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Binary Classification

B Given a training dataset D := {(xi, yi)}mi=1 with m samples

• For i ∈ [m], xi ∈ Rn is the feature vector and yi ∈ {−1, 1} is the (binary) label
• We wish to build/train a statistical model M(·; θ) with input x, output y and

model parameter θ
• Given xnew ∈ Rn, ŷ = M(xnew; θ) is the classified label

M(·;θ)====⇒
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Model Training via Gradient Methods (GMs)

B Training M(·; θ) typically involves solving the “model fitting” problem
minθ∈Θ fM,D(θ) (Training)

B Gradient methods (GMs) are appealing in solving (Training):
• In modern applications, both m and n can be huge
• Gradient methods only involve computing and manipulating gradients of
fM,D(·), hence have low-computational cost per iteration

• Gradient methods have reasonably fast convergence rate to achieve
low-to-medium accuracy

B If fM,D(·) is non-differentiable, (Training) can be solved by subgradient
methods
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Canonical Model: Logistic Regression

B In logistic regression, the model parameter θ = (w, b) ∈ Rn× R and the underlying
model is given as follows:

Pr(y = 1|x) := 1
1 + exp(−(w>x+ b))

and we output label y = 1 if
Pr(y = 1|x) > β ∈ (0, 1)

[
⇐⇒ w>x+ b > ln

(
β

1− β

)]

M(·;θ?)=====⇒ M(·;θ∗)=====⇒
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[
⇐⇒ w>x+ b > ln

(
β

1− β

)]
B Given the training dataset D, we determine the parameter θ = (w, b) via

maximum-likelihood estimation, which turns out to be:

f∗LR := minθ=(w,b)∈Rn+1
{
fLR(θ) := 1

m

∑m

i=1 ln
(
1 + exp(−yi(w>xi + b))

)}
(LR)

B A critical observation: fLR(·) is convex and “smooth” on Rn+1.

B By “smooth”, we mean fLR(·) has Lipschitz gradient on Rn+1:

‖∇fLR(θ)−∇fLR(θ′)‖ ≤ L‖θ − θ′‖, ∀ θ, θ′ ∈ Rn+1 (LG)

where L = 1
4m
∑m

i=1(‖xi‖2 + 1) is called the smoothness parameter of fLR(·).
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Gradient Method for Logistic Regression

minθ=(w,b)∈Rn+1
{
fLR(θ) := 1

m

∑m
i=1 ln

(
1 + exp(−yi(w>xi + b))

)}
(LR)

B We can use gradient method for solving (LR)
Start with θ0 −→ θt+1 := θt − αt∇fLR(θt), ∀ t ≥ 0 (GM)

B Based on (LG), typically choose step-size αt = 1/L for all t ≥ 0.

B Let θ∗ be an optimal solution of (LR). Computational guarantee of (GM):
fLR(θt)− fLR(θ∗) ≤ 2L‖θ0 − θ∗‖2/t, ∀ t ≥ 1

B Several improvement available:
• Nesterov’s acceleration −→ convergence rate O(1/t2)
• Regime where the number of data samples m is large
−→ stochastic gradient method

• Regime where dimension of θ is n+ 1 is large
−→ coordinate gradient method
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Fundamental Limitation of “Stanadard” (GM)

(GM) : αt = 1
L
, fLR(θt)− fLR(θ∗) ≤ 2L‖θ0 − θ∗‖2

t

The Lipschitz-gradient property plays a fundamental role in (GM):

B The smoothness parameter L appears in both step-size and computational
guarantees.

B This property is also critical in ensuring sufficient decrease in line search.

B Without property, (GM) may fail both in theory and practice, and the same
applies to its variants (e.g., accelerated, stochastic and coordinate versions).
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B Without property, (GM) may fail both in theory and practice, and the same
applies to its variants (e.g., accelerated, stochastic and coordinate versions).
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Many Important Applications are “Non-Standard”

However, there are many important applications that do not have the
Lipschitz-gradient property:

B Learning of Multivariate Hawkes Process
B Positron Emission Tomography
B Poisson Image Deblurring with TV Regularization
B Nesterov’s Semidefinite Relaxation of Boolean Quadratic Program (QP)
B D-optimal Design
B Quantum State Tomography
B . . . . . .

Let us briefly examine several of these problems . . .
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1 Introduction to “Standard” Gradient Methods
Binary Classification
Canonical Model: Logistic Regression

2 “Non-Standard” Applications

3 Generalized Frank-Wolfe Method for Convex Composite Optimization
Involving a Log-Homogeneous Barrier

Problem of Interest
Our Method
Computational Guarantees
Numerical Experiments

4 Generalized Multiplicative Gradient Method
An Interesting Story
AMG Method on Applications

5 Concluding Remarks
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Learning of Multivariate Hawkes Process (MHP)

B An m-dimensional MHP is a marked temporal point process that consist of m
types of events, indexed by 1, . . . ,m.

B MHPs are both self-exciting and mutually-exciting.

• Occurrence of one type of events (say type 1) increases the chance of occurrence
of both this type of events and other type of events (say type 2) in the future.

B Numerous applications:
• Seismology: Modeling earthquake aftershocks
• Finance: Modeling limit order books
• Analysis of social network: Modeling influences among individuals

Learning MHPs helps reveal
the network influence structure!
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Maximum-Likelihood Estimation of MHPs

B We have observed n events E := {(ti, ui)}ni=1 over time interval [0, t):
• ti ∈ [0, t) denotes the occurrence time
• ui ∈ [m] denotes the event type (or dimension index).

B The conditional intensity function in each dimension k ∈ [m] is given by

λk(t) := µk +
∑

i:ti<t
aui,k exp(t− ti), ∀ t > 0

• µk ≥ 0 is the the base intensity in dimension k
• aui,k ≥ 0 is the mutual-excitation coefficient between dimensions ui and k

B Assume that each type of event has occurred at least once over [0, t).

B Maximum-likelihood estimation can be done in parallel for each dimension k ∈ [m]:

max
∑

i∈Hk
ln
(
µk +

∑m

l=1 al,k wi,l
)
−
(
µkt+

∑m

l=1 al,k vl
)

s. t. µk ≥ 0, al,k ≥ 0,∀ l ∈ [m]
(MHP)

where Hk := {i ∈ [n] : ti < t, ui = k}, and from E , we can compute
wi,l ≥ 0 and vl > 0, ∀ i ∈ Hk, ∀ l ∈ [m]
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Equivalent Formulation of (MHP)

Using standard techniques, we can reformulate (MHP) to the following problem:

minx
{
F (x) := −

∑m

j=1 pj ln(a>j x)
}

s. t. x ∈ ∆n (PET)

B Historically, this problem comes from Positron Emission Tomography (PET) in
the field of medical imaging.

B For all j ∈ [m], let pj > 0, aj ∈ Rn+, aj 6= 0.

B ∆n := {x ∈ Rn+ :
∑n

i=1 xi = 1} is the unit simplex in Rn.
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Poisson Image Deblurring with TV Regularization

True image X Noisy image Y

B Let an m× n matrix X denote the true representation of an image, such that
0 ≤ Xij ≤M denotes the pixel level at location (i, j).

B Let A : Rm×n → Rm×n denote the 2D discrete convolutional (linear) operator,
which is assumed to be known.

B The observed image Y is obtained by first passing X through A, and then
contaminated by additive independent (entry-wise) Poisson noise.
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Poisson Image Deblurring with TV Regularization

B For convenience, we
• represent the linear operator A in its matrix form A ∈ RN×N (N := mn) and let

the l-th row of A be a>l for l ∈ [N ],
• let x = vec(X) ∈ RN and X = mat(x) ∈ Rm×n, and similar for y and Y .

B We seek to recover X from Y (equivalently x from y) using maximum-likelihood
estimation on the TV-regularized problem:

minx∈RN −
∑N

l=1 yl ln(a>l x) + (
∑N

l=1 al)
>x+ λTV(x)

s. t. 0 ≤ x ≤Me
(Deblur)

B (Deblur) has a (standard) total-variation (TV) regularization term to recover a
smooth image with sharp edges. The TV term is given by

TV(x) :=
∑

i,j
|Xi,j −Xi,j+1|+

∑
i,j
|Xi,j −Xi+1,j | .
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Nesterov’s Semidefinite Relaxation of Boolean QP

B The Boolean QP: q∗ := maxx∈{±1}n x>Ax for some A � 0.

B Nesterov [Nes98] showed that the semidefinite relaxation
s∗ := miny 〈e, y〉 s. t. Diag(y) � A (SDP)

provides a (2/π)-approximation of the Boolean QP.

B Nesterov [Nes11] later showed that (SDP) above can be equivalently written in the
dual form:

minX F (X) := −2 ln
(∑n

i=1〈X, rir
>
i 〉1/2)

s. t. X ∈ Sn+, 〈In, X〉 = 1
(RBQP)

where A = R>R (Cholesky factorization) and R := [r1 · · · rn], and Sn+ denotes the
cone of n× n real symmetric PSD matrices.

B Nesterov [Nes11] proposed his “barrier subgradient method” for solving (RBQP)
with convergence rate O(ln(t)/

√
t), but I will present a new gradient method with

convergence rate O(1/t) !
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Two Other Applications

B D-optimal Design (and Minimum-Volume Enclosing Ellipsoid):
Play fundamental roles in computational geometry, statistics and
machine learning.

B Quantum State Tomography:
An Important problem in quantum computing and quantum
information theory.
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How to Tackle These Problems?

B Since these problems do not exhibit “reasonable” (namely Lipschitz-gradient)
behavior, we need to discover new problem structures and develop new methods.

B We will introduce two new problem classes, and each class will include most of the
applications mentioned previously.

B For each problem class, we will develop a new gradient method for tackling the
problem:

1 A generalized Frank-Wolfe method for convex composite optimization involving
a log-homogeneous barrier.

2 An analog of the “Multiplicative Gradient” method for convex optimization
involving a log-homogeneous and gradient log-convex function.
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1 Introduction to “Standard” Gradient Methods
Binary Classification
Canonical Model: Logistic Regression

2 “Non-Standard” Applications

3 Generalized Frank-Wolfe Method for Convex Composite Optimization
Involving a Log-Homogeneous Barrier

Problem of Interest
Our Method
Computational Guarantees
Numerical Experiments

4 Generalized Multiplicative Gradient Method
An Interesting Story
AMG Method on Applications

5 Concluding Remarks
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Problem of Interest

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P-FW)

B A : Rn → Rm is a linear operator

B f : Rm → R ∪ {+∞} is a θ-logarithmically-homogeneous self-concordant barrier
(θ-LHSCB) for some regular cone K ⊆ Rm

B h : Rn → R ∪ {+∞} is a closed and convex function, with compact domain
X := domh

B All the applications above (except RBQP) fall under (P-FW).
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θ-LHSCB (logarithmically-homogeneous self-concordant barrier)

B Let K $ Rm be a regular cone, i.e., K is closed, convex, pointed and has nonempty
interior.

B Two prototypical examples:
• f(U) = − ln det(U) for U ∈ K := Sk+ and θ = k,
• f(u) = −

∑m

j=1 wj ln(uj) for u ∈ K := Rm+ and θ =
∑m

j=1 wj where
w1, . . . , wn ≥ 1.

B f is a θ-LHSCB on K with complexity parameter θ ≥ 1 if f is three-times
differentiable and strictly convex on intK, and satisfies

1
∣∣D3f(u)[w,w,w]

∣∣ ≤ 2‖w‖3
u ∀u ∈ intK, ∀w ∈ Rm,

2 f(uk)→∞ for any {uk}k≥1 ⊆ intK such that uk → u ∈ bdK,
3 f(tu) = f(u)− θ ln(t) ∀u ∈ intK, ∀ t > 0.

where ‖w‖u := 〈∇2f(u)w,w〉1/2 denotes the local norm of w at u ∈ intK.
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Our Method: (generalized) Frank-Wolfe (gFW-LHSCB)

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P)

I Initialize: x0 ∈ domF , k := 0
I Repeat (until some convergence criterion is met)

vk ∈ arg minx∈Rn〈∇f(Axk),Ax〉+ h(x) (“Linear” subproblem)

Gk := 〈∇f(Axk),A(xk − vk)〉+ h(xk)− h(vk) (FW-Gap)

Dk := ‖A(vk − xk)‖Axk (Local Distance)

αk := min
{

Gk
Dk(Gk +Dk) , 1

}
(Stepsize)

xk+1 := xk + αk(vk − xk) (Update)
k := k + 1
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Remarks on gFW-LHSCB

B For most applications (including all of the applications mentioned previously), Dk
in (Local Distance) can be computed in O(n) time.

B The FW-gap Gk provides an effective stopping criterion:
Gk ≥ [δk := F (xk)− F ∗], for all k ≥ 0.

B For some applications (e.g., PET and D-Optimal Design), the step-size can also be
efficiently computed via exact line-search.

B Our algorithm does not use the special properties of the barrier or the logarithmic
homogeneity of f . However, these properties are critical in deriving the
computational guarantees.
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Computational Guarantees

F ∗ := minx∈Rn [F (x) := f(Ax) + h(x)] (P-FW)

B Define Rh := maxx,y∈domh |h(x)− h(y)| (the variation of h on its domain)
B Recall that δ0 is the initial optimality gap

Theorem:

B (Iteration complexity for ε-optimality gap) Let Kε be the number of iterations for
gFW-LHSCB to obtain δk ≤ ε. Then:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2

ε

⌉
.

B (Iteration complexity for ε-FW gap) Let FWGAPε be the number of iterations
required by gFW-LHSCB to obtain Gk ≤ ε. Then:

FWGAPε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

24(θ +Rh)2

ε

⌉
.
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Remarks on the Computational Guarantees

Let Kε be the number of iterations for gFW-LHSCB to obtain δk ≤ ε:

Kε ≤ d5.3(δ0 + θ +Rh) ln(10.6δ0)e+
⌈

12(θ +Rh)2

ε

⌉

Our computational guarantees only depend on three (natural) quantities:

B the initial optimality gap δ0,

B the complexity parameter θ of the barrier f ,

B the variation of h on its domain domh (= 0 if h = ιX ).

For many applications, all of the three quantities can be easily estimated, and hence
the computational guarantees are known before running the algorithm.
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Numerical Experiments on Poisson Image Deblurring
with TV Regularization

minx∈RN −
∑N

l=1 yl ln(a>l x)︸ ︷︷ ︸
=f(Ax)

+ 〈
∑N

l=1 al, x〉+ λTV(x)︸ ︷︷ ︸
=h(x)

s. t. 0 ≤ x ≤Me

(Deblur)

B Since TV(·) is piece-wise linear convex, and the sub-problem

vk ∈ arg min0≤x≤Me〈∇f(Axk),Ax〉+ 〈
∑N

l=1 al, x〉+ λTV(x)

can be formulated as a relatively simple LP and solved easily using a standard LP
solver such as Gurobi.

B Very few principled first-order methods have been proposed to solve (Deblur):
• The function f : u 7→ −

∑N

l=1 yl ln(ul) is neither Lipschitz nor L-smooth,
• The (Bregman) proximal sub-problem involving TV(·) and the “box” constraint

may not be efficiently solved [HJN15].
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Implementation Details/Issues

B We evaluate the numerical performance of our FW method gFW-LHSCB (with
adaptive stepsize) which we call FW-Adapt.

B It turns out that an exact line-search step-size for gFW-LHSCB can be computed
for this particular problem, which we call FW-Exact.

B We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image of size
100× 100 (hence N = 10, 000).

B We chose the starting point x0 = vec(Y ) (the vectorized noisy image), and we set
λ = 0.01.
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Results: Recovered Images

(a) True image X (b) Noisy image Y (c) FW-Adapt (d) FW-Exact

Figure 1: True, noisy and recovered Shepp-Logan phantom images.
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Results: Optimality Gaps versus Time and Iterations

(a) Optimality gap versus time (in seconds) (b) Optimality gap versus iterations

Figure 2: Comparison of optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E)
for image recovery of the Shepp-Logan phantom image.
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Motivating Example: Positron Emission Tomography

maxx
{
F (x) :=

∑m

j=1 pj ln(a>j x)
}

s. t. x ∈ ∆n (PET)

B For all j ∈ [m], let pj > 0, aj ∈ Rn+, aj 6= 0 and
∑m

j=1 pj = 1.

B ∆n := {x ∈ Rn+ :
∑n

i=1 xi = 1} is the unit simplex in Rn.

B Multiplicative gradient method: x0 ∈ ri ∆n

xt+1 = xt ◦ ∇F (xt) ≡≡ xt+1
i := xti∇iF (xt), ∀ i ∈ [n]. (MG)

B A reviewer brought this method to my attention during the revision of my
Frank-Wolfe paper.

B I studied it for a while, and realized that (MG) does not fall under any
“well-known” optimization frameworks:
• Not Newton-type method
• Not entropic mirror descent
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The Mystery of MG

maxx
{
F (x) :=

∑m

j=1 pj ln(a>j x)
}

s. t. x ∈ ∆n (PET)

x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt) (MG)

B The MG method is deceptively simple, since it doesn’t involve choosing step-sizes
and solving sub-problems.

B Surprisingly good numerical performance: x0 = (1/n)e

FW-A & FW-E [Dvu20; ZF22]: General-
ized FW methods for LHB (with adap-
tive stepsize and exact line search)

RSGM-F & RSGM-LS [BBT17; LFN18]:
Relatively smooth gradient method
(with fixed stepsize and backtracking
line search)
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B The MG method is deceptively simple, since it doesn’t involve choosing step-sizes
and solving sub-problems.

B Surprisingly good numerical performance

B This made me curious and dig into this method ...

1970s (MG) was proposed by information theorists [Ari72]
1980s Iterates have a unique limit point that is optimal to (PET) [Csi84]
1990s – 2021 (MG) seems to be forgotten — but what’s the convergence rate?
2021 I showed that (MG) has convergence rate O(ln(n)/t) [Zha22]

B More interestingly, there’s no constant hidden in O(·):
F ∗ − F (xt) ≤ ln(n)/t, ∀t ≥ 1
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Some Deeper Questions
maxx

{
F (x) :=

∑m

j=1 pj ln(a>j x)
}

s. t. x ∈ ∆n (PET)

x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt) (MG)

F ∗ − F (xt) ≤ ln(n)/t, ∀t ≥ 1 (Rate)

B Why does (MG) work for PET?

B What are the essential structures of the problem the drive the success of (MG)? Is
there a general problem class that (MG) works well?

B Can we develop a general method in the same spirit of (MG) that works for this
general problem class?

B Finally, what is the interaction between the convergence rate of (MG) and the
problem structure?

These questions kept me working for half a year, and I eventually came up with
some satisfactory answers to these questions ...
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My Answers

B I identified a broad problem class and develop an analog of the MG (AMG)
method, that converges at rate O(1/t).

B Roughly speaking, this problem class minimizes a log-homogeneous and gradient
log-convex function over a “slice” of symmetric cone.
• Typical symmetric cones include nonnegative orthant, second-order cone,

positive semidefinite cone and their (finite) Cartesian product.

B The development and analysis of the AMG method are based on the framework of
Euclidean Jordan algebra.

B I will only show the specific form of AMG method on the following applications:
• Nesterov’s Semidefinite relaxation of Boolean QP
• D-optimal design
• Quantum state tomography

B In all of these applications, the objective functions involve “ln(·)”, and hence do
not have Lipschitz-gradient on the feasible sets.
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D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

Given {ai}ni=1, we wish to find
a minimum-volume ellipsoid that
encloses {ai}ni=1.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



D-optimal Design

minx F (x) := − ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B Problem data: n points {ai}ni=1 in Rm that are symmetric about the origin and
linearly span Rm.

B Arises as the dual of the minimum-volume enclosing ellipsoid (MVEE) problem.

B (D-OPT) and (MVEE) plays fundamental roles in computational geometry, statistics
and machine learning.

B AMG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)

B Computational guarantee:
F ∗ − F (x̄t) ≤ ln(n)/t, ∀t ≥ 1

[
x̄t := (1/t)

∑t−1
i=0 x

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 44 / 53



Quantum State Tomography (QST)

maxX F (X) := m−1∑q

j=1 nj ln(〈X, ajaHj 〉)

s. t. X ∈ Hn+, tr(X) = 〈In, X〉 = 1
(QST)

B In quantum physics, this problem aims to reconstruct the state of a quantum
system using the measured output of particles [Hra04].

B a1, . . . , aq ∈ Cn,
∑q

j=1 aja
H
j = In and

∑q

j=1 nj = m.

B Hn+ denotes the cone of n× n complex Hermitian PSD matrices.

B AMG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}

Xt+1 = X̂t+1/ tr(X̂t+1)

(For any X =
∑n

i=1 λiuiu
H
i � 0, ln(X) := ln(λi)uiuHi .)

B Computational guarantee:
F ∗ − F (X̄t) ≤ ln(n)/t, ∀t ≥ 1

[
X̄t := (1/t)

∑t−1
i=0 X

i
]
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Nesterov’s Semi-definite Relaxation of Boolean QP

maxX F (X) := 2 ln
(∑n

i=1〈X, rir
>
i 〉1/2)

s. t. X ∈ Sn+, 〈In, X〉 = 1
(RBQP)

B AMG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}

Xt+1 = X̂t+1/ tr(X̂t+1)

B Computational guarantee:
F ∗ − F (X̄t) ≤ ln(n)/t, ∀t ≥ 1

[
X̄t := (1/t)

∑t−1
i=0 X

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 46 / 53



Nesterov’s Semi-definite Relaxation of Boolean QP

maxX F (X) := 2 ln
(∑n

i=1〈X, rir
>
i 〉1/2)

s. t. X ∈ Sn+, 〈In, X〉 = 1
(RBQP)

B AMG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}

Xt+1 = X̂t+1/ tr(X̂t+1)

B Computational guarantee:
F ∗ − F (X̄t) ≤ ln(n)/t, ∀t ≥ 1

[
X̄t := (1/t)

∑t−1
i=0 X

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 46 / 53



Nesterov’s Semi-definite Relaxation of Boolean QP

maxX F (X) := 2 ln
(∑n

i=1〈X, rir
>
i 〉1/2)

s. t. X ∈ Sn+, 〈In, X〉 = 1
(RBQP)

B AMG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}

Xt+1 = X̂t+1/ tr(X̂t+1)

B Computational guarantee:
F ∗ − F (X̄t) ≤ ln(n)/t, ∀t ≥ 1

[
X̄t := (1/t)

∑t−1
i=0 X

i
]

Renbo Zhao (MIT ORC) FOM for Differentiable “Nonsmooth” Convex Optimization 46 / 53



Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [ZF21]: Generalized FW method for LHB
GMG: Generalized Multiplicative gradient method
BSG [Nes11]: Barrier subgradient method

Table 1: Comparison of arithmetic-operations complexities
(with x0 = (1/n)e or X0 = (1/n)In)

RSGM FW GMG BSG Regime

PET O
(

mn2
ε ln

(
ln(n)

ε

))
O
(

m2n
ε

)
O
(

mn ln(n)
ε

)
O
(

mn2
ε2 ln2

(
n
ε

))
n = O(exp(m))

D-OPT O
(

mn2
ε ln

(
ln(n/m)

ε

))
O
(

m2n
ε

)
O
(

m2n ln(n)
ε

)
O
(

m2n2
ε2 ln2

(
n
ε

))
QST x? O

(
m2n2

ε

)
O
(

mn2 ln(n)
ε

)
O
(

mn3
ε2 ln2

(
n
ε

))
n = O(exp(m))

RBQP x? x? O
(

n3 ln(n)
ε

)
O
(

n4
ε2 ln2

(
n
ε

))
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A Fun Comment From Steve

After presenting this work at U. Waterloo, Steve Vavasis commented:

“I have been working on optimization for many years, and I have devel-
oped a mental map to categorize each talk that I have attended. But
this talk simply doesn’t fit into any of the existing categories!”
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Some Words About This Line of Research

This line of research has great potential, and many problems remain open:

B Can we identify new problem classes, based on new applications arising in
machine learning and data science?

B For the identified problem classes, are there faster first-order methods that
can solve them?

B Lower bound on computational guarantees?
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Some Words About Future Research

B Besides my current research directions, I am also eager to explore the
interface of optimization with other exciting topics:
• high-dimensional statistics
• online learning
• reinforcement learning
• decision-making under uncertainty ...

B I also look forward to collaborating with many talented colleagues to
discover new opportunities!
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