-1}\right)\right)$
Our method	$O\left(\varepsilon^{-1 / 2} \log ^{2}\left(\varepsilon^{-1}\right)\right)$	$O\left(\varepsilon^{-1 / 2} \log \left(\varepsilon^{-1}\right)\right)$

(1) Introduction

Problem Setup
Non-Euclidean Geometry
Main Contribution

(2) Preliminaries

(3) Primal Dual Smoothing Framework

Algorithm
Solving sub-problem
Complexity

Overall Oracle Complexities

Based on the oracle complexities of our sub-problem solver, we can obtain the overall complexities of the smoothing framework.

Overall Oracle Complexities

Based on the oracle complexities of our sub-problem solver, we can obtain the overall complexities of the smoothing framework.

Theorem 5
For any $\varepsilon>0$, choose $\eta=\varepsilon^{2} \lambda /\left(18 \beta_{\mathcal{X}}^{2}\right)$. Then it takes no more than

$$
O\left(\sqrt{\gamma\left(L_{x x}+\gamma\right)}\left(\sqrt{L_{y y} \gamma}+L_{x y}\right) \varepsilon^{-3} \log ^{2}\left(\varepsilon^{-1}\right)\right)
$$

primal oracle calls and

$$
O\left(\gamma\left(\sqrt{L_{y y} \gamma}+L_{x y}\right) \varepsilon^{-3} \log \left(\varepsilon^{-1}\right)\right)
$$

dual oracle calls to find an ε-near-stationary point of (P).

Thank you!

https://arxiv.org/abs/2003.04375

