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demands such as the AR(1) model and the multiplicative auto-regressive demand model. The policies and the
worst-case guarantee extend to models with capacity constraints on the size of the order and stochastic lead times.
Our analysis has several novel elements beyond the balancing ideas for backorder models.

Key words: Inventory, Approximation ; Dual-Balancing ; Algorithms; Lost Sales

MSC2000 Subject Classification: Primary: 90B05 , ; Secondary: 68W25 ,

OR/MS subject classification: Primary: inventory/production , approximation/heuristics ; Secondary: produc-
tion/scheduling , approximation/heuristics

1. Introduction In this paper, we address one of the fundamental problems in stochastic inventory
theory, the single-item, single location, periodic-review, stochastic inventory control problem with lost
sales, which we refer to as the lost-sales problem. This problem has challenged researchers and practi-
tioners for over five decades as very little is known about the structure of the optimal policy, and there
are no known provably good heuristics even for the simplest settings. We build on ideas first proposed by
Levi, Pál, Roundy and Shmoys [5]. They proposed what are called dual-balancing policies for a class of
inventory models where unsatisfied demand is backlogged rather than lost. These policies have worst-case
performance guarantees, that is, for each instance of the problem, the expected cost of the policy is guar-
anteed to be at most C times the optimal expected cost (for some constant C). In this paper, we discuss
the implementation and the worst-case analysis of dual-balancing policies applied to inventory models
with lost sales. These models have mathematical characteristics that are very different than the models
in which excess demand is backlogged and thus require a fundamentally different and novel worst-case
analysis. In particular, we shall describe the first computationally efficient policies for inventory models
with lost sales that have a worst-case performance guarantee of 2. The analysis is based on several new
ideas that we believe will contribute to future research in this domain.

Stochastic inventory theory provides streamlined models with the following common setting. The goal
is to coordinate a sequence of orders over a planning horizon of finitely many discrete periods, aiming
to supply a sequence of random demands over the planning horizon with minimum expected cost. The
cost consists of a per-unit ordering cost for ordering supply units at the beginning of each period (with
or without capacity constraints), a per-unit holding cost for carrying excess inventory from one period to
the next, and a per-unit penalty cost for not satisfying demand on time. The dynamics of these models is
as follows. At the beginning of each period, before the demand in this period is observed, a non-negative
procurement order is placed with an outside supplier incurring a cost proportional to the number of units
ordered. This order will arrive and become available after a lead time of several periods. The demand in
that period is then observed and is satisfied to the maximum extent possible from the current inventory
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on-hand. At the end of the period, two possible costs are incurred: excess units of inventory incur a
proportional holding cost and unsatisfied units of demand incur a proportional penalty cost. The goal is
to find an ordering policy that minimizes the overall expected costs over the entire horizon.

There are two common assumptions regarding unsatisfied demand at the end of a period. These
different assumptions distinguish between two fundamentally different classes of models. In the first class
of models, the assumption is that unsatisfied units of demand will stay in the system, each incurring a
per-unit penalty cost for each period until it is satisfied. That is, unsatisfied demand is backlogged from
period to period in a manner symmetric to excess inventory that is carried from period to period. These
are called inventory models with backlogged demands. In the second class of models, which is the focus
of this paper, each unsatisfied unit of demand is lost, i.e., it incurs a one-period penalty cost and then
leaves the system. While these two classes of models are equivalent if the lead time is equal to zero, that
is when the orders arrive instantaneously, they are fundamentally different for any positive lead time. In
particular, the state-of-the-art knowledge on lost-sales models with lead times is very limited compared
to the well understood models with backlogged demands.

Dynamic programming has been the most dominant paradigm in studying stochastic inventory models
with lost sales and backlogged demand (see Zipkin [15] and Section 2.1 below for dynamic programming
formulations of the lost-sales model). The optimization problem is defined recursively over time, using
subproblems for each possible state of the system. In particular, the ordering decision in each period is
made based on the available information at the beginning, which includes the joint conditional distribution
of future demands, additional information that may be available by that period and the pipeline vector.
The pipeline vector consists of the inventory on-hand at the beginning of the period and the quantities
of the outstanding orders that were placed in past periods and have not yet arrived. Clearly, the pipeline
vector has length equal to the lead time, which suggests that the state space of the corresponding dynamic
program can grow exponentially fast with the length of the lead time.

However, it turns out that in models with backlogged demands, it is sufficient to consider only the sum
of the inventory on-hand at the beginning of the period (or any backlogged demand) and the quantities
of the outstanding orders. This sum is usually called the inventory position of the system. The intuition
is that since all unsatisfied demands are backlogged, the impact of the decision made in the current
period on the future costs depends only on the difference between the inventory position of the system
(after ordering) and the cumulative demand over the lead time (to be realized). Moreover, the optimal
policies in the models with backlogged demands have a simple form and are called state-dependent base-
stock policies. In each period, there is a target inventory position level, referred to as the base-stock
level, which is unaffected by the specific pipeline vector. If at the beginning of the period the inventory
position is below the target base-stock level, we order up-to that target. If the inventory position at the
beginning of the period is above the target base-stock level, no order is placed. The optimal base-stock
levels can be computed by solving the corresponding dynamic program. Since the inventory position is
a “sufficient statistic” for the pipeline vector, the computational complexity of dynamic programs for
backorder models is insensitive to the lead time and is almost solely dictated by the complexity of the
demand structure. We refer the reader to [15, 10, 5] for proofs of the optimality of base-stock policies
and a discussion of the relevant literature regarding inventory models with backlogged demands.

In contrast, in systems with lost-sales systems and a positive lead time, the impact of the decision
made in each period on the future costs is captured through a complicated mathematical expression that
depends on the specific sequence of both the outstanding orders as well as the demands over subsequent
periods. Specifically, the optimal decision in each period depends on the entire pipeline vector and not
only on the inventory position as is the case in models with backlogged demands. As a result, the optimal
policy in lost-sales models is significantly more complex and does not take the simple form of a base-stock
policy and the inventory position is not a sufficient statistic for the pipeline vector. Moreover, the state
space of the corresponding dynamic program grows exponentially fast with the lead time.

Due to the aforementioned difficulties, the literature on lost-sales models is limited. Karlin and Scarf
[4] have been the first to study the optimal policies for models with lost sales and positive lead times.
They have considered a lost-sales model with discrete finite and infinite horizon and with independent,
identically distributed demands. They have shown that a base-stock policy cannot be optimal. Fur-
thermore, for the case where the lead time is equal to one period, they have partially characterized the
structure of the optimal policy. Specifically, they have shown that the optimal ordering quantity is a
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decreasing function of the inventory on-hand at the beginning of the period, and is equal to zero outside
a specified interval. Moreover, the rate of decrease (as a function of the inventory on-hand) is strictly
smaller than one. With the additional assumption that demands are exponentially distributed, they have
also presented a steady-state analysis of the dynamics of lost-sales systems that use base-stock policies.
Morton [8] has extended the analysis of Karlin and Scarf to lost-sales models with deterministic lead
times. He has shown that the optimal ordering policy is a function of the entire pipeline with the follow-
ing characteristics: (a) there is a compact region around the origin (that is, all the components of the
pipeline vector are zero) such that the order quantity is strictly positive if and only if the pipeline vector
is in this region, (b) the order quantity decreases at a rate strictly between zero and one with respect to
each component of the pipeline vector and (c) the rate of decrease in the order quantity per component
is higher for components in the pipeline that are scheduled to arrive later in time. He has also derived
upper and lower bounds on the probability that the optimal policy will have enough inventory to meet
demand in the period in which the current order will arrive (a lead time ahead). Furthermore, he has
used these bounds to derive upper and lower bounds on the optimal ordering policy as a function of the
current pipeline vector. In a subsequent paper, Zipkin [17] has used state transformation techniques to
establish simpler proofs for the structure of optimal policies in the lost-sales models discussed in this
paper. Moreover, he has extended the results of Karlin and Scarf and Morton to models with capac-
ity constrains on the size of the order, Markov modulated demands and stochastic lead times (with no
order-crossing).

Morton [9] has considered myopic policies for lost-sales models, in which, in each period, an order is
placed that minimizes the expected cost in the period in which this order arrives. There are other papers
on lost-sales models like the ones by Nahmias [12] and Johansen [2] that propose different heuristics and
present computational results on the performance of these heuristics. The computational experiments in
all of these papers are restricted to instances where the lead time is short, equal to one or two periods or
to models with extremely low demands. In a recent subsequent paper, Zipkin [16] presents computational
experiments in which he tests the performance of several heuristics, including the dual-balancing policy
described in this paper. He has focused on scenarios where the demands are independent and identically
distributed; more specifically, they follow Poisson and Geometric distributions. Using state-reduction
techniques, he is able to compute the optimal policy for instances with lead time equal to 4. Computing
optimal policies with respect to instances with longer lead times seems very challenging. Moreover, to
the best of our knowledge, there is no heuristic for lost-sales models that has been shown to perform well
over a large bed of test problems of realistic size. Equally importantly, none of these papers provides a
worst-case analysis of the proposed heuristics. Moreover, Levi, Pál, Roundy and Shmoys [5] have shown
that the myopic policy for the lost-sales model even with lead time equal to zero does not have worst-case
performance guarantees. Specifically, they have shown a class of examples for which the myopic policy
is arbitrarily more expensive than the optimal policy. Reiman has considered a model with continuous
time and with demand following a Poisson process and compared base-stock policies and policies that
place an order in a fixed frequency [13].

In this paper we build on the recent work of Levi, Pál, Roundy and Shmoys [5] who have developed what
are called dual-balancing policies for a class of uncapacitated stochastic inventory models with backlogged
demands. These ideas have been extended to capacitated models [7] and multi-echelon models [6], again
with backlogged demands. These dual-balancing policies are computationally efficient and have a worst-
case performance guarantee of 2 for the respective models under general assumptions on the demand
structure and the cost parameters. The dual-balancing policies are based on two novel ideas: a marginal
cost accounting approach and cost balancing techniques. We note that the marginal cost accounting scheme
is very different than the standard dynamic programming based cost accounting approach traditionally
used to analyze these models. Using the marginal cost accounting approach, the dual-balancing policy is
based on the repeated use of cost balancing techniques. In each period, two opposing (i.e. the holding and
backlogging) costs are balanced. The worst-case analysis in the above three papers is heavily based on the
mathematical properties of models with backlogged demands and uses a period-by-period amortization
cost of the dual-balancing policy with the cost of the optimal policy. Crucial to the analysis is the fact
that in backorder models, comparing the inventory positions of any two policies in a period provides
sufficient information to analyze their respective performance a lead time ahead.

In this paper, we describe a dual-balancing policy for models with lost sales, which is conceptually
similar to the dual-balancing policy for models with backlogged demands. However, the above-mentioned
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analysis for models with backlogged demand is not applicable to models with lost sales. In particular,
the inventory position does not provide sufficient information to compare the costs of different policies.
In addition, a period-by-period amortization of the cost of the dual-balancing policy with the cost of the
optimal policy does not seem useful. To overcome these difficulties, we describe a fundamentally different
analysis which is based on two novel ideas. Rather than a period-by-period comparison, we use a global
amortization of the lost-sales costs of the dual-balancing policy with the lost-sales costs of the optimal
policy. In addition, we introduce a new concept called the truncated inventory position which generalizes
the aforementioned notion of inventory position. As we have already mentioned, the inventory position in
a certain period is defined to be the sum of the on-hand inventory at the beginning of the period plus all
outstanding orders. The truncated inventory position is defined to be the sum of the on-hand inventory
plus all the outstanding orders that have been ordered by a certain period, possibly earlier than the
current period. In other words, the truncated inventory position accounts for the on-hand inventory and
all the outstanding orders that will arrive by a certain period. The new concept of truncated inventory
position is used to compare two policies in a lost-sales system. Our main result is that the dual-balancing
policy for the lost-sales model has a worst-case performance guarantee of 2.

The worst-case analysis holds for models with relatively general demand structures. For example,
it holds under the assumption that the demands in different periods are independent, not necessarily
identically distributed (see Section 3 below for details). Moreover, the analysis also holds in many models
in which the demands in different periods are correlated; specifically, it holds in the multiplicative auto-
regressive demand model and the AR(1) model, which are commonly used in the literature. Finally, the
policy and the worst-case analysis extends to models with stochastic lead times (under the assumption of
“no-crossing of orders”) and to models with capacity constraints on the size of the order in each period.

We note that the dual-balancing policy can be computed efficiently in most if not all of the realistic
scenarios. As an example, we focus attention on the case where the demands are independent integer-
valued random variables with bounded support, and provide a detailed analysis of the running time of the
dual-balancing policy. Dynamic programming approach seems to be computationally intractable, since
the running time grows exponentially fast in the lead time. In contrast, we show that the dual-balancing
policy can be computed in time polynomial in the number of periods and the length of the support of
the demands.

The rest of the paper is organized as follows. In Section 2, we describe the lost-sales model and a
dynamic programming formulation of the model. In Section 3, we describe a dual-balancing policy for
lost-sales models and the new worst-case analysis under the assumption that the demands in different
periods are independent. In Section 4, we discuss related computational issues of the dual-balancing
policy. Finally, in Section 5 we describe several important extensions of the dual-balancing policy and
the worst-case analysis to models with capacity constraints on the size of the order, models with stochastic
lead times and to models with demand structures that allow correlation between demands in different
periods.

2. The Lost-Sales Model In this section, we provide the mathematical formulation of the lost-sales
model and introduce some of the notation used throughout the paper.

As a general convention, we distinguish between a random variable and its realization using capital
letters and lower case letters, respectively. Script font is used to denote sets.

We consider a finite planning horizon of T periods numbered t = 1, . . . , T (note that t and T are both
deterministic). There is a sequence of stochastic demands that occur over the planning horizon, which are
denoted by D1, . . . , DT , all of which have finite mean. We first assume that demands in different periods
are independent of each other, though not necessarily identically distributed. In Section 5 we shall show
that this assumption can be relaxed to allow several important structures of correlation between demands
in different periods.

As part of the model, we assume that at the beginning of each period s, there is an observed informa-
tion set that is denoted by fs. The information set fs contains all of the information that is available at
the beginning of time period s. More specifically, the information set fs consists of the realized demands
(d1, . . . , ds−1) over the interval [1, s) (in general fs can contain additional information that became avail-
able by time period s). The information set fs in period s is one specific realization in the set of all
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possible realizations of the random vector Fs = (D1, . . . , Ds−1). This set is denoted by Fs. We consider
only non-anticipatory policies, that is, in making a decision in period s, a feasible policy can use only the
observed information set fs.

In each period s = 1, . . . , T , a non-negative procurement order is placed from an outside supplier,
incurring a per-unit ordering cost cs. The order placed in period s will arrive and become available only
after a positive lead time, denoted by L. We assume that L is a known positive integer, that is, an order
placed in period s will arrive at the beginning of period s + L. (In Section 5, we will consider models
where the lead times are stochastic.)

We now describe the dynamics of the lost-sales model. At the beginning of each period s, as a function
of the observed information set fs, we observe the joint (conditional) distribution of future demands (if
demands in different periods are independent of each other, then the joint distribution is fixed regardless
of the observed information set). At the beginning of period s, the system is characterized through the
pipeline vector. The pipeline vector is denoted by P̄s and consists of L components. The Lth component
is the inventory on hand (or on-hand inventory) available at the beginning of period s after the order
placed L periods ago in period s−L has arrived and before the demand in period s is realized. We denote
the inventory on-hand at the beginning of period s by Is. The other L − 1 components of the pipeline
vector are the outstanding orders that have been placed in previous periods and have not yet arrived.
Specifically, the jth component of P̄s is equal to Qs−j , the size of the order placed j periods ago, i.e., in
period s− j (for j = 1, . . . , L− 1). That is,

P̄s = (Qs−1, . . . , Qs+1−L, Is).

Observe that at the beginning of period s all the components of the pipeline vector are known determin-
istically.

We next specify the sequence of events in each period s:

(i) The order of qs−L units placed in period s − L arrives and the on-hand inventory is thus is =
(is−1 − ds−1)

+ +qs−L. Observe that (is−1−ds−1)+ is the inventory on-hand at the end of period
s− 1.

(ii) Following a given policy, qs units are ordered (qs ≥ 0), and this incurs a cost of csqs. Next the
demand in period s is realized and is satisfied to the maximum extent possible from the inventory
on-hand. Since unsatisfied demand is lost and leaves the system, the on-hand inventory decreases
by min{ds, is}. In addition, we observe a new information set fs+1 ∈ Fs+1.

(iii) At the end of the period, costs are incurred. If (is − ds) > 0 then we incur a total holding cost
of hs(is − ds) (this means that there is excess inventory that needs to be carried to time period
s + 1). On the other hand, if (is − ds) < 0 we incur a total lost-sales penalty cost of ps(ds − is)
(this means that in period s there is unsatisfied demand that is lost).

For ease of exposition, we first assume that the cost parameters are stationary, that is, for each
t = 1, . . . , T , we have ht = h > 0, pt = p > 0 and ct = c ≥ 0. We further assume that c = 0. (The
worst-case analysis presented below holds for any c > 0.) We will show that in fact the analysis allows
us to have time-dependent holding costs parameters and non-increasing ordering and lost-sales penalty
parameters. In particular, the analysis holds for models with stationary cost parameters and discount
factor.

The goal is to find an ordering policy that minimizes the overall expected holding costs and lost-sales
penalty costs over the entire horizon [1, T ]. We consider only policies that are non-anticipatory, i.e., at
time s, the information that a feasible policy can use consists only of fs. Thus, for each feasible policy,
given an information set fs, the pipeline vector at time period s and the order quantity in period s are
known deterministically.

2.1 Dynamic programming Formulation In this section, we discuss the dynamic programming
formulation of the lost sales model and discuss the associated difficulties in the analysis.

Observe that in a lost-sales model the cost in period s depends on the inventory on-hand at the
beginning of the period, that is, the expected cost in period s is equal to

E[h(Is −Ds)+ + p(Ds − Is)+].
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Note that the decision made in period s of how many units to order affects only the costs over the interval
[s+L, T ] (recall that the order placed in period s will arrive at the beginning of period s+L). Moreover,
the impact of the decision in period s is captured through the effect it has on the inventory on-hand at
the beginning of period s + L. Unfortunately, in lost-sales models, there is no tractable way to capture
the impact of the decision in period s on the inventory on hand in period s+L. In particular, the impact
of the decision made in period s on the inventory on-hand at the beginning of period s+L depends on the
specific sequence of both the outstanding orders at the beginning of period s and the realized demands
over the interval [s, s + L). Thus, the mathematical expressions of the dynamics of the lost-sales model
are quite involved. As we have already seen, for each t = 1, . . . , T ,

It+1 = (It −Dt)+ + Qt+1−L, (1)

which implies that the inventory on-hand in period s + L depends on the decision of how many units
to order in period s through a complicated recursive expression. Thus, the resulting dynamic program
formulation depends on the entire observed pipeline vector. Let Vs(p̄s, fs) = Vs((qs−1, . . . , qs+1−L, is), fs)
be the optimal expected cost over the interval [s + L, T ] given an observed pipeline vector p̄s and an
observed information set fs. The recursion in the lost-sales model is

Vs((qs−1, . . . , qs+1−L, is), fs) = min
qs≥0

{E[h(Is+L(qs)−Ds+L)+ + p(Ds+L − Is(qs))+|fs] + (2)

E[Vs+1((qs, qs−1, . . . , qs+2−L, (is −Ds)
+ + qs+1−L), Fs+1)|fs]},

where Is+L(qs) is the inventory on-hand in period s + L assuming that in period s, we have ordered qs

units. It is readily verified that the state space of the above dynamic program grows exponentially fast
in the length of the lead time L even in simple cases where the demands in different periods are assumed
to be independent and identically distributed. This implies that solving the above dynamic program is
likely to be intractable except for cases with very small lead times. Moreover, the dynamic program does
not provide much insight on the structure of the optimal policies and this a main reason why theoretical
research on lost sales models is limited.

3. Dual-Balancing Policy for the Lost Sales Model In this section, we shall describe a dual-
balancing policy for the lost-sales model, and then present a worst-case analysis that holds under relatively
general assumptions on the demand distributions D1, . . . , DT . We shall show that under these assump-
tions, the dual-balancing policy has a worst-case performance guarantee of 2. That is, the expected cost
of the policy is guaranteed to be at most twice the expected cost of an optimal policy. In this section,
we describe the dual-balancing policy and its worst-case analysis in the case where demands in different
periods are assumed to be independent of each other, though not necessarily identically distributed. In
Section 5 we discuss several important extensions of the dual-balancing policy and the worst-case analysis
to more general models.

3.1 Dual-Balancing Policy The policy for the lost-sales model is conceptually similar to the one
proposed by Levi, Pál, Roundy and Shmoys for the model with backlogged demand [5]. That is, in each
period s, conditioned on the observed information set fs, we balance the (conditional) expected marginal
holding cost incurred by the units ordered in that period over the entire horizon against the (conditional)
expected lost-sales penalty cost incurred a lead time ahead in period s + L.

For a given policy P , let HP
s be the marginal holding cost incurred by the units ordered in period s

over the entire horizon, and let ΠP
s be the lost-sales penalty cost incurred in period s + L. The cost of

policy P can then be expressed as

C(P ) =
T−L∑
s=1

(HP
s + ΠP

s ),

ignoring the marginal holding cost of units ordered before period 1 and the lost-sales penalty costs over
the interval [1, L] that are identical for every policy. However, the expressions of HP

s and ΠP
s are different

in the lost-sales model, and are significantly more complex compared to the corresponding expressions in
the models with backlogged demands. Recall that IP

t is the on-hand inventory in period t after the order
placed in period t−L has arrived and before the demand in period t has occurred. We have already seen
that, for each t = 1, . . . , T − 1,

IP
t+1 = (IP

t −Dt)+ + QP
t+1−L, (3)
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(where QP
j for j ≤ 0 are given as an input). Observe that (IP

t −Dt)+ is the inventory on-hand at the
end of period t and QP

t+1−L is the order arriving at the beginning of period t + 1. Assuming without loss
of generality that supply units are consumed on a first-ordered-first-consumed basis, we conclude that
the QP

s units ordered in period s will be consumed only after all the (Is+L−1 − Ds+L−1)+ units that
were on-hand at the beginning of period s + L (just before the order placed in period s has arrived) are
consumed. This leads to the following expression for the marginal holding cost incurred by the QP

s units
ordered in period s:

HP
s =

T∑

t=s+L

h(QP
s − (D[s+L,t] − (IP

s+L−1 −Ds+L−1)+)+)+. (4)

Similarly, we express

ΠP
s = p(Ds+L − IP

s+L)+ = p(Ds+L − (QP
s + (IP

s+L−1 −Ds+L−1)+))+, (5)

where the second equality follows from Equation (3) above. Equations (4) and (5) can be easily adapted
to capture time-dependent cost parameters. In addition, we can incorporate a linear ordering cost csQ

P
s

into Equation (4) above.

For each s = 1, . . . , T − L and an observed information set fs ∈ Fs, define the functions lBs (qB
s ) =

E[HB
s (qB

s )|fs] and πB
s (qB

s ) = E[ΠB
s (qB

s )|fs]. As in the dual-balancing policy for the model with back-
logged demand [5], in each period s, conditioned on the observed information set fs, we order qB

s = q′s
to balance lBs (q′s) = E[HB

s (q′s)|fs] = πB
s (q′s) = E[ΠB

s (q′s)|fs]. It is readily verified that, conditioned on
fs and the resulting pipeline vector p̄B

s , the functions lBs and πB
s depend only on qB

s . Moreover, lBs is
an increasing (convex) function of qB

s , which is equal to 0 if qB
s = 0 and goes to infinity as qB

s goes to
infinity. In addition, πB

s is a (convex) decreasing function of qB
s , which admits a non-negative value for

qB
s = 0 and is going to 0 as qB

s goes to infinity. If fractional orders are allowed the function lBs and πB
s

are continuous and thus q′s is well defined. (Later we shall discuss the case where orders are restricted to
be integral, and demands are integer-valued random variables.)

The intuition behind the idea of repeatedly balancing the functions πB
s and lBs above is that in the

lost-sales model there are two underlying opposing risks, the risk of under ordering incurring lost-sales
penalty cost and the risk of over ordering incurring holding costs. Balancing these two risks seems to
be very effective and computationally attractive. Surprisingly, this idea works significantly better than
minimizing the sum of the two functions. We also note that the dual-balancing policy can be implemented
in an on-line manner. That is, the decision made in each period is not affected by any future decision of
the policy, but only by the currently observed information set. This seems like an essential property if
one wishes to avoid the burden of solving huge dynamic programs. However, unlike myopic policy, which
in each period aims to minimize only the expected cost a lead time ahead, the dual-balancing policy does
look ahead make use of available information about the future evolution of the system.

Integral orders and integer-valued demands. Next we discuss the case where the demands are
integer-valued random variables and the order quantity in each period is restricted to be an integer. We
briefly describe a randomized dual-balancing policy using ideas identical to ones used in [5, 7].

In this case, the functions lBs (qB
s ) and πB

s (qB
s ) are initially defined only for integer values. Their

piecewise linear interpolations preserve the monotonicity (and convexity) properties discussed in Section
3. The problem is that the balancer q′s is likely to be fractional. Instead we consider the two consecutive
integers q1

s ≤ q′s ≤ q2
s . It is clear that q′s = λq1

s + (1 − λ)q2
s for some 0 < λ < 1. We now order q1

s with
probability λ and q2

s with probability 1− λ.

3.2 Analysis - Independent Demands Given the dual-balancing policy for the lost-sales model,
we define Zt to be the random balanced cost in period t, i.e., Zt = E[HB

t |Ft] = E[ΠB
t |Ft] (for each

t = 1, . . . , T − L). Using an identical proof to the one in [5], we obtain the following lemma.

Lemma 3.1 The expected cost of the dual-balancing policy is equal to twice the sum of expectations of the
Zt variables, i.e., E[C(B)] = 2

∑T−L
t=1 E[Zt].

The worst-case analysis of the dual-balancing policy in models with backlogged demand [5] is based
on a period by period amortization of the cost of the dual-balancing policy against the optimal policy.
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This is done by comparing the respective inventory positions of the the two policies, in each period [5].
In contrast, it is well-known [15] that looking only on the inventory position is not sufficient to make
optimal decisions in lost-sales models.

Similarly, unlike the analysis of the models with backlogged demands, comparing the inventory posi-
tions of the dual-balancing policy and OPT in period s does not seem to provide ‘sufficient’ information
about period s + L. For example, consider a lost-sales model with L = 1, where in period t the pipeline
vector of policy 1 is p̄1

t = (3, 10) (i.e., on-hand inventory equal to 10 and an order of 3 units placed in
period t) and the pipeline vector of policy 2 is p̄2

t = (4, 1) (i.e., on-hand inventory equal to 1 and an order
of 4 units placed in period t). In period t the inventory position of policy 1 is y1

t = 13, higher than the
inventory position of policy 2, which is y2

t = 5. However, if the demand in period t is greater than 10,
then policy 2 has greater on-hand inventory in period t+1 (4 units) than policy 1, which is left only with
3 units on-hand. Conversely, if the demand in period t is no greater than 9, then policy 1 has on-hand
inventory in period t + 1 no smaller than that of policy 2.

The above example suggests that the period-by-period amortization scheme of the cost of the dual-
balancing policy against the cost of OPT , based on the inventory position as used in the backlogging
analysis, does not seem to be useful when applied to the lost-sales model. (In models with backlogged
demand if one policy has a higher inventory position in period s, it will have higher on-hand inventory a
lead time ahead in period s + L.) To overcome this difficulty, the analysis presented below incorporates
two novel ideas.

We use a global amortization of costs, that is, we compare the overall cost of the dual-balancing policy
to that of OPT , where the comparison is not necessarily period-by-period. In addition, we introduce the
new concept of truncated inventory position, which is defined as follows. For each period s = 1, . . . , T ,
the truncated inventory position with respect to period t (where t ∈ [s− L, s]), is defined to be the sum
of the inventory on-hand in period s plus all outstanding orders placed by time period t. Let Yst denote
the truncated inventory position in period s with respect to period t, that is,

Yst = Is +
t∑

j=s+1−L

Qj . (6)

Observe that the truncated inventory position Yst refers to the sum of the on-hand inventory in period
s plus all outstanding orders that will arrive by time period t + L. Note that we consider a period t
earlier than s which implies that all the orders that arrive by time period t + L are already known at
time period s. Specifically, Yss = Ys is the traditional inventory position defined earlier in Section 2,
and Ys,s−L = Is is the on-hand inventory at the beginning of period s. The truncated inventory position
is a generalization of the traditional inventory position concept commonly used in inventory theory (see
Figure 1). Due to the complex mathematical structure of lost-sales models, the effect of the decision
made in the current period on future costs is very hard to quantify. The truncated inventory position
provides a more tractable way to analyze this effect; specifically, the effect of the current ordering decision
on the on-hand inventory a lead time ahead. Moreover, it turns out that the concept of the truncated
inventory position provides the ‘right’ framework for comparing between the pipeline vectors of any two
policies; specifically, OPT and the dual-balancing policy. Thus, a central part of the worst-case analysis
presented below is based on this new concept. We believe that it will have more applications in other
settings.

The worst-case analysis in the model with backlogged demand is based on comparing the (traditional)
inventory position of the dual-balancing policy and OPT in each period t, i.e., comparing Y B

tt and Y OPT
tt .

Instead, in the lost-sales model, the analysis will be based on comparing the respective truncated inventory
positions Y B

st and Y OPT
st in each period s ∈ [t, t+L]. That is, in each period s ∈ [t, t+L], we compare the

respective number of units already ordered by the dual-balancing policy and OPT that will be available
by time period t + L (see Figure.2).

Let TH be the set of all periods t ≤ T − L such that the truncated inventory of the dual-balancing
policy with respect to period t is strictly smaller than the respective truncated inventory position of
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Figure 1: The truncated inventory position in period s (L=2).

OPT , for each period s ∈ [t, t + L]. That is,

TH = {t ≤ T − L : ∀ s ∈ [t, t + L], Y B
st < Y OPT

st }. (7)

Let TΠ be the complement of TH , i.e., the set of periods t ≤ T − L for which there exists some
s ∈ [t, t + L] where the truncated inventory position of the dual-balancing policy with respect to period
t + L is no smaller than the respective truncated inventory position of OPT . That is,

TΠ = {t ≤ T − L : ∃ s ∈ [t, t + L] with Y B
st ≥ Y OPT

st }. (8)

Recall that in the lost-sales model, having a higher inventory position in period t does not guarantee
higher on-hand inventory in period t + L. Moreover, for certain realizations of the demands over the
interval [t, t + L), the truncated inventory position of the dual-balancing policy with respect to period t
might be higher than the respective truncated inventory position of OPT in some periods and lower in
others. In fact, it is possible to observe an alternating behavior, where the relation between the truncated
inventory position of the dual-balancing policy and that of OPT may change several times over the
interval. More precisely, for some period t and s ∈ [t, t + L), we will say that the respective truncated
inventory position of the dual-balancing policy with respect to period t and that of OPT alternate in
period s if one of the following events occur

[Y B
st < Y OPT

st ] ∩ [Y B
s+1,t ≥ Y OPT

s+1,t ],

or
[Y B

st ≥ Y OPT
st ] ∩ [Y B

s+1,t < Y OPT
s+1,t ].

That is, in the two consecutive periods s and s + 1, the inequalities relating the truncated inventory
positions of the dual-balancing policy and that of OPT alternate.

For each t ∈ TH , we know that in each period over the interval [t, t+L], OPT had (strictly) more units
available by time period t+L. In particular, there is no alternation in the respective relation between the
truncated inventory position of the dual-balancing policy with respect to period t and that of OPT over
the interval [t, t+L). On the other hand, for each t ∈ TΠ, there was at least one period over that interval
when the dual-balancing policy had units available by time period t + L at least as many as OPT had.
Note that this does not necessarily imply alternations (e.g., when the truncated inventory position of the
dual-balancing policy with respect to period t is higher in period t and throughout (t, t + L]), nor does
it exclude more than one alternation (i.e., it is possible that the respective truncated inventory position
of OPT and that of the dual-balancing policy will alternate several times over [t, t + L)).

Next we state and prove two key lemmas that will show how to amortize the cost of the dual-balancing
policy against the cost of OPT . The corresponding two lemmas hold with probability 1, i.e., for each
sample path of the demands D1, . . . , DT or equivalently, for each fT ∈ FT . (In the statements and proofs
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Figure 2: Evolution of the truncated inventory position with respect to period t over [t, t + L] (L = 3)
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of these lemmas we shall omit the expression ‘with probability 1’.) In the first of these lemmas we will
show that the overall holding cost incurred by OPT , denoted by HOPT is greater than the holding costs
incurred by units ordered by the dual-balancing policy in periods t ∈ TH .

Lemma 3.2 The holding cost incurred by OPT is greater than the holding cost incurred in the dual-
balancing policy by units ordered in periods t ∈ TH , i.e., HOPT ≥ ∑

t∈TH
HB

t .

Proof. Recall that by definition Y P
t+L,t = IP

t+L. However, this implies that, for each t ∈ TH , we have
IB
t+L < IOPT

t+L , i.e., the on-hand inventory of OPT in period t+L is higher than that of the dual-balancing
policy. We have already seen that the on-hand inventory at the beginning of period t+L, just before the
units ordered in period t have arrived, is equal to (IP

t+L−1 −Dt+L−1)+. In particular,

IB
t+L = QB

t + (IB
t+L−1 −Dt+L−1)+ < IOPT

t+L .

Without loss of generality, we assume that supply units are consumed on a first-ordered-first-consumed
basis. We can then associate an index to each unit of supply currently on-hand according to the number
of units on-hand to be consumed prior to that unit (where units ordered in the same period are sorted
arbitrarily). Note that since we allow fractional orders, the supply units are defined infinitesimally. In
particular, the QB

t units ordered by the dual-balancing policy in period t are indexed in period t + L in
the range

((IB
t+L−1 −Dt+L−1)+, (IB

t+L−1 −Dt+L−1)+ + QB
s ]. (9)

Since t ∈ TH and the on-hand inventory of OPT in period t + L is higher, we conclude that in period
t + L there exist supply units on-hand in OPT with the same range of indices as in (9). We now match
pairs of units of supply with the same respective index (in period t + L) in the dual-balancing policy and
OPT , respectively. In particular, in period t+L we match the supply units that are indexed in the above
range in OPT to the QB

t units ordered by the dual-balancing policy in period t (see also Figure 3).

Observe that until the IB
t+L units on-hand at the beginning of period t + L will be consumed, neither the

dual-balancing policy nor OPT incur lost-sales costs. Moreover, since the demands over [t + L, T ] are
the same for OPT and the dual-balancing policy, it is clear that each pair of respective matched supply
units of OPT and the dual-balancing policy will incur the same holding cost over [t + L, T ], for each
sample path of demands Dt+L, . . . , DT . Since each pair of units are consumed at the same time period,
it is readily verified that each supply unit of OPT can be matched to at most one supply unit of the
dual-balancing policy. This concludes the proof. ¤

Note that the above proof still holds for time-dependent holding cost parameters and positive non-
increasing per-unit ordering cost parameters, where the per-unit ordering cost is incorporated into the
marginal expected holding cost and is balanced against the marginal expected lost-sales penalty cost.

In the second lemma, we amortize the lost-sales penalty costs of the dual-balancing policy which are
associated with periods t ∈ TΠ. In the proof of this lemma, we use a global amortization rather than a
period-by-period one. For each t ∈ TΠ, we know that there exists some period s ∈ [t, t + L] such that
the truncated inventory position of the dual-balancing policy with respect to period t is no smaller than
the one of OPT , i.e., Y B

st ≥ Y OPT
st . However, as we have already observed, this does not guarantee

that in period t + L the inventory on-hand of the dual-balancing policy is no smaller than the one of
OPT . That is, it is still possible to have IB

t+L < IOPT
t+L , which implies that we can not amortize the

lost-sales penalty cost incurred by the dual-balancing policy in period t + L against the respective cost
of OPT in this period. The next lemma shows that in this case, period t + L belongs to an interval of
periods over which the lost-sales penalty costs incurred by OPT are higher than the respective lost-sales
penalty costs incurred by the dual-balancing policy. This leads to a global amortization of the cost of
the dual-balancing policy with the cost of OPT .

Lemma 3.3 The lost-sales penalty incurred by OPT , denoted by ΠOPT , is greater than the lost-sales
penalty costs of the dual-balancing policy which are associated with periods t ∈ TΠ, i.e.,
ΠOPT ≥ ∑

t∈TΠ
ΠB

t .
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Figure 3: Matched supply units in period t + L where t ∈ TH .

Proof. Consider the following random partition of the periods L + 1, . . . , T . For each realization
of demands d1, . . . , dT , consider the resulting realization of the set TΠ, and partition the periods in the
following way. Start in period T and look for the latest period t ∈ TΠ with the property that period t+L
is not marked (initially all periods are unmarked) and iBt+L < iOPT

t+L (we abuse the notation and use TΠ to
denote the deterministic set of periods resulting from the realized demands). If no such t exists then we
terminate. If such a period exists, let t′ be that period and let wt′ be the earliest period in [t′, t′ + L] for
which the truncated inventory position of the dual-balancing policy with respect to t′ is no smaller than
the respective truncated inventory position of OPT . That is, wt′ = min{j ∈ [t′, t′ + L] : yB

jt′ ≥ yOPT
jt′ }

(observe that wt′ is the realization of a random variable, denoted by Wt′ , which is defined for each period
t′ ∈ TΠ). By our assumption t′ does belong to TΠ, hence wt′ is indeed well-defined. We now mark all the
periods in [wt′ , t

′ + L]. Next we continue recursively over the periods 1, . . . , wt′ − 1. That is, we look for
the latest t ≤ wt′ − 1 such that t ∈ TΠ and with the property that t + L is unmarked and iBt+L < iOPT

t+L

and repeat the above.

The above procedure induces a random partition of the periods L+1, . . . , T into marked and unmarked
periods, respectively. Let M be the (random) set of all marked periods. In particular, this random
partition induces a partition of the set TΠ into periods s ∈ TΠ such that s + L ∈M, i.e., s + L is marked
and periods s ∈ TΠ such that s + L is not marked. First consider the latter set. For each period s ∈ TΠ

such that s+L /∈M, we know that IB
s+L ≥ IOPT

s+L , for if not s+L would have been marked. This implies
that for all periods {s ∈ TΠ : s + L /∈M}, we have ΠB

s ≤ ΠOPT
s .

Now consider all the periods {s ∈ TΠ : s + L ∈ M}. Since all marked intervals are disjoint, it is
sufficient to show that, for each marked interval of the type [Wt′ , t

′ + L], the overall lost-sales penalty
costs incurred by OPT over that interval are higher than the respective lost-sales penalty costs incurred
by the dual-balancing policy over that interval. In particular, this will imply that the lost-sales costs of
the dual-balancing policy associated with periods in the set {s ∈ TΠ : s + L /∈ M} are lower than the
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lost-sales penalty costs incurred by OPT in periods which do not belong to M, and that the lost-sales
penalty costs of the dual-balancing policy associated with periods in the set {s ∈ TΠ : s + L ∈ M} are
smaller than the lost-sales costs incurred by OPT in periods that belong to M (see Figure 3.4). The
proof of the lemma will then follow.

T t+L wt 

Marked interval 
corresponding to 
period t 

't  

Marked interval 
corresponding to 
period 't  

t 1 

t ∈T� 

s ''t  ''t +L 

''t ∈T� 

OPT
L''t

B
L''t ii ++ ≥   

Unmarked period 
 

OPT
t,w

B
t,w

tt
yy ≥  

OPT
Lt

B
Lt ii ++ <  

't +L 

't ∈T� 

OPT
t,s

B
t,s yy <  

Figure 4: The partition into marked and unmarked periods. Dashed arrow denotes the lead time interval
starting at a certain period. Solid arrow denote a marked interval. For each t ∈ TΠ with t + L unmarked
(e.g., period t′′), we have iBt+L ≥ iOPT

t+L .

For each such interval [Wt′ , t
′ + L], we know that Y B

Wt′ ,t′+L ≥ Y OPT
Wt′ ,t′+L, and IB

t′+L < IOPT
t′+L . Moreover,

the difference between the lost-sales penalty cost incurred by the dual-balancing policy in period t′ + L
and the respective lost-sales penalty cost incurred by OPT in that period, is bounded by p times the
difference between the respective on-hand inventory levels. That is,

ΠB
t′ −ΠOPT

t′ ≤ p(IOPT
t′+L − IB

t′+L). (10)

Next we use the following identity that is valid for every feasible policy. For each t, s such that t ≤ s ≤
t + L,

It+L = Yst −D[s,t+L) +
Π[s−L,t)

p
, (11)

where Π[s−L,t) is the cumulative lost-sales penalty costs over the interval [s, t + L), i.e., Π[s−L,t) =∑t−1
j=s−L Πj . Equation (11) describes the dynamics of a model with lost sales. Specifically, the on-hand

inventory in period t + L is equal to the truncated inventory position in time period s with respect to
period t minus the cumulative demand over the interval [s, t + L) plus the cumulative lost sales over
that interval. Observe that D[s,t+L) − Π[s−L,t)

p is the number of supply units consumed by the demand
over the interval [s, t + L). Now consider Equation (11) for periods t′ and Wt′ applied to OPT and the
dual-balancing policy, respectively, and substitute into Equation (10). We get that

ΠB
t′ −ΠOPT

t′ ≤ ΠOPT
[Wt′−L,t′) −ΠB

[Wt′ ,t′)
+ p(Y OPT

Wt′ ,t′
− Y B

Wt′ ,t′
) (12)

≤ ΠOPT
[Wt′−L,t′) −ΠB

[Wt′−L,t′).
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The last inequality follows from the fact that Y B
Wt′ ,t′

≥ Y OPT
Wt′ ,t′

. We now get that
∑

t∈TΠ

ΠB
t =

∑

t:t∈TΠ, t+L∈M
ΠB

t +
∑

t:t∈TΠ, t+L/∈M
ΠB

t (13)

≤
∑

t:t∈TΠ, t+L∈M
ΠOPT

t +
∑

t:t∈TΠ, t+L/∈M
ΠOPT

t ≤ ΠOPT .

This concludes the proof of the lemma. ¤
We note that Lemma 3.3 holds also in the case where there are time-dependent lost-sales penalty

parameters p1, . . . , pT , as long as they are non-increasing. The proof is almost identical, but now wt′ is
defined to be the latest period j ∈ [t′, t′ + L], such that the cumulative lost sales of the dual-balancing
over [j, t′ + L] is no higher than the corresponding lost sales of OPT over that interval. (The proof of
Lemma 3.3 implies that the newly defined wt′ does exist.) This enables us to amortize the lost sales
incurred by the dual-balancing policy, in each period t such that t− L ∈ TΠ, with lost sales incurred by
OPT in periods earlier than t. (Specifically, for each period s ∈ [wt′ , t

′ + L], we amortize the lost sales
of the dual-balancing in period s with lost sales of OPT incurred in periods [wt′ , s].) In particular, the
lemma is valid in models with discounted costs.

Lemmas 3.2 and 3.3 imply that

HOPT + ΠOPT ≥
∑

t∈TH

HB
t +

∑

t∈TΠ

ΠB
t .

Taking expectation we get that

E[C(OPT )] ≥ E[
∑

t

(11(t ∈ TH) ·HB
t + 11(t ∈ TΠ) ·ΠB

t )]. (14)

However, as we have already seen, in the lost-sales model the truncated inventory positions of the dual-
balancing policy and OPT with respect to period t can alternate over the interval [t, t + L) from higher
to lower. Thus, unlike the analysis of model with backlogged demand [5], conditioning on some ft ∈ Ft

does not necessarily realize the indicators 11(t ∈ TH) and 11(t ∈ TΠ) above. That is, it is possible that in
period t we still do not know whether t ∈ TH or t ∈ TΠ.

Instead, we will condition on the events [t ∈ TH ] and [t ∈ TΠ], respectively, and get that

E[C(OPT )] ≥
∑

t

E[E[11(t ∈ TH) ·HB
t |Ft] + E[11(t ∈ TΠ) ·ΠB

t |Ft]] (15)

=
∑

t

E[Pr(t ∈ TH |Ft) · E[HB
t |(Ft, t ∈ TH)] + Pr(t ∈ TΠ|Ft) · E[ΠB

t |(Ft, t ∈ TΠ)]].

However, by conditioning on [t ∈ TH ] and [t ∈ TΠ], respectively, we consider information that super-
sedes the original information set ft ∈ Ft based on which the dual-balancing policy has made the ordering
decision at the beginning of period t. That is, E[HB

t |(Ft, t ∈ TH)] and E[ΠB
t |(Ft, t ∈ TΠ)] might not be

equal to E[HB
t |Ft] = E[ΠB

t |Ft] = Zt. In particular, the problem arises for information sets ft ∈ Ft for
which yB

tt < yOPT
tt and the conditional probabilities (conditioning on ft) that [t ∈ TH ] and [t ∈ TΠ] are

both positive (If this is not the case, then we know whether t ∈ TH or t ∈ TΠ already at the beginning of
period t while observing ft.)

Next we will show that if the demands in different periods are independent of each other, then the two
inequalities

Pr(t ∈ TH |Ft) · E[HB
t |(Ft, t ∈ TH)] ≥ Pr(t ∈ TH |Ft) · E[HB

t |Ft] (16)

and

Pr(t ∈ TΠ|Ft) · E[ΠB
t |(Ft, t ∈ TΠ))] ≥ Pr(t ∈ TΠ|Ft) · E[ΠB

t |Ft] (17)

hold with probability 1, and this together with Equation (15) and the fact that Zt = E[HB
t |Ft] =

E[ΠB
t |Ft] imply that the dual-balancing has a worst-case performance guarantee of 2. Equations (16)

and (17) imply that conditioning also on the events [t ∈ TH ] and [t ∈ TΠ], respectively, implies that
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the respective expected costs are even higher than what was expected at period t conditioning only on
ft. Note that this is the only part of the analysis that requires additional assumptions on the demand
distributions (beyond having finite mean). In Section 5, we shall generalize the analysis, and show
that Inequalities (16) and (17) hold under several other demand structures that incorporate correlation
between demands in different periods. Intuitively, we require that the demands do not have a certain
‘bad’ property. That is, we would like to exclude a situation where high demands over a certain interval
of periods, say (j′, j), imply low demands over the rest of the horizon [j, T ]. Indeed, if the demands are
independent, this ‘bad’ situation is excluded.

For each period t = 1, . . . , T − L and s ∈ [t, t + L), let Ast be the event that at the beginning of
period s the truncated inventory position of OPT with respect to period t is higher than the one of
the dual-balancing policy, while at the beginning of period s + 1 the truncated inventory position of the
dual-balancing policy with respect to period t is no smaller than the one of OPT . That is,

Ast = [Y B
st < Y OPT

st ] ∩ [Y B
s+1,t ≥ Y OPT

s+1,t ].

Observe that conditioning on an information set ft such that yB
tt < yOPT

tt , then t ∈ TΠ only if the event
Ajt occurs for some j ∈ [t, t + L). In the next lemma we characterize some of the properties of the event
Ast defined above.

Lemma 3.4 For each period t = 1, . . . , T −L and s ∈ [t, t + L), let Ast be as defined above. Suppose that
the event Ast occurred. Then,

(i) The cumulative amount of orders placed by the dual-balancing policy over the interval [s +
1 − L, t] is higher than the corresponding amount of orders of OPT over that interval, i.e.,∑t

j=s+1−L QB
j ≥ ∑t

j=s+1−L QOPT
j .

(ii) The inventory on-hand of OPT at the beginning of period s exceeds that of the dual-balancing
policy by more than ∆Qs =

∑t
j=s+1−L QB

j −
∑t

j=s+1−L QOPT
j , i.e., IOPT

s > IB
s + ∆Qs .

(iii) The event Ast can be expressed as

[Y B
st < Y OPT

st ] ∩ [∆Qs ≥ 0] ∩ [Ds > IOPT
s −∆Qs].

(iv) The dual-balancing policy has incurred positive lost sales in period s, and hence its on-hand
inventory at the beginning of period s+1 is equal to the size of the order placed in period s+1−L,
denoted by QB

s+1−L. That is, Ast ⊆ [ΠB
s−L > 0] ⊆ [IB

s+1 = QB
s+1−L].

Proof. Recall Equation (6) that, for each policy P , we have Y P
st = IP

s +
∑t

j=s+1−L QP
j . Assume

that (i) does not hold, i.e., that Ast has occurred and that
∑t

j=s+1−L QB
j <

∑t
j=s+1−L QOPT

j . Since
Y B

st < Y OPT
st , we conclude that IB

s − IOPT
s <

∑t
j=s+1−L QOPT

j −∑t
j=s+1−L QB

j . However, it is readily
verified that this implies that the inventory on-hand of the dual-balancing policy at the end of period s,
(IB

s − Ds)+, does not exceed the respective inventory on-hand of OPT , (IOPT
s − Ds)+, by more than∑t

j=s+1−L QOPT
j −∑t

j=s+1−L QB
j . That is,

(IB
s −Ds)+ − (IOPT

s −Ds)+ <

t∑

j=s+1−L

QOPT
j −

t∑

j=s+1−L

QB
j ,

which implies that Y B
s+1,t < Y OPT

s+1,t and leads to a contradiction. The proof of (i) then follows.

The proof of (ii) follows from (i) and the fact that Y B
st < Y OPT

st .

It is now clear that given (i) and (ii) above, the event Ast is equivalent to the event [Ds > IOPT
s −∆Qs],

which implies (iii). Finally, (ii) and (iii) imply (iv). ¤
In the next two lemmas we show that if the demands are independent of each other, then the Inequalities

(16) and (17) do hold. (We again omit the statement ‘with probability 1’ as long as the context is clear.)

Lemma 3.5 Assume that D1, . . . , DT are independent of each other. Then for each period t = 1, . . . , T −
L, we have Pr(t ∈ TH |Ft) · E[HB

t |Ft] ≤ Pr(t ∈ TH |Ft) · E[HB
t |(Ft, t ∈ TH)].
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Proof. Consider some information set ft ∈ Ft. If Pr(t ∈ TH |ft) is equal either to 0 or to 1, then
there is nothing to prove. Suppose now that 0 < Pr(t ∈ TH |ft) < 1. In particular, ft is such that
yB

tt < yOPT
tt . It is now sufficient to show that E[HB

t |ft] ≤ E[HB
t |(ft, t ∈ TH)].

Let Wt be the earliest period s ∈ [t, t + L] such that Y B
st ≥ Y OPT

st if such period exists and Wt = −1
otherwise. It is readily verified that, conditioning on ft, the event [Wt = −1] is equivalent to the event
[t ∈ TH ]. Note that the specific information set ft being considered implies that Pr(Wt = t|ft) = 0.
Using conditional expectations, we now write

E[HB
t |ft] = Pr(t ∈ TH |ft) · E[HB

t |(ft, t ∈ TH)] +
t+L∑

j=t+1

Pr(Wt = j|ft) · E[HB
t |(ft,Wt = j)]. (18)

It is now sufficient to show that, for each j = t + 1, . . . , t + L, E[HB
t |ft] ≥ E[HB

t |(ft,Wt = j)]. This
together with Equation (18) imply that indeed E[HB

t |ft] ≤ E[HB
t |(ft, t ∈ TH)] from which the proof

follows.

Recall, that conditioning on ft we know already the size of the order placed by the dual-balancing policy
at the beginning of period t. Let φjt(ij) be the expected marginal holding cost of the qB

t = q′t units ordered
by the dual-balancing policy in period t conditioning on ft and on the inventory on-hand at the beginning
of period j equal to ij (for each j = t + 1, . . . , t + L). That is, φjt(ij) = E[HB

t |(ft, I
B
j = ij)]. Observe

that E[HB
t |ft] = E[φjt(IB

j )|ft]. Since the demands in different periods are independent of each other, it
is readily verified that Dj , . . . , DT are independent of IB

j and Ft. It follows from Equations (3) and (4)
that φjt is increasing in ij . Moreover, IB

j |ft ≥ qB
j−L (where qB

j−L is the size of the order arriving at the
beginning of period j, which conditioning of ft is known deterministically). Thus, φjt(IB

j )|ft ≥ φjt(qB
j−L)

and E[φjt(IB
j )|ft] ≥ φjt(qB

j−L). Finally, observe that the event ft ∩ [Wt = j] is also independent of the
demands Dj , . . . , DT . In addition, Lemma 3.4 above implies that the event ft∩[Wt = j] is contained in the
event Aj−1,t, i.e., contained in the event [IB

j = Qj−L]. We conclude that E[HB
t |(ft,Wt = j)] = φjt(qB

j−L).
This concludes the proof of the lemma. ¤

Lemma 3.6 Assume D1, . . . , DT are independent of each other. Then for each period t = 1, . . . , T − L,
we have Pr(t ∈ TΠ|Ft) · E[ΠB

t |Ft] ≤ Pr(t ∈ TΠ|Ft) · E[ΠB
t |(Ft, t ∈ TΠ)].

Proof. Consider an information set ft ∈ Ft. If Pr(t ∈ TΠ|ft) = 0 or Pr(t ∈ TΠ|ft) = 1, then there
is nothing to prove. Suppose that 0 < Pr(t ∈ TΠ|ft) < 1. In particular, ft is such that yB

tt < yOPT
tt . Let

Wt be the same random variable as defined in Lemma 3.5 above. We express

E[ΠB
t |(ft, t ∈ TΠ)] =

t+L∑

j=t

Pr(Wt = j|ft, t ∈ TΠ) · E[ΠB
t |(ft,Wt = j, TΠ)]

=
t+L∑

j=t

Pr(Wt = j|ft, t ∈ TΠ) · E[ΠB
t |(ft,Wt = j)].

Since Pr(Wt = t|ft) = 0, it is sufficient to show, for each j = t + 1, . . . , t + L, that E[ΠB
t |ft] ≤

E[ΠB
t |(ft,Wt = j)].

For each j = t + 1, . . . , t + L, let ψjt(ij) be the expected lost-sales cost incurred by the dual-balancing
policy in period t + L conditioning on ft and on the inventory on-hand at the beginning of period j
equal to ij . That is, ψjt(ij) = E[ΠB

t |(ft, I
B
j = ij)]. Similar to Lemma 3.5 above, we conclude that ψjt is

decreasing in ij . This implies that

E[ΠB
t |ft] = E[ψjt(IB

j )|ft] ≤ ψjt(qB
j−L).

However, we have already observed that the event ft ∩ [Wt = j] is independent of the demands
Dj , . . . , Dt+L, and is contained in the event Aj−1,t. From Lemma 3.4, we conclude that E[ΠB

t |(ft,Wt =
j)] = ψjt(qB

j−L), from which the proof of the lemma follows. ¤
Equation (15) and Lemmas 3.5 and 3.6 imply the following theorem.

Theorem 3.1 Consider the lost-sales model with independent demands, time-dependent holding cost pa-
rameters and non-increasing ordering and lost-sales penalty parameters. Then the dual-balancing policy
has a worst-case performance guarantee of 2.
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Randomized dual-balancing policy . Next we extend the worst-case analysis of the randomized
dual-balancing policy in the case where order quantities are restricted to be integers and the demands
are integer-valued random variables. Observe that now at the beginning of period s (conditioning on the
observed information set fs) we know q1

s and q2
s above deterministically. However, the actual size of the

order is still random. Using the same definition of Zt above, it is readily verified that Lemma 3.1 is valid
and that E[C(B)] = 2

∑
t E[Zt]. Next we modify the definition of the sets TH and TΠ and define them

with respect to the truncated inventory position of the dual-balancing policy assuming that it orders q2
t

units (though it might end up ordering only q1
t ). Denote this truncated inventory by Ỹ B

st i.e., this is the
truncated inventory position of the dual-balancing policy in period s assuming that it has ordered q2

t

units in period t. In particular, 0 ≤ Ỹ B
st − Y B

st ≤ 1. Specifically, we define

TH = {t ≤ T − L : ∀s ∈ [t, t + L] Ỹ B
st ≤ Y OPT

st },
and

TΠ = {t ≤ T − L : ∃s ∈ [t, t + L] Ỹ B
st > Y OPT

st }.
It is readily verified, that for each t ∈ TH , we have IB

t+L ≤ IOPT
t+L , and that, for each t ∈ TΠ there exists

s ∈ [t, t + L] such that Y B
st ≥ Y OPT

st . Thus, all the arguments used in the proofs of Lemmas 3.2 and 3.3
are still valid. The proofs of Lemmas 3.4, 3.5 and 3.6 directly apply.

4. Computational Issues Next we discuss several computational issues regarding the implemen-
tation of the dual-balancing policy. The main goal of this discussion is to highlight the fundamental
difference in the computational efforts required by the dual-balancing policy compared to the traditional
dynamic programming approach. The formal notion of computational efficiency in the context of stochas-
tic optimization models is, by far, less clear than in deterministic optimization models. In particular, in
stochastic optimization models, one can make different assumptions regarding the way the probability
distributions are specified, and the oracles that are available, and each set of assumptions leads to a
different analysis. Thus, a detailed analysis can be done only in the context of a concrete scenario. In
what follows, we shall restrict the discussion to two related issues:

(i) What oracles are needed in general for the implementation of the dual-balancing policy, and how
this is compared to the dynamic programming approach and the myopic policy.

(ii) A detailed analysis of the computational effort required to implement the dual-balancing policy
in the important special case, where the demands D1, . . . , DT are independent (not necessarily
identically distributed) integer-valued random variables with support within {0, . . . ,M}, where
M ∈ N. The goal is to highlight the fact that, in concrete and important scenarios, the dual-
balancing policy can be implemented efficiently, whereas the dynamic programming approach
does not seem to be tractable.

To implement the dual-balancing policy, we need to compute the balancer q′s in each period s =
1, . . . , T − L. As a result, the running time of the dual-balancing policy is of the order T times the
complexity of computing q′s in each period. The fact that q′s lies in the intersection of a decreasing
(πB

s (qs)) and an increasing function (lBs (qs)) suggests that bisection search methods will be very efficient
for computing q′s as long as the functions lBs and πB

s above can be evaluated efficiently.

From Equations (4) and (5) above we can see that in order to evaluate the functions lBs and πB
s it is

sufficient to be able to evaluate the distributions of D[s+L,t] (for each t = s + L, . . . , T ) and (IB
s+L−1 −

Ds+L−1)+. The latter distribution is usually the most challenging one to evaluate. However, in period
s conditioning on the observed information set fs, we already know deterministically the pipeline vector
p̄B

s including iBs , the on-hand inventory at the beginning of period s. Thus, we can use Equation (3) to
recursively compute the distributions IB

s+1, I
B
s+2, . . . , I

B
s+L−1. Specifically, if there are efficient oracles to

evaluate the cumulative demand distributions D[s+L,t], for each s = 1, . . . , T − L and t ≥ s + L, and the
distributions (X −Ds)+, for each s = 1, . . . , T and a random variable X, then the functions πB

s and lBs
can be evaluated efficiently.

This suggests that, in most if not all of the common scenarios, there exist efficient ways to evaluate
the functions lBs and πB

s . Note that the computational effort required grows moderately as the lead time
L grows. This is in contrast to the traditional dynamic programming approach that is very sensitive to
the lead time since the corresponding state space grows exponentially fast in the lead time L, even in
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the simplest scenarios (see Section 2.1 above). In fact, the exponential growth of the state space makes
it very hard to compute the optimal policies in models with lead times longer than 4 [16].

Moreover, the requirement to have an oracle that evaluates the distributions (X − Ds)+ above is
essential even for computing a simple myopic policy. As we have already mentioned, this policy aims, in
each period s, to minimize the overall expected cost in period s+L [15, 16]. However, for computing the
myopic policy one needs to evaluate the distribution (IB

s+L−1 −Ds+L−1)+.

Next we discuss the important special case in which the demands D1, . . . , DT are independent (not
necessarily identically distributed) integer-valued random variables with support over {0, . . . , M}, where
M ∈ N. We shall show how to compute the dual-balancing policy in time polynomial in T, L and M .

First, observe that like any reasonable policy the dual-balancing policy will never order more than M
units in a period. This implies that the inventory on-hand of the dual-balancing policy will never exceed
M(L + 1). Moreover, the functions πB

s and lBs are piecewise linear with break points in the integers
0, . . . , M . Thus, if there is an efficient way to evaluate the functions πB

s and lBs , one can compute the
balancer q′s using O(log M) calls for these functions. We simply apply a bisection search on {0, . . . ,M}
to find the two consecutive integers q1

s and q2
s = q1

s + 1 such that πB
s (q1

s) ≥ lBs (q1
s) and πB

s (q2
s) ≤ lBs (q2

s).
(Since the functions are piecewise linear, the balancer q′s can be expressed as a convex combination of q1

s

and q2
s , and then the randomized dual-balancing can be applied.) It is now sufficient to show that one

can evaluate efficiently the functions πB
s and lBs .

Focus on period s. Suppose that the cumulative distributions D[s+L,t] and the distribution of
(IB

s+L−1 − Ds+L−1)+ are given explicitly, i.e., by specifying the values in the support and the corre-
sponding probabilities. Since Ds+L, . . . , DT have support within {0, . . . , M} it follows that the support
of D[s+L,t] is within {0, . . . , TM}. Since all the orders and demands are integral, assuming that i0 is also
an integer implies that (IB

s+L−1 −Ds+L−1)+ is an integer-valued random variables with support within
{0, 1, . . . ,M(L+1)}. From Equations (4) and (5) it follows that, for a given order quantity qB

s , computing
the functions πB

s (qB
s ) and lBs (qB

s ) can be done in O(T 2LM2) time. Specifically, lBs consists of a sum of
O(T ) elements, one for each period j = s + L, . . . , T . Each element j in the sum can be computed by
enumerating over all the possible M(L+1) values of (IB

s+L−1 −Ds+L−1)+ and the possible TM values of
D[s+L,j]. For each j, this can be done in O(TLM2) time. Thus, the decision, in each period s, can be
computed in O(T 2LM2 log M) time.

Next we show how to construct the explicit distributions D[s+L,t] and (IB
s+L−1−Ds+L−1)+. However,

if the distribution D[s+L,j] is given explicitly, we can construct the distribution D[s+L,j+1] in O(TM2)
time. Thus, the cumulative demand distributions can be computed recursively in O(T 2M2) time. Recall
that conditioning on fs we know iBs . The recursive Equation (3) and the fact that D1, . . . , DT are integer-
valued random variables with support within {0, . . . , M} imply that, for each j = 0, . . . , L−1, the random
variable (IB

s+j −Ds+j)+ has at most (j + 1)M + 1 values in its support. Moreover, if (IB
s+j −Ds+j)+ is

given explicitly, we can compute the explicit distribution of (IB
s+j+1 − Ds+j+1)+ in O(jM2). Since we

use the recursion of Equation (3) L− 1 times, it follows that the distribution of (IB
s+L−1−Ds+L−1)+ can

be expressed explicitly in O(M2L2). This implies the following theorem.

Theorem 4.1 Consider the lost-sales model with integer-valued independent demands D1, . . . , DT with
support within {0, . . . , M}, for some M ∈ N. Then the dual-balancing policy can be computed in
O(T 2LM2 log M) time.

We note that computing an optimal policy in the above scenarios seems extremely hard unless the lead
time is very short. There are many other scenarios in which the dual-balancing policy can be computed
efficiently. The specific analysis requires detailed specifications of the underlying assumptions. We believe
that in most of the common scenarios, the dual-balancing policy proposed above will be straightforward
to implement both computationally and conceptually.

5. Extensions

5.1 Infinite Horizon In this subsection, we briefly discuss the implementation of the dual-balancing
policy in models with infinite horizon. Conceptually, the dual-balancing policy can still be implemented.
However, the computational effort involved depends on the maximum number of periods that a unit
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ordered in some period can stay in inventory before consumed. (This will affect the computation of the
marginal holding costs.) Finally we note that the same worst-case analysis described in Section 3 above
still holds in infinite horizon models with average or discounted cost.

5.2 Capacitated Model In this subsection, we shall describe how to extend the policy and the
worst-case analysis to the case where there exists a capacity constraint on the size of the order in each
period. Specifically, we assume that, for each period t = 1, . . . , T , there is a given nonnegative capacity
ut ≥ 0, and that the size of the order placed in that period can not exceed the capacity, i.e., qP

t ≤ ut.

We first describe a marginal cost accounting scheme for lost-sales models with capacity constraints on
the size of the order in each period. This scheme follows closely the ideas introduced by Levi, Roundy,
Shmoys and Truong in the context of capacitated models with backlogged demand [7]. The idea is to
associate with the decision of how many units to order in each period s, all the future lost-sales costs that
are forced by this decision. Specifically, let q̄P

s be the slack capacity in period s following some policy P ,
i.e., q̄P

s = us− qP
s is the unused capacity in period s (for s = 1, . . . , T −L). For each s = 1, . . . , T −L and

t ≥ s, let Π̃P
st denote the overall lost-sales costs incurred in period t by a policy that follows policy P until

period s and then orders up to capacity in each of the periods s+1, . . . , T −L (i.e., it orders up to uj for
each period j = s + 1, . . . , T −L). Period s is associated with all the lost-sales costs incurred in period t
that could have been avoided by ordering up to capacity in period s (instead of ordering qP

s ). That is, the
lost-sales cost in period t associated with period s is equal to the difference Π̃P

st− Π̃P
s−1,t. This is referred

to as the forced lost-sales cost in period t due to the decision made in period s. In addition, let Π̃P
0t (for

each t = L + 1, . . . , T − L) be the lost-sales costs incurred in period t if the orders in all the periods are
up to capacity. It is readily verified that Π̃P

0t captures costs that are unavoidable by every policy. Next
define Π̃P

s to be the overall lost-sales costs associated with period s (for each s = 1, . . . , T − L):

Π̃P
s =

T∑

t=s+L

(Π̃P
st − Π̃P

s−1,t). (19)

We will sometimes refer to the difference Π̃P
st − Π̃P

s−1,t as the contribution of period t to the lost-sales
costs associated with period s. It is readily verified that Π̃P

s is at most pq̄s, that is, period s can not be
associated with more than q̄s lost units of demand, since we could have ordered at most q̄s additional
units in that period. By ordering in period s up to capacity, we can avoid part of these lost-sales costs
up to pq̄B

s .

Observe that, for each t = L + 1, . . . , T , we have
t−L∑
s=1

(Π̃P
st − Π̃P

s−1,t) + Π̃P
0t = Π̃P

t−L,t = ΠP
t−L. (20)

Equation (20) above implies that the overall contributions of period t to the lost-sales costs associated
with periods 1, . . . , t− L is equal to the lost-sales cost incurred in period t minus the term Π̃P

0t which is
again the lost sales incurred in period t by any feasible policy. Thus, the above lost-sales cost accounting
scheme is valid and exact (see Figure 5.5). In particular, the cost of each feasible policy P can be written
as

C(P ) =
T−L∑
s=1

(HP
s + Π̃P

s ), (21)

ignoring the holding costs incurred by units ordered prior to period 1, lost-sales costs over [1, L] and the
term

∑T
t=L+1 Π̃P

0t which are common to every feasible policy.

Using the above marginal cost accounting scheme we construct a dual-balancing policy which is con-
ceptually identical to the policy in the uncapacitated case. That is, in each period s, conditioned on the
observed information set fs ∈ Fs, we order qB

s = q′s to balance the functions lBs (qB
s ) = E[HB

s (qB
s )|fs] and

π̃B
s (qB

s ) = E[Π̃B
s (qB

s )|fs], i.e., we balance

lBs (q′s) = E[HB
s (q′s)|fs] = π̃B

s (q′s) = E[Π̃B
s (q′s)|fs].
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Figure 5: A specific sample-path of demands and orders (L = 1, p = 1). An arrow indicates an allocation
of units of shortage to a period. For example, in period 4 there are 7 units of lost sales, out of which 2
units of shortage are associated with period 3 (i.e., Π̃34 − Π̃24 = 2), 3 units are associated with period 2
(i.e.,Π̃24 − Π̃14 = 3) and 2 units are associated with period 1 (i.e., Π̃14 − Π̃04 = 2). The last two columns
compare the lost-sales costs associated with each period according to the traditional and marginal cost
accounting, respectively.In particular, we again balance the expected marginal holding costs incurred by the units ordered in
period s against the expected marginal future lost-sales costs forced by the decision in period s. Note
that the function π̃B

s is nonnegative at qB
s = 0 and is equal to 0 at qB

s = us. Thus, the balancer q′s
above is again well-defined. Note that the function π̃B

s is more complicated to evaluate compared to πB
s ,

the period expected lost-sales cost incurred in period s + L, defined above for the uncapacitated model.
However, in most common scenarios it is still relatively straightforward to evaluate it accurately and
efficiently. Observe that in the uncapacitated model, all the capacities are equal to ∞ and thus, q̄P

s = ∞.
It is now readily verified that in this case Π̃P

s = ΠP
s . That is, the marginal lost-sales cost accounting

scheme for the capacitated model is in fact a generalization of the traditional lost-sales cost accounting
scheme for uncapacitated models.

The worst-case analysis is very similar to the analysis presented in Section 3 above for the uncapacitated
model. In particular, defining Zt = E[HB

t |Ft] = E[Π̃B
t |Ft], it is readily verified that Lemma 3.1 is still

valid. That is, E[C(B)] = 2
∑

t E[Zt]. We also keep the definitions of the sets TH and TΠ the same as
before. It is easy to see that Lemma 3.2 above is still valid, that is, HOPT ≥ ∑

s∈TH
HB

s . Next we state
and prove a lemma analogous to Lemma 3.3.

Lemma 5.1 The lost-sales penalty incurred by OPT , denoted by ΠOPT , is greater than the lost-sales
penalty costs of the dual-balancing policy which are associated with periods s ∈ TΠ, i.e.,
ΠOPT ≥ ∑

s∈TΠ
Π̃B

s .

Proof. As in Lemma 3.3 we first describe a random partition of the periods L+1, . . . , T . Specifically,
consider a realization of the demands d1, . . . , dT . Look for the latest period t with iBt < iOPT

t that
contributes to the lost-sales costs associated with some period s ∈ TΠ. That is, Π̃B

st− Π̃B
s−1,t > 0 for some

s ∈ TΠ. If no such t exists terminate. Otherwise, let t′ be that period and let s′ be the latest period in
TΠ within the interval [1, t′ − L]. Note that since t′ contributes lost-sales costs only to periods within
[1, t′ − L] including some period s ∈ TΠ within that interval, s′ above is well-defined. However, it is not
necessary that t′ contributes lost-sales costs to s′ itself. Let ws′ be the earliest period in [s′, s′ + L], such
that Y B

ws′ ,s′
≥ Y OPT

ws′ ,s′
(since s′ is in TΠ, ws′ is well-defined). Next mark all the periods in [ws′ , t

′]. As in
Lemma 3.3 we repeat the above for the interval [1, ws′).

This induces a partition of the periods that contributes to the lost-sales costs associated with periods
s ∈ TΠ into marked and unmarked periods. Consider first an unmarked period t that contributes to the
lost-sales costs associated with periods s ∈ TΠ. By the definition of the partition described above, it is
readily verified that IB

t ≥ IOPT
t , thus, ΠOPT

t−L ≥ ΠB
t−L (i.e., the lost sales incurred by OPT in period t is

higher than the respective lost-sales costs of the dual-balancing policy). Moreover, Equation (20) implies
that the lost-sales cost incurred by OPT in period t is higher than all the lost-sales costs incurred by
the dual-balancing policy in period t, which are associated with periods 1, . . . , t − L. In particular, the
lost-sales cost OPT incurs in period t is higher than all of the contributions of period t to periods s ∈ TΠ.
It is now sufficient to show that the lost-sales costs incurred by OPT over an interval [ws′ , t

′] are higher
than the lost-sales costs incurred by the dual-balancing policy over that interval, which are associated
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with periods s ∈ TΠ. Observe that by the definition of the partition all of these periods are within the
interval [1, s′]. For each such interval, we have (we again abuse notation and use s′, t′ and ws′ though
they are random variables),

ΠOPT
t′−L

p
= (Dt′ − IOPT

t′ )+ ≥ Dt′ − IOPT
t′

= Dt′ − (Y OPT
ws′ ,s′

+
∑

j∈(s′,t′−L]

qOPT
j −D[ws′ ,t′) +

ΠOPT
[ws′−L,t′−L)

p
),

where the equality follows again from the identity

IOPT
t = Y P

ws,s +
∑

j∈(s,t−L] q
OPT
j −D[ws,t) +

ΠOP T
[ws−L,t−L)

p for each t, s ≤ t−L and ws ∈ [s, s + L]. Taking
ΠOP T

[ws−L,t−L)

p to the left-hand side, we get

ΠOPT
[ws′−L,t′−L]

p
≥ Dt′ − (Y B

ws′ ,s′
+

∑

j∈(s′,t′−L]

uj −D[ws′ ,t′))

= Dt′ − (Y B
ws′ ,s′

+
∑

j∈(s′,t′−L]

uj −D[ws′ ,t′) +
ΠB

[ws′−L,s′]

p
+

∑

r∈(s′+L,t′)

Π̃B
s′r

p
)

+
ΠB

[ws′−L,s′]

p
+

∑

r∈(s′+L,t′)

Π̃B
s′r

p
=

ΠB
[ws′−L,s′]

p
+

∑

r∈(s′+L,t′]

Π̃B
s′r

p
.

The first inequality follows from the fact that Y B
ws′ ,s′

≥ Y OPT
ws′ ,s′

and uj ≥ QOPT
j . In the first equality we

just add and subtract
ΠB

[w
s′−L,s′]

p +
∑

r∈(s′+L,t′)
Π̃B

s′r
p . Here

ΠB
[w

s′−L,s′]
p is as before the lost sales incurred

by the dual-balancing policy over the interval [ws′ , s
′ + L] and

∑
r∈(s′+L,t′)

Π̃B
s′r
p is the lost sales incurred

over (s′ + L, t′) by a policy that follows the dual-balancing policy until period s′ and then orders up to
capacity in periods s′ + 1, . . . , T − L. The last equality follows from the fact that

Dt′ − (Y B
ws′ ,s′

+
∑

j∈(s′,t′−L]

uj −D[ws′ ,t′) +
ΠB

[ws′−L,s′]

p
+

∑

r∈(s′+L,t′)

Π̃B
s′r

p
)

is equal to the lost sales that the above policy incurs in period t′, i.e., equal to Π̃B
s′t′ . In particular, observe

that this policy has the same truncated inventory position in period ws′ with respect to period s′, and

over the time interval [ws′ , s
′ + L) it incurs exactly

ΠB
[w

s′−L,s′)
p units of lost sales (this policy follows the

dual-balancing until period s′).

Finally, we have already seen that the part of the lost-sales costs incurred by the dual-balancing policy
over the time interval [ws′ , s

′ + L] that is associated (by the marginal cost accounting scheme) with
ordering decisions in other periods can not exceed the actual lost-sales cost incurred over this interval,
i.e., ΠB

[ws′−L,s′] (see also Equation (20) above). Moreover, from Equation (19) it follows that the part of
the lost-sales costs incurred by the dual-balancing policy in some period t ∈ [s′ + L, t′] that is associated
(by the marginal cost accounting scheme) with the an ordering decision in some period s ∈ [1, s′] can not
exceed Π̃B

st, which is the lost sales incurred in period t by a policy that follows the dual-balancing policy
until period s and then orders up to capacity in each of the subsequent periods. However, by definition
this is at most Π̃B

s′t, which is similarly, the lost-sales cost incurred in period t by a policy that follows the
dual-balancing policy until period s′, and only then starts to order up to capacity. The last step of the
proof is identical to Equation (13) in the proof of Lemma 3.3 above (see Figure 5.6).

¤
Similar to the uncapacitated model discussed in Section 3, the proof of the Lemma 5.1 can be extended

to models with non-increasing lost-sales penalty parameters. Observe that Lemmas 3.4 and 3.5 still hold.
In addition, it can be verified that Lemma 3.6 still holds with respect to Π̃B

t (instead of ΠB
t ), i.e.,
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Figure 6: Period s is associated with lost-sales costs from periods j, k and t′. Period j is unmarked,
thus, the lost sales costs of OPT can pay for all the contributions of period j to other periods. Periods
k and t′ are within a marked interval, thus, the lost-sales costs of OPT over the interval can pay for all
the contributions to periods in [1, s′].

E[Π̃B
t |ft] ≤ E[Π̃B

t |(ft,Wt = j)] for each t = 1, . . . , T − L and j ∈ (t, t + L]. Thus, we get the following
theorem.

Theorem 5.1 The dual-balancing policy for the capacitated lost-sales model with independent demands,
time-dependent holding cost parameters and non-increasing ordering and lost-sales penalty parameters
has a worst-case guarantee of 2.

Finally, we note that the above analysis still holds if the capacities, in each period are random, and
follow an exogenous stochastic process. (The only difference is that now the expectations are taken with
respect to the random future demands and capacities.)

5.3 Stochastic Non-crossing Lead Times In this subsection, we shall show how the dual-
balancing policy and its worst-case analysis can be extended to the lost-sales model with stochastic
lead times. Specifically, we assume that the stochastic lead times are such that orders do not cross or
overtake each other; that is, for every realization of lead times, the order placed in a period arrives no
later than any subsequent order. Such lead time models have been first introduced by Kaplan [3] and
subsequently streamlined by Nahmias [12]. For ease of exposition we consider the uncapacitated model.

For each t = 1, . . . , T , let Lt be the stochastic lead time of the order placed in period t, which is realized
at time period t + Lt. The stochastic process {Lt}t has the property that {t + Lt} is a non-decreasing
sequence for every sample path (i.e., with probability 1). We also assume that the processes {Lt}t and
{Dt}t are independent of each other.

We will now explain how the definitions, results and proofs discussed in Section 3 above have to be
modified to extend the dual-balancing policy and the analysis to the more general model with stochastic
lead time.

The dynamics of the inventory-on-hand process is now reflected by the following modified version of
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equation (3).

IP
t+1 = (IP

t −Dt)+ +
∑

r:r+Lr=t+1

QP
r . (22)

Next, the marginal holding cost incurred by the units ordered in period s, denoted again by HP
s , is

still given by equation (4) after replacing L with Ls, the stochastic lead time of an order placed in s.

Note that, in the model with stochastic lead times, there are no orders delivered in the time interval
(t + Lt, t + 1 + Lt+1) even if t + Lt < t + 1 + Lt+1. The lower and upper ends of this interval are
the periods in which the respective orders placed in periods t and t + 1 are delivered. In particular, if
t+Lt < t+1+Lt+1, then once the decision of how many units to order in period t is made, the lost-sales
costs over [t + Lt, t + 1 + Lt+1) are just a function of future demands and are not affected by any future
decision. Thus, we define Π̃P

s to be the marginal lost-sales costs associated with period t,

Π̃P
t = p

∑

r∈[t+Lt,t+1+Lt+1)

(Dr − IP
r )+. (23)

Observe that if the orders placed in t and t + 1 arrive in the same period, the marginal lost-sales cost
associated with period t is zero. In particular, the lost-sales costs incurred over the planning horizon
are associated with periods for which the order placed in the period strictly precedes the order in the
subsequent period. Let T ∗ = {t : t + Lt < t + 1 + Lt+1}. Note that Π̃P

t is zero if t does not belong
to T ∗. The functions, lBt and π̃B

t are as defined above in Section 3 (note that here we deviate from the
convention in that lBt is not the realization of Lt). As before, in each period s, conditioning on the observed
information set fs, we compute the balancer q′s to balance lBs against πB

s . Note that the functions lBs and
πB

s are more complex to evaluate in the presence of stochastic lead times. In particular, the corresponding
expectations in the definitions of lBs and πB

s are now taken with respect to the future demands and the
conditional distribution of the lead times of all the outstanding orders. (The information set fs induces
a conditional distributions of the stochastic lead times of all the outstanding orders.) Computing the
functions lBs and πB

s highly depends on the complexity of the distributions of the lead times. However,
there are many scenarios, in which these functions can still be estimated accurately, for example, using
Monte Carlo integration.

Defining the random variable Zt (for each t = 1, . . . , T ) in the same way as before, it is readily verified
that Lemma 3.1 still holds, i.e., E[C(B)] = 2

∑
t E[Zt].

Let us now revisit the definition of the truncated inventory position, Y P
st . In the model with a deter-

ministic lead time, it includes the inventory on-hand in period s and all orders outstanding at s that were
placed by time period t. In particular, Y P

t+L,t is the inventory on-hand at t + L after receiving the order
placed in t. In the model with stochastic lead times, it is possible that the order placed in t arrives along
with orders placed in subsequent periods. Thus, we redefine Y P

t+Lt,t
to be equal to the on-hand inventory

at the end of period t + Lt − 1, i.e., (IP
t+Lt−1 −Dt+Lt−1)+, plus all the orders delivered in period t + Lt

that were placed by time period t, i.e.,
∑

j≤t:j+Lj=t+Lt
QP

j . That is,

Y P
st = IP

s +
∑

j≤t:j+Lj>s

QP
j ∀ s ∈ [t, t + Lt) and

= (IP
t+Lt−1 −Dt+Lt−1)+ +

∑

j≤t:j+Lj=t+Lt

QP
j for s = t + Lt .

Observe that under the above definition, the truncated inventory Y P
t+Lt,t

does not depend on orders placed
after period t even if they are delivered in period t + Lt.

Using the modified notion of truncated inventory, we define the sets TH , TΠ and the notion of al-
ternation in the same way as before (see Equations (7) and (8) above). Lemma 3.2 still holds, that is
HOPT ≥ ∑

t∈TH
HB

t . The only modification to the proof of Lemma 3.2 above involves comparing Y B
t+Lt,t

and Y OPT
t+Lt,t

instead of comparing IB
t+L and IOPT

t+L .

Similarly, the statement of Lemma 3.3 remains unchanged, whereas the proof requires some modifica-
tions. We restate the lemma and give detailed arguments, where necessary, to show how the proof can
be extended to the stochastic lead time model.
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Lemma 5.2 The lost-sales penalty incurred by OPT , denoted by ΠOPT , is greater than the lost-sales
penalty costs of the dual-balancing policy which are associated with periods t ∈ TΠ, i.e., ΠOPT ≥∑

t∈TΠ
Π̃B

t .

Proof. First, observe that ∑

t∈TΠ

Π̃B
t =

∑

t∈TΠ∩T ∗
Π̃B

t ,

since Π̃P
t = 0 if t /∈ T ∗.

We again describe a random partition of the periods into marked and unmarked periods. Consider a
realization of the demands d1, . . . , dT and lead times l1, . . . , lT . Start at T and look for the latest s ≤ T
with iBs < iOPT

s and some t ∈ TΠ ∩ T ∗ such that s = t + lt. If such an s does not exist terminate.
Otherwise, let t′ = s− lt′ and let wt′ be again the earliest period r in [t′, t′ + lt′ ] for which yB

rt′ ≥ yOPT
rt′

(where now we refer to the modified notion of the truncated inventory position). Let s′t be the latest
unmarked period within (t′ + lt′ , t

′ + 1 + lt′+1), where intitially all periods are unmarked. We mark the
periods [wt′ , s

′
t′ ] and repeat the above with respect to the interval [1, wt′).

It is easy to see that, for each t ∈ TΠ ∩ T ∗, for which t + Lt is not marked, then IB
t+Lt

≥ IOPT
t+Lt

(for
otherwise it would have been marked). However, this implies that, for each s ∈ [t + Lt, S

′
t] (where S′t is

the latest unmarked period in the interval [t + Lt, t + 1 + Lt+1), we have IB
s ≥ IOPT

s . The reason is that
no order arrives within that interval after period t + Lt. In particular, this implies that Π̃B

t ≤ ΠOPT
[t,S′t]

,
where ΠOPT

[t,S′t]
is the lost-sales costs incurred by OPT over the interval [t + Lt, S

′
t].

It is again sufficient to show that for each marked interval [Wt′ , St′ ] the lost sales incurred by OPT
over the interval are higher than the respective lost sales of the dual-balancing policy over that interval.
The arguments are identical to those used in Lemma 3.3. The proof then follows (see Figure 5.7).

t+1+Lt+1 

'
ts  

Marked interval 
corresponding to 
period t 

Next marked interval 

t+Lt t  wt t+1 
T 

OPT
tLt

B
tLt ii ++ <  

OPT
t,w

B
t,w

tt
yy ≥  

Previously 
marked 
interval  

Legend 
Marked interval 
 
Depicts the lead time 
of an order placed in 
a particular period 

1 

Figure 7: The partition into marked and unmarked periods in the case, where the lead times are stochastic.
¤

Finally, Equations (14) and (15) still hold. Furthermore, Lemmas 3.4, 3.5 and 3.6 hold (the proofs are
almost identical). Thus, we get the following theorem.

Theorem 5.2 The dual-balancing policy for the lost-sales model with stochastic (non-crossing) lead
times, independent demands, time-dependent holding cost parameters and non-increasing ordering and
lost-sales penalty parameters has a worst-case guarantee of 2.
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5.4 Analysis - Correlated Demands In this subsection, we shall show that the analysis in Section
3 above holds in more general settings, where the demands in different periods are correlated. We have
already seen that the analysis holds if the Inequalities (16) and (17) hold for each t = 1, . . . , T − L and
ft ∈ Ft. The following inequalities are equivalent to Inequalities (16) and (17) above. For each period
t = 1, . . . , T − L and an information set ft ∈ Ft with yB

tt < yOPT
tt , we require that

E[HB
t |ft] ≤ E[HB

t |(ft, t ∈ TH)] (24)

and

E[ΠB
t |ft] ≥ E[ΠB

t |(ft, t ∈ TH)]. (25)

It is clear that Inequality (24) is identical to Inequality (16). In addition, we can write

E[ΠB
t |ft] = Pr(t ∈ TH |ft) · E[ΠB

t |(ft, t ∈ TH)] + Pr(t ∈ TΠ|ft) · E[ΠB
t |(ft, t ∈ TΠ)].

However, this and Inequality (25) imply that

E[ΠB
t |ft] ≤ E[ΠB

t |(ft, t ∈ TΠ)],

which implies Inequality (17).

The main issue in models with correlated demands is that the demands in periods t + L, . . . , T are
not independent of the demands over [t, t + L) (we have used this property in the proofs of Lemmas 3.5
and 3.6 for independent demands). Next we consider two natural demand models in which demands in
different periods are correlated. We shall show that Inequalities (24) and (25) above hold under these
demand structures, thus, the worst-case analysis is valid. Specifically, we consider the multiplicative auto-
regression demand model in which demands are defined recursively through the formula Dt = Dt−1Nt (for
each t = 1, . . . , T ), where {Nt}t are independent lognormal random variables with mean equal to 1. (The
assumption that {Nt}t are lognormal is common in the literature, but as noted below is not necessary
for the analysis). In addition, we consider the well-known and commonly used Auto-regression demand
model (AR(1)), in which demands are again defined recursively through the formula Dt = ρtDt−1 + Nt

(see, for example, [1]). We assume that {ρt}t is a sequence of positive constants and now {Nt}t are
independent random variables each with mean equal to 0 (the latter is again without loss of generality).

The analysis for these models is based on a more refined characterization of the event ft∩ [t ∈ TH ] and
on the notion of stochastic order between random vectors. Next we characterize the event ft ∩ [t ∈ TH ]
for cases where ft, the observed information set at the beginning of period t, is such that yB

tt < yOPT
tt .

For each s ∈ [t, t + L), let Ast be as before the event [Y B
st < Y OPT

st ] ∩ [Y B
s+1,t ≥ Y OPT

s+1,t ]. The event
Ast implies that in period s there was an alternation in the relation between the respective truncated
inventory positions of the dual-balancing policy and that of OPT . Similarly, let Bst be the event
[Y B

st < Y OPT
st ] ∩ [Y B

s+1,t < Y OPT
s+1,t ], i.e., that in periods s and s + 1 the respective truncated inventory of

OPT was strictly higher than the one of the dual-balancing policy. It is now clear that we can express

ft ∩ [t ∈ TH ] = ft ∩Btt ∩ · · · ∩Bt+L−1,t.

However, in the proof of Lemma 3.4 we have already seen that the event Ast can occur only if the
cumulative orders placed by the dual-balancing over [s + 1− L, t] are higher than the cumulative orders
placed by OPT over that interval, i.e., ∆qs =

∑t
r=s+1−L qB

r −∑t
r=s+1−L qOPT

r ≥ 0 (since we condition
on ft, all the orders placed by the dual-balancing policy and OPT over (t − L, t] are known). We call
each of the periods with this property a potential alternation point. Let St be the set of all potential
alternation points in the interval [t, t + L). The event ft ∩ [t ∈ TH ] can then be written as

ft ∩ (∩s∈StBst).

Moreover, Lemma 3.4 above implies that this event can be expressed as

ft ∩ [t ∈ TH ] = ft ∩ (∩s∈St [Ds ≤ IOPT
s −∆qs]). (26)

Next we present the analysis for the multiplicative auto-regression demand model. An almost identical
analysis can be applied to the AR(1) model. In particular, we use the notion of stochastic order between
random vectors. Below we provide a rigorous definition of stochastic order.
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Definition 5.1 Let X and Y be two random n-vectors. We say that X is stochastically larger than
Y , denoted as X ≥st Y , if E[φ(X)] ≥ E[φ(Y )] (E[φ(X)] ≤ E[φ(Y )]), for every increasing (decreasing)
function φ : Rn 7→ R, for which the above expectations are well-defined.

Here a decreasing (increasing) function φ : Rn 7→ R is such that φ(x) ≥ φ(y) (φ(x) ≥ φ(y)) for each x ≤ y,
where x, y ∈ Rn and the inequality x ≤ y applies componentwise. The next two theorems provide useful
tools to show that two random vectors are stochastically ordered. The theorems are presented without
proofs. (To the best of our knowledge, they were first introduced by Veinott [14]. For a comprehensive
discussion of stochastic ordering we refer the reader to [11].)

Theorem 5.3 (Theorem 1.2.1.5 in [11]) Let X, Y and Z be random variables. If for each value z in the
support of Z, we have (X|Z = z) ≤st (Y |Z = z), then X ≤st Y .

Theorem 5.4 (Theorem 4 in [14] and Theorem 3.3.7 in [11]) Let X and Y be n-dimensional random
vectors. Suppose that X1 ≤st Y1 and, for each j = 2, . . . , n, we have

Xj |(X1 = x1, . . . , Xj−1 = xj−1) ≤st Yj |(Y1 = y1, . . . , Yj−1 = yj−1),

as long as xm ≤ ym, for each m = 1, . . . , j − 1. Then X ≤st Y .

Recall that in the multiplicative auto-regressive demand model, the demand in period s is defined as
Ds = Ds−1Ns. In particular, conditioning on ft we know dt−1 and, for each s ≥ t, the demand Ds can
be written as Ds = dt−1Πs

j=tNj . Moreover, conditioning on ft, the marginal holding cost incurred by
the units ordered by the dual-balancing policy in period t can be expressed as a function of dt−1, the
observed pipeline vector p̄B

t and the realization of the random vector N̄ t = (Nt, . . . , NT ). Specifically,
let φt(nt, . . . , nT ) be the marginal holding cost incurred by the units ordered by the dual-balancing
policy in period t, conditioning on ft and on Nj = nj , for each j = t, . . . , T . It is clear that φt is
decreasing in the vector n̄t = (nt, . . . , nT ). Similarly, let ψt(nt, . . . , nT ) be the lost sales incurred by
the dual-balancing policy in period t + L, conditioning on ft and on Nj = nj , for each j = t, . . . , T .
It is again clear that ψt is increasing in n̄t = (nt, . . . , nT ). Moreover, E[HB

t |ft] = E[φt(Nt, . . . , NT )|ft]
and E[HB

t |(ft, t ∈ TH)] = E[φt(Nt, . . . , NT )|(ft, t ∈ TH)]. Similarly, E[ΠB
t |ft] = E[ψt(Nt, . . . , NT )|ft]

and E[ΠB
t |(ft, t ∈ TH)] = E[ψt(Nt, . . . , NT )|(ft, t ∈ TH)]. Thus, it is sufficient to show that the vector

N̄ t|ft = (Nt, . . . , NT )|ft is stochastically larger than the vector N̄ t|(ft, t ∈ TH). Definition 5.1 will
then imply that E[φt(Nt, . . . , NT )|ft] ≤ E[φt(Nt, . . . , NT )|(ft, t ∈ TH)] and that E[ψt(Nt, . . . , NT )|ft] ≥
E[ψt(Nt, . . . , NT )|(ft, t ∈ TH)]. This implies that the Inequalities (24) and (25) hold and the worst-case
analysis follows.

Lemma 5.3 Suppose that the demands D1, . . . , DT follow the multiplicative auto-regression demand
model. Consider some t = 1, . . . , T − L and some information set ft such that yB

tt < yOPT
tt . Then

the vector N̄ t|ft is stochastically larger than N̄ t|(ft, t ∈ TH).

Proof. Recall Equation (26) that

ft ∩ [t ∈ TH ] = ft ∩ (∩s∈St [Ds ≤ IOPT
s −∆qs]),

where again St is the set of potential alternation points over the time interval [t, t + L). Assume that
St = {s1 < s2 < · · · < sm} (the set St is realized by time t). Consider now the sequence of events
A1 ⊇ A2 ⊇ · · · ⊇ Am, where, for each j = 1, . . . , m,

Aj = ft ∩ (∩j
r=1[Dsr ≤ IOPT

sr
−∆qsr ]).

Clearly, the event Am is equivalent to the event ft ∩ [t ∈ TH ]. Next we show that

N̄ t|ft ≥st N̄ t|A1 ≥st N̄ t|A2 ≥st · · · ≥st N̄ t|Am.

First consider the event A1. We shall show that Nt = Nt|ft ≥st Nt|(ft, A1). (Observe that Nt

is independent of ft.) Let Z = (Nt+1, . . . , NT ), and consider any value in n̄ = (nt+1, . . . , nT ) in the
support of Z. Given [Z = n̄], the quantity Ds1 is increasing in Nt (from zero to infinity) and IOPT

s1
is

decreasing in Nt+1 (from a non-negative value to 0). Thus, given [Z = n̄], the event A1 can be expressed
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as A1 = ft ∩ [Nt ≤ β] for some β = β(nt+1, . . . , nT ), where β ∈ (0,∞]. It follows immediately that
Nt|(ft, Z = n̄) ≥st Nt|(Z = n̄, A1). Applying Theorem 5.3, we get that Nt|ft ≥st Nt|A1.

For each j = t + 1, . . . , s1, consider the random variables Nj |ft and Nj |A1. Next we condition on the
events A = [Nt|ft = nt, . . . , Nj−1|ft = nj−1] and A′ = [Nt|A1 = n′t, . . . , Nj−1|A1 = n′j−1] and assume
that nr ≥ n′r, for each r = t, . . . , j − 1. Using Theorem 5.4 it is sufficient to show that Nj |(ft, A) ≥st

Nj |(A1, A
′). However, this can be shown by arguments similar to the one used above, specifically, by

conditioning on each value in the support of Z ′ = (Nj+1, . . . , NT )|ft. We note that Nj |(ft, A) is identically
distributed as Nj = Nj |ft. (Conditioning only on ft, the random variables Nt, . . . , NT are assumed to
be independent of each other.)

Observe that identical arguments can be applied to show that N̄ t|A1 ≥st N̄ t|A2 ≥st . . . ,≥st N̄ t|Am.
The proof of the lemma then follows. ¤

Lemma 5.3 implies the following theorem.

Theorem 5.5 Consider the lost-sales model with time-dependent holding cost parameters, non-increasing
lost-sales penalty parameters and multiplicative auto regression demand. Then the dual-balancing policy
has a worst-case performance guarantee of 2.

As we have already mentioned, identical arguments can be used to prove an analogous theorem on the
AR(1) demand model.

Theorem 5.6 Consider the lost-sales model with time-dependent holding cost parameters, non-increasing
ordering and lost-sales penalty parameters and AR(1) demand. Then the dual-balancing policy has a
worst-case performance guarantee of 2.

In the more general case, let N1, . . . , NT be independent nonnegative random variables. Assume that,
for each period s, we have Ds = gs(N1, . . . , Ns). Moreover, gs is an increasing function, and for each
j = 1, . . . , s, we have limNj→∞ gs(N1, . . . , Ns) = ∞. It can be verified that the proof of Lemma above
5.3 still holds and so is the worst-case analysis.

We believe that there are additional important demand structures for which the worst-performance
guarantee can be shown. Providing a general characterization of the properties of the demand structure,
required for the analysis to hold, is a very interesting future research direction.
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