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Abstract

We develop the first algorithmic approach to compute provably good ordering policies for a multi-

echelon, stochastic inventory system facing correlated, non-stationary and evolving demands over a fi-

nite horizon. Our approach is computationally efficient and guaranteed to produce a policy with total

expected cost no more than twice the expected cost of an optimal policy. As part of our computational

approach, we propose an innovative scheme to account for costs in a multi-echelon, multi-period en-

vironment. This scheme, called a cause-effect cost-accounting scheme, is significantly different from

traditional cost accounting schemes, in that it re-allocates costs with the goal of assigning every unit of

cost to the decision that caused the cost to be incurred.

We consider both serial and assembly systems, and both continuous and discrete demand quantities.

We show that our policy achieves a worst-case expected cost of 2 times the expected cost of the optimal

policy under the assumption that holding costs for a stage in the serial system is charged as soon as a

unit is ordered by the stage. Under the alternative assumption that holding costs begin to be charged

when a unit arrives at a stage, our modified balancing policy achieves a worst-case performance ratio of

3. Additionally, when the backorder cost parameter is greater than the echelon holding cost parameters

for all but the final downstream stage, we show that the performance ratio can be reduced to 21
3 .
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1 Introduction

In this paper, we address the challenging task of computing provably good inventory control policies in

supply chains with several echelons (locations) and stochastic demands that can be correlated and evolve

over time. Specifically, we consider two of the fundamental multi-echelon models in stochastic inventory

theory, the single-item, periodic-review, serial system and the single-item periodic-review assembly system.

These models have received a lot of attention from numerous authors throughout the years (see, for example,

[18] and other references below). The existing literature has mostly been focused on deriving structural

results about the form of the optimal policies using a dynamic programming approach. However, computing

the optimal policies is tractable only under rather strong assumptions on the demand distributions and there

are many important scenarios where the required computations seem unlikely to be tractable. In particular,

these models become computationally intractable in the presence of correlated and evolving demands. Such

demand structures are typical in scenarios where dynamic forecasts are incorporated into the supply-chain

management. In this paper, we provide novel extensions the to the recent papers on single-item, single-

location models by Levi, Pál, Roundy and Shmoys [11] and Levi, Roundy, Shmoys and Truong [12]. These

papers consider single-item, single-location models with very general demand structures and describe a class

of policies that are called Dual-Balancing policies. These policies are computationally efficient, and are

proven to be near-optimal in that they admit a worst-case performance guarantee of 2. That is, the expected

cost of the policy is guaranteed to be at most twice the expected cost of an optimal policy, regardless of

the input of the problem. In this paper, we establish similar results for the more general multi-echelon and

multi-item stochastic inventory models. To the best of our knowledge, these are the first computationally

efficient policies for these fundamental models that admit worst-case performance guarantees. As we shall

demonstrate, these extensions require several new conceptual and technical ideas that we believe will have

additional applications in the future research of multi-echelon and multi-item stochastic inventory models.

The details of the single-item, periodic-review, serial system are as follows. A single commodity moves

through a supply-chain that consists of a customer, distinct inventory-storage locations called stages, and an

external supplier. The stages are organized in a serial system. The first stage in the series (at the bottom

of the series) is facing a sequence of stochastic demands over a planning horizon of finitely many discrete

periods. Each stage is supplied by the next stage in the series, and the last stage is supplied by an external

supplier with infinite capacity. There are lead times between each two consecutive stages in the system

that correspond to the number of periods that it takes to ship the commodity from one stage to the next. In

each period several types of costs are incurred, per-unit ordering costs for ordering inventory at each stage,
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per-unit holding costs that are incurred for each unit of inventory that is at a stage or in transit between

stages at the end of a time period, and a per-unit backordering penalty cost for each unit of demand that is

not yet satisfied at the end of a period. Unsatisfied demand is fully backordered, i.e., it stays in the system

until it is satisfied. In the more general assembly system, the stages in the supply-chain are organized as a

directed tree. Each stage produces a different subassembly, and the root stage of the tree produces a final

product and is facing stochastic demands. Each unit in each stage is assembled from one unit from each

of the parent stages. There are again lead times between each stage and its child stage in the tree. As in

the serial system there are per-unit ordering costs and holding costs in each one of the stages, as well as

a per-unit backordering penalty cost that is incurred only in the root stage. In both models the goal is to

find an ordering policy that respects the system constrains and minimizes the overall expected cost over the

entire planning horizon.

As we have already mentioned these fundamental models have attracted a lot of attention from many re-

searchers. The most commonly used paradigm to address these models has been the dynamic programming

framework. This approach has been very effective in characterizing the structure of the optimal policies for

these models. There are several dynamic-programming-based proofs for the optimality of echelon state-

dependent base-stock policies in the serial system. The first proof has been established in the seminal paper

of Clark and Scarf [4] for a model where the demands in different periods are assumed to be indepen-

dent and identically distributed. Several subsequent papers (see, for example, [2, 3, 5, 6, 18]) by different

authors have established simpler proofs of the initial result of Clark and Scarf and extended it to models

with more general assumptions (e.g., more general assumptions on the demand distributions). In particular,

the optimality of echelon base-stock policies has been established for models in which demands follow an

exogenous Markov-modulated process [2] or an autoregressive process [5].

All of the above-mentioned proofs are based on several concepts regarding the cost accounting scheme.

The first major concept is the notion of echelon inventory levels and echelon holding costs. The echelon

inventory level of a stage is the total inventory that is at the stage, that is in transit from the parent stage to

the stage, and that is at or in transit to any of the downstream stages in the system. The echelon holding cost

at a stage is the difference between the cost of holding a unit of inventory at the stage for a time period, and

the cost of holding it at the parent stage. Without loss of generality we assume that the echelon holding costs

are nonnegative; if this is not the case then no inventory will be stored at the parent stage. Holding costs

can be correctly accounted for either in the conventional manner, or using echelon inventories and echelon

holding costs - for details see [18] and Section 2 below.

The echelon inventory level provides a compact description of the structure of the optimal policies. In
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each period, as a function of the current state of the system (but independent of the inventory control policy

used in previous periods), there are target echelon inventory levels for each stage, also called echelon base-

stock levels. The optimal policy aims to keep the echelon inventory levels as close as possible to the target

base-stock levels. That is, at the beginning of the period, if the echelon inventory level at a stage is below the

target, the stage orders enough to bring the echelon inventory up to the target, or it orders all of the inventory

that is currently on hand at the parent stage. If the echelon inventory level is above the target, no order is

placed.

The research literature on stochastic serial inventory systems has two cost re-allocation schemes, which

effectively shift costs from one stage to another. Both of these schemes re-allocate costs between stages for

a single time period only, but they do not shift costs from one time period to another. The first published

cost re-allocation scheme is the classical, dynamic-programming-based proof of the optimality of an echelon

base-stock policy. This proof decomposes the problem into a sequence of single-stage problems, and then

proves the optimality of an echelon base-stock policy recursively, stage by stage. Each stage passes an

implicit penalty function to the parent of the stage. The penalty function captures the impact that decisions

made by upper stages will have on the stage in question. This approach was introduced by Clark and Scarf

[4], was simplified by Zipkin [18], and has been extended by Dong and Lee [5]. Computationally, a series of

single-stage problems are solved to optimality, one for each stage, with each stage assuming that the lower

stages have already been optimized. Part of the computation done at each stage is to compute the implicit

penalty function that will be passed to the parent stage.

The second cost re-allocation scheme is due to Chen and Zheng [3], for a model in which each stage

also has a fixed set-up cost that is incurred whenever the stage places an order. In addition to using induced

penalty functions, they propose cost parameter allocation bounds, in which they create a ”component” for

each stage in the original system, and a separate multi-stage inventory model for each component. They

then allocate the backordering penalty cost parameter and the holding cost parameters to the different com-

ponents.

Unfortunately, the rather simple state-dependent base-stock form of the optimal policies does not always

lead to efficient algorithms for computing the optimal policies. The corresponding dynamic programs are

tractable in cases where the demands in different periods are independent and do not evolve over time,

although even in such simple scenarios the computations involved can be tedious. The standard dynamic

programming approach can still be tractable in models with exogenous Markov-modulated demand but

under rather strong assumptions on the size of the state space of the underlying Markov process (see, for

example, [17, 2]). However, in many scenarios with more complex demand structure the state space of
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the corresponding dynamic programs grows at an exponential rate in the number of periods and explodes

very fast. Thus, the straightforward approach to solving the corresponding dynamic programs becomes

practically (and often also theoretically) intractable even for single-stage models (see [8, 5] for relevant

discussions on the MMFE model). This is especially true in the presence of complex demand structures

where demands in different periods are correlated and evolve over time. The difficulty, known as the curse

of dimensionality, essentially comes from the fact that we need to solve ’too many’ subproblems. Because

of this phenomenon, it seems unlikely that an efficient algorithm to solve these huge dynamic programs to

optimality exists.

Muharremoglu and Tsitsiklis [13] have proposed an alternative approach to the dynamic programming

framework. They have observed that this problem can be decoupled into a series of unit supply-demand

subproblems, where each subproblem corresponds to a single unit of supply and a single unit of demand

that are matched together. This novel approach enabled them to substantially simplify some of the dynamic-

programming-based proofs on the structure of optimal policies, as well as to prove several important new

structural results. In particular, they have established the optimality of echelon state-dependent base-stock

policies under general exogenous Markov-modulated demand and stochastic lead times with no order-

crossing. Using this unit decomposition, they have also suggested new methods to compute the optimal

policies. However, their computational methods are essentially dynamic programming approaches applied

to the unit subproblems, and hence they suffer from similar problems in the presence of correlated and

evolving demands. Janakiraman and Muckstadt [9] have extended their approach to systems with capac-

ity constraints on the size of the order. Although our approach is very different from theirs, we use their

unit-decomposition approach extensively as a technical and descriptive tool.

As a result of this apparent computational intractability, many researchers have attempted to construct

computationally efficient (but suboptimal) heuristics for these problems [7, 1, 5, 16, 14]. However, we are

aware of no attempts to analyze the worst-case performance of these heuristics. Moreover, we are aware of

no computationally efficient policies for which there exists a worst-case analysis that establishes constant

performance guarantees.

Rosling [15] has shown that the optimality of echelon base-stock policies holds also in the more general

assembly system. Moreover, he has shown that under this condition an assembly system can be transformed

into an equivalent serial system, in that policies in one system can be mapped to policies in the other system

with the same cost. In particular, echelon base-stock policies in the serial system are mapped to echelon

base-stock policies in the assembly system. However, since the assembly system is a generalization of the

serial system, it is clear that the above-mentioned computational challenges still exist, and might be even
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harder.

This paper extends the recent work by Levi, Pál, Roundy and Shmoys [11] and Levi, Roundy, Shmoys

and Truong [12], who have considered, respectively, the uncapacitated and the capacitated single-item,

single-stage periodic-review system, with general demand structures that allow correlation and evolution

over time. They have proposed a class of computationally efficient policies that they call dual-balancing

policies and shown that these policies admit a worst-case performance guarantee of 2. Their work is based

on two novel ideas. First, they have introduced a new marginal cost accounting scheme, in which they

assign to a decision all present and future costs that, as a result of this decision, become independent of any

future decision, and are only a function of future demands. This is in contrast with standard approaches

that directly associate with each decision only the costs incurred in that period (or more generally a lead

time ahead). Secondly, they have used cost balancing techniques to construct dual-balancing policies. In

each period, the dual-balancing policy orders such that the (conditional) expected marginal holding costs

incurred by the units ordered is equal to the (conditional) expected marginal backordering cost that will be

incurred one lead time into the future. These two costs oppose each other, in that the expected marginal

holding cost is an increasing function of the size of the order, while the expected marginal backordering

costs is a decreasing function. Thus, it is always possible to order a quantity that will make these two costs

equal to each other. The worst-case analysis for the single-item, single-stage models is based on simple,

yet powerful, amortization of the costs incurred by the dual-balancing policy and by an optimal policy. In

particular, it can be shown that the optimal policy incurs on expectation at least half of the costs incurred

by the dual-balancing policy, which implies that the dual-balancing policy has a worst-case performance

guarantee of 2.

The models considered in this paper are direct generalizations of the uncapacitated single-stage models

in [11]. We use cost balancing techniques, and an innovative, multi-stage version of marginal cost account-

ing scheme, also called cause-effect cost accounting. The goal is to associate each element of cost with the

decision that directly causes this cost, where decisions are indexed by the time period and the stage at which

the ordering decision arose. Our approach is based on the notion of the critical chain. Focus on a single

unit of demand and suppose that we know in advance when demand for this unit will occur. It is then clear

that we would like to order and deliver this unit of inventory in a just-in-time fashion, so that will arrive at

stage 1 exactly on time (incurring no backordering penalty cost) and will not be delayed at any intermediate

stage (avoiding unnecessary holding costs). The critical chain is the just-in-time path that the unit would

ideally follow through the inventory system, and the critical time periods are the time periods when orders

for the unit would ideally be placed, at each stage in the system. We use the critical chain and the critical
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time periods as points of comparison. There is a critical time period for each unit and each stage.

We categorize all holding costs into three categories, and we assign the holding and backorder costs

to ordering decisions, in the following manner. Holding costs that are incurred while units are in transit

between stages are called pipeline costs. The pipeline costs are inevitable - they will be incurred by every

unit that is demanded, regardless of the policy followed. For a given unit, the the echelon-n pipeline cost is

assigned to stage n, and to the time period in which the unit was ordered by stage n. Whenever we order

a unit at a stage earlier than the critical time we cause early holding costs to be incurred. These are extra

holding costs, in addition to the pipeline costs. The early holding costs incurred by a given unit are assigned

to the stages and the time periods in which the unit was ordered early, relative to the critical time period.

Similarly, whenever a unit is ordered at a stage after the critical time period, the tardiness of this order

indicates that, relative to the critical chain, we will incur both backordering costs and extra holding costs

(called late holding costs). We assign these costs to carefully selected time periods in which the unit could

have been ordered, but was not. For a more detailed discussion, see Subsection 3.3 below.

For a given ordering decision, taken at a given stage and in a given time period, we consider the expecta-

tion of all of the costs assigned to this order. We separate these expected costs into two opposing functions.

The expected pipeline and early holding costs are increasing in the size of the order placed by the stage

in the time period. On the other hand, the expected backordering and late holding costs are decreasing in

the size of the order. This leads to a balancing policy that, at each stage in each period, selects an order

quantity to balance these two opposing cost functions. This policy is computationally efficient, and can be

implemented in an on-line manner, that is, regardless of any future decisions.

The worst-case analysis of the serial case is significantly harder than the single-stage analysis discussed

in [11] and [12]. It is again based on amortization of the cost incurred by the balancing policy with the

cost incurred by an optimal policy. The presence of multiple stages requires new approaches. Beyond the

complexities described above, the main difficulties come from the fact that when the balancing algorithm

orders more than the optimal policy, the optimal policy does not necessarily incur the late holding costs that

the balancing policy incurs (see Section 5 below).

We show that our policy achieves a worst-case expected cost of 2 times the expected cost of the optimal

policy under, the assumption that the holding cost for a stage in the serial system is charged as soon as a

unit is ordered by the stage. This cost model will be referred to as Model 1. The alternate assumption,

referred to as Model 2, is that holding costs begin to be charged when a unit arrives at a stage. Under

Model 2 our modified balancing policy achieves a worst-case performance ratio of 3. Additionally, when

the backorder cost is greater than the echelon holding cost for all but the final downstream stage, we show

6



that the performance ratio can be reduced to 21
3 . We also extend our results to assembly systems and

discrete-valued demands.

The rest of the paper is organized as follows. Section 2 defines the serial system being studied. In Section

3 we describe in detail our scheme for cost accounting in serial systems and prove that it is consistent and

accurate. Section 4 presents the balancing policy and its extensions, and proves the performance bounds.

Finally, in Section 6 we use a result of Rosling [15] to extend all of our results to assembly systems.

2 Inventory Control Problem for Serial Systems

In this section, we provide the mathematical formulation of the periodic-review stochastic inventory control

problem for serial systems (Model 1), and introduce some of the notation used throughout the paper. We

consider a finite planning horizon of T periods numbered t = 1, . . . , T . The demands over these periods

are random variables, denoted by D1, . . . , DT . We use D[s,t] to denote the accumulated demand over the

interval [s, t], i.e., D[s,t] :=
∑t

j=s Dj .

There are N stages in the serial system, numbered 1, 2, . . . , N , with 1 producing the finished product.

We use n to refer to a generic stage. Each stage n can order inventory from the on-hand inventory at the

preceding stage, stage n + 1. The lead time to transport inventory from stage n + 1 to n is ln. Thus, the

minimum time that elapses between the time when we order a unit of inventory at stage n, and when we

deliver it to the client, is Ln. This is the cumulative time required to transport inventory from stage n + 1 to

stage 1 with no delays at any intermediate stage. Thus Ln = ln + Ln−1, and L0 = l0 = 0. Both ln and Ln

are integers. We assume that the lead times ln are strictly positive; otherwise two stages could be merged

without loss of generality. By convention, stage N + 1 denotes an external supplier with infinite capacity.

We assume that it is possible to order a unit of inventory from the external supplier and deliver it to the client

before the time horizon ends, i.e., that T ≥ LN + 1. We define ln and Ln for 0 ≤ n ≤ N .

As a general convention, we distinguish between a random variable and its realization using capital

letters and lower case letters respectively. However the notation T , N and Ln differs from this convention

and corresponds to deterministic quantities.

Demand can be observed by all the stages in the serial network, but is only satisfied at the end stage,

stage 1. As part our demand model, we assume that at the beginning of each period s we are given what

we call an information set, denoted by fs. The information set fs contains all of the information that

is available at the beginning of time period s. More specifically, the information set fs consists of the

realized demands (d1, . . . , ds−1) over the interval [1, s), and possibly some more (external) information
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denoted by (w1, . . . , ws). The information set fs in period s is one specific realization in the set of all

possible realizations of the random vector Fs = (D1, . . . , Ds−1, W1, . . . , Ws). This set is denoted by Fs.

In addition, we assume that in each period s there is a known conditional joint distribution of the future

demands (Ds, . . . , DT ), denoted by Is := Is(fs), which is determined by fs (i.e., knowing fs we also

know Is(fs)). For ease of notation, Dt will always denote the random demand in period t according to the

conditional joint distribution Is for some s ≤ t, where it will be clear from the context to which period s we

refer. We will use t as the general index for time, and s will usually refer to the current period.

The only assumption on the demands is that for each s = 1, . . . , T , and each fs ∈ Fs, the conditional

expectation E[Dt|fs] is well defined and finite for each period t ≥ s. In particular, we allow non-stationarity

and correlation between the demands of different periods. We note again that by allowing correlation we let

Is be dependent on the realization of the demands over the periods 1, . . . , s− 1 and possibly on some other

information that becomes available by time s (i.e., Is is a function of fs). Note, however, that the information

set fs as well as the conditional joint distribution Is are assumed to be independent of the specific inventory

control policy being considered. This model accommodates all published mechanisms by which forecasts

evolve. (Forecast evolution means that on January 1, 2006, I create a forecast of the demand that will occur

during August, 2006. On February 1, 2006, I create a new forecast of the August, 2006 demand. Forecast

evolution is a model of the mechanism by which the first of these forecasts evolves into the second one. For

more details see [11]).

We assume that every stage has access to complete information, meaning that all of the current inventory

levels, and the current information set fs, are visible to all stages of the inventory system. (This assumption

is slightly stronger than what we actually require.)

Cost Minimization

In the periodic-review stochastic inventory control problem for serial systems, our goal is to supply

each unit of demand arising at stage 1 while attempting, at each stage in the network, to avoid ordering

supply either too early or too late. In period t, t = 1, . . . , T , three types of costs are incurred - a per-unit

shipping cost cn per unit ordered at stage n (and shipped from n + 1 to n), a unit backordering penalty

π that is incurred for each unsatisfied unit of demand at the end of period t at stage 1, and holding costs.

Unsatisfied units of demand are usually called backorders. Backorders fully accumulate over time until they

are satisfied. That is, each unit of unsatisfied demand will stay in the system and will incur a backordering

penalty in each period until it is satisfied. The backorder cost π is only charged at the final stage.

In this paper we use the echelon approach to account for holding costs. The ”conventional” approach
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to accounting for holding costs in serial inventory systems is to charge h′n dollars at the end of each time

period, for each unit currently held in inventory at stage n, or in transit from stage n + 1 to stage n. Without

loss of generality, h′n − h′n+1 = hn ≥ 0. (Otherwise we would merge stage n + 1 into stage n. We assume

hN+1 = h′N+1 = 0.) The echelon approach to holding costs is based on the echelon inventory position1

which, for stage n, is the total inventory at any stage k or in transit from k + 1 to k, for 1 ≤ k ≤ n. At

the end of every time period, for each stage n, we incur the echelon holding cost hn for every unit that

is part of stage n’s echelon inventory position. (To see that the approaches are equivalent, assume that at

the end of a given time period the inventory at stage n or in transit to stage n is vn, and that the echelon

inventory position is xn. Then xn =
∑

m≤n vm, h′n =
∑

m≥n hm, and the total holding cost for the period

is
∑

n vnh′n =
∑

n vn
∑

m≥n hm =
∑

m hm
∑

n≤m vm =
∑

m hmxm, i.e., conventional is equivalent to

echelon.)

Two assumptions about the time at which echelon-n holding costs begin to be charged have appeared in

the literature. We begin with Model 1, which assumes that they are charged from the time period in which

the unit is ordered by stage n (e.g., [5], [10]). This assumption is reasonable when the cost of capital is

larger than the cost of physically storing inventory, and inventory is paid for when orders are placed rather

than when they arrive. After deriving results for Model 1, we will extend the analysis to Model 2, which

assumes that they are charged from the time period at which the unit arrives at stage n.

The objective of the problem is to find a feasible ordering policy (i.e., one that respects the system

constraints) that minimizes the overall expected ordering cost, holding cost and backordering cost. We

consider only policies that are non-anticipatory, i.e., at time s the information that a feasible policy can use

consists only of fs and the current inventory levels. We use P to denote a generic policy. For a given policy

P , conditioning on a specific information set fs, we know the current on-hand and in-transit inventory levels

at all stages deterministically.

System Dynamics

Given a feasible policy P , we describe the dynamics of the system using the following terminology. Let

Xn(t) denote the echelon inventory position for stage n at the start of time period t. The echelon inventory

position is the echelon inventory, plus the number of units in transit from stage n + 1 to stage n, minus the

current backorders at stage 1. Stated differently, the echelon inventory position consists of the total number

of units at any stage m satisfying m ≤ n, plus the number of units in transit from a stage m + 1 to a stage

m where again m ≤ n, minus the current backorders at stage 1. Let Qn(t) be the order quantity for stage n

1The nouns ‘stage’ and ‘echelon’ are usually treated as synonyms. We will use ‘stage’ to refer to a location where inventory is

stored, and ‘echelon’ when discussing echelon inventory levels or the echelon approach to accounting for holding costs.
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at t. Let Yn(t) denote the echelon inventory position of stage n after ordering at t, but before the demand is

satisfied. That is, Yn(t) = Xn(t) + Qn(t) and Xn(t + 1) = Yn(t)−Dt. We assume that at time t, stage n

will not place an order unless there is enough inventory at stage n + 1 to fill the order immediately. Thus,

Qn(t) is bounded from above by the inventory physically on hand at stage n+1, after orders have arrived in

period t and before orders are placed. In other words, Yn(t) = Xn(t)+Qn(t) is bounded from above by the

total amount of inventory in the system that reaches stage n + 1 by time t, minus the backorders at the start

of period t. This quantity is NIn+1(t), the echelon inventory level at stage n + 1 at the beginning of time

period t. Note that NIn(t) includes all units in Xn(t) that are not in transit to n after orders have arrived

in period t, i.e., NIn(t) = Xn(t) −∑t−1
j=t−ln+1 Qn(j) = Yn(t) −∑t

j=t−ln+1 Qn(j). Viewed differently,

Yn(t)−D[t,t+ln) = NIn(t + ln).

Since time is discrete, we next specify the sequence of events in each period s. Since s is the current

time, the quantities of interest are no longer random, and are written in lower case.

1. Period s begins with echelon inventory position xn(s) and echelon inventory level nin(s − 1) −
ds−1. We observe the information set fs ∈ Fs, from which we obtain an updated conditional joint

distribution Is for future demands.

2. At each stage n, the order placed in period s− ln of qn(s− ln) units arrives, and the echelon inventory

level increases accordingly to nin(s− 1)− ds−1 + qn(s− ln) = nin(s).

3. At each stage n the order quantity for period s is selected, i.e., following a given policy P , qn(s) units

are ordered. The order is constrained by 0 ≤ qn(s) ≤ nin+1(s) − xn(s), i.e., the order quantity in

period s for echelon n can not exceed the inventory on hand at the preceding stage n+1. Consequently,

the echelon inventory position is raised by qn(s) units, from xn(s) to yn(s), where xn(s) ≤ yn(s) =

xn(s) + qn(s) ≤ nin+1(s). This results in a cost of cnqn(s).

4. We observe the demand ds in period s, which is realized according to the conditional joint distribution

Is. For each stage n, the echelon inventory level decreases from nin(s) to nin(s)−ds, and the echelon

inventory position decreases from yn(s) to yn(s)− ds = xn(s + 1).

5. Period s ends. Each unit that is backordered at the end of period s results in a backorder cost of π.

Each unit that has been ordered by stage n and is in the system results in a holding cost of hn.

In 3 above, recall that node N+1 represents the external supplier. We assume that the external supplier

has an infinite supply of inventory, i.e., niN+1(s) = ∞ for all s and all fs. (Hence, xN+1(s) =

yN+1(s) are also infinite.)
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At the beginning of the time horizon we inherit an inventory system that is already in operation. There-

fore the quantities xn(t) for t ≤ 1, yn(t) and qn(t) for t ≤ 0, and nin(1) are pre-determined constants for

all stages n. In addition, NIn(t) for 1 < t ≤ ln are beyond our control, being functions of past decisions

and future demands.

Initially we assume that inventories are measured and managed in continuous, rather than discrete,

quantities. Consequently the quantities xn(t), yn(t), qn(t) and nin(t) can all assume fractional values.

In Section 5.2 below we extend the analysis to accommodate inventory systems that measure and manage

inventories using integer-valued quantities, and assumes that the demands are integer-valued.

The manner in which the end-of-horizon costs are defined is most easily described after the concepts

in subsection 3.1 have been introduced. Therefore we defer a discussion of end-of-horizon costs until

subsection 3.2 below.

3 Cause-Effect Cost Accounting for Serial Systems

In this section, we describe and analyze a new scheme for accounting for costs in serial systems. The

phrase “cause-effect cost accounting” reflects the logic that we use to create, and to describe, our cost

accounting procedures. The general approach is to take costs incurred in an inventory system, classify them

into categories, and use the categories to assign the costs to specific decisions that were made. The dominant

logic used to create this assignment is cause and effect - we assign a cost to the specific decision that caused

that cost to be incurred. Moreover, the costs assigned to each ordering decision are not affected by any

decisions that will be made in the future, and depend only on future demands.

Cause-effect cost accounting differs strongly from most of the literature on inventory systems, which

is based on dynamic programming formulations, myopic approaches, or steady-state analysis (see, for ex-

ample, [18]). In most of that literature costs are accounted for either in the time periods in which they are

incurred, or one lead time earlier. In our approach we assign to a decision all costs that were made inevitable

by the current decision, whether they are incurred at the present time or in the future. Cause-effect cost

accounting for stochastic inventory models originated in [11], where it was called marginal cost accounting.

The exposition of our cost accounting scheme, and many of our proofs, are unit-based, i.e., we track the

progress of unit k through the system, and assign the costs incurred by unit k to the decisions that caused

these costs to be incurred. However we note that this is purely an expositional and an analytical device.

¿From a computational point of view the functions that we manipulate look a lot like functions used in

classical inventory theory, and are not unit-based (see Subsections 3.6 and 3.7 below).
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First we outline a framework that makes rigorous the notion of a unit-by-unit cost decomposition, and

discuss end-of-horizon costs. We then focus on a single unit of inventory and give an overview of our

cause-effect approach to cost accounting with reference to this unit. Next we provide a graphical context

that we will use in the rest of the paper. In the remainder of the section we give a detailed analysis of our

cost accounting mechanisms and establish algebraic expressions for the aggregated costs assigned to each

decision.

3.1 Ordering Numbers for Demand and Supply

We will use conventions and techniques similar to the ones used by Muharremoglu and Tsitsiklis [13] (also

see [11] for more details). The main idea is that, without loss of generality, we can assume that units of

supply are consumed by the demand on a first-ordered-first-consumed basis, and that we can match each

unit of supply to the specific unit of demand it will be used to satisfy. More rigorously, let LD be a half-

infinite line segment [0, ∞) that represents the units of demand that might be realized over the planning

horizon. If demands are continuous then demand units are of infinitesimal size. The unit that is located a

distance of k from the origin is called unit k. Without loss of generality, clients purchase and accept delivery

of these units in a sequence that is increasing in the distance k. Consequently, the first
∑T

t=1 Dt of these

units correspond to demand that will occur before time period T ends. These units are called demand units.

Similarly, let LS = [0, ∞) be a half-infinite line segment of supply units, also starting at the origin. It

represents all units of inventory that we have obtained, or can obtain, over the planning horizon. The unit

of inventory on LS that has a Euclidean distance of k from the origin is called supply unit k. We assume

that supply units are ordered and are delivered to the client in a sequence compatible with this distance, i.e.,

if k ≤ ∑T
t=1 Dt then supply unit k will be used to satisfy demand unit k. (This is equivalent to the first-

ordered-first-used assumption.) Since the k-th unit on LS is matched with the k-th unit on LD, we refer to

the first
∑T

t=1 Dt units on both lines as demand units. Units k on both lines that are not required before the

time horizon ends (i.e., that satisfy k >
∑T

t=1 Dt) are called excess supply units. Note that we can describe

each policy P in terms of the time period in which it orders each unit k, at each stage n.

At the beginning of time period 1 we inherit an inventory system that is already in operation. At this point

in time, the existing inventory that is already in the system is located along LS according to its proximity

to stage 1. This means that the inventory that is currently at stage 1 is located next to the origin on LS ,

followed by the inventory that can or will reach stage 1 in time period 2, etc.

Although we are modeling inventory as a continuous quantity, the exposition of this paper is more natural

if we talk about units in discrete terms. In this paper we will mention a number of conditions that define sets
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of units. In every case, the sets of units that satisfy the condition are intervals on LD (or, equivalently, LS).

When we speak of the number of units that satisfy the condition, we refer to the length of this interval.

We define ∆k to be the random time period in which supply unit k is demanded. Thus, ∆k is a random

variable that is observed at the end of period δk or, equivalently, at the beginning of period δk + 1 (where δk

is again the realization of ∆k). Note that the demand units are the units k that satisfy δk ≤ T . If unit k is

an excess supply unit then we define δk = T + 1. At time s < ∆k the random time ∆k has a conditional

distribution that is a function of the current information set fs, which can be inferred from historical demands

and the distribution Is(fs) of the future demands (Ds, . . . , DT ).

3.2 End-of-Horizon costs

Having discussed unit decomposition, we are ready to specify our end-of-horizon assumptions. After period

T no demand occurs. After period T − Ln it is clear that any inventory ordered at stage n will not reach

the client before the horizon ends. Consequently we only model ordering decisions at node n taken in time

periods s, 1 ≤ s ≤ T−Ln. At stage n after period T−Ln, we assume that no orders are placed. That means

that no orders will arrive at stage n after time T − Ln−1. Also, after the demand for unit k has occurred, if

it is still possible to deliver the unit to the client before the end of period T , then the optimal policy will not

defer ordering unit k at any subsequent stage in the serial system. We limit attention to policies that have

these two properties, called regular policies.

For regular policies, at the end of period T no units of inventory will be in transit from one stage

to another. If an excess supply unit (a unit k with δk > T ) is at stage n, we assume that the unit is

salvaged at the excess end-of-horizon cost of
∑N

m=n(−cm−Lmhm). This corresponds to refunding the unit

purchase costs that were incurred, and the holding costs incurred while unit k was in transit. We make this

assumption primarily for ease of exposition, noting that all of the results in this paper hold if we generalize

this expression for the end-of-horizon costs to
∑

m≥n ξm, where ξm ≥ −cm − Lmhm for 1 ≤ m ≤ N .

At the end of period T , if a demand unit (a unit k with δk ≤ T ) is at stage n > 1, then we incur

an end-of-horizon shortage cost of
∑n−1

m=1(cm + Lmhm). Note that this is the echelon holding cost and

ordering cost that would be incurred for stages downstream from stage n, if we were to advance the unit to

stage 1 without any more delays. This assumption is also made for ease of exposition - all of the results in

this paper hold if we generalize this expression to
∑n−1

m=1 σm, where
∑n−1

m=1(σm − cm − Lmhm) ≥ 0 for

2 ≤ n ≤ N + 1. Of course, all end-of-horizon costs are in addition to the typical end-of-period holding and

backorder costs incurred at the end of period T .

Our end-of-horizon costs differ from traditional ones in one interesting way - demand units and excess
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supply units differ in their end-of-horizon costs. In the past most authors have not done unit matching in the

sense of subsection 3.5 and, consequently, have salvaged all end-of-horizon inventory in the same manner. If

the inventory system were to cease to operate at the end of time period T that would make sense. However in

practice, finite-horizon models are usually used in rolling-horizon mode, in settings where the business will

not cease to operate at the end of period T . End-of-horizon costs are used to minimize the end-of-horizon

effect. In those settings it makes sense to assign different end-of-horizon costs to demand units and excess

supply units. It also makes sense to charge lower end-of-horizon costs for demand units that are closer to the

client, because they are likely to reach the client more quickly. The generalizations described above allow

end-of-horizon costs for demand units and excess supply units to be either identical or different.

3.3 An Overview of Cause-Effect Cost Accounting

In this subsection, we give an overview of our cause-effect cost accounting scheme. The overview is in-

tended to provide context for the detailed analysis that follows. For ease of exposition, we ignore beginning-

of-horizon and end-of-horizon considerations in this subsection.

We use the notation 〈s, n〉 to refer to the ordering decision taken at stage n at time s. In light of

the definition of regular policies in Subsection 3.2 above, we model ordering decisions 〈s, n〉 for which

1 ≤ s ≤ T − Ln. We have already defined δk as the time at which demand for unit k occurs. We now

define ukn as the time at which supply unit k is ordered by stage n, for a given policy P . In other words,

for all n, unit k is one of the units of inventory that comprise the order 〈unk, n〉. Note that whereas ∆k is an

uncontrolled random variable whose value is observed at the end of time period δk, ukn is a user-controlled

decision variable. For a given policy P the decision Ukn is a-priori random. Specifically, in period s, if unit

k is ordered by stage n after time s, then the value (Ukn|fs) is probably random, because the timing of the

order probably hinges on information that is not yet available. If unit k is ordered by stage n at or before

time s then ukn is known with certainty, and is less than or equal to s.

A central concept in our cost-accounting scheme is the notion of a critical time period associated with

each unit k and each stage n. At the beginning of time period 1, focus on some unit k, and momentarily

assume that we already know when the demand for unit k will occur, i.e., we know the value of δk. It is clear

that in order to minimize the total cost incurred, we should order unit k in just-in-time fashion, deferring

orders for the unit as long as possible to avoid unnecessary holding costs, while ensuring that it arrives at

stage 1 at the beginning of period δk to avoid a backordering penalty. In particular, the value of δk induces

a critical time period δk − Ln for each stage n, which is the ’ideal’ time period in which stage n should

order unit k to minimize the costs incurred. In general, of course, the value of ∆k is not known in advance,
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making it difficult to anticipate which time periods are critical, and making the ideal trajectory for unit k

impossible to follow.

We now categorize the costs incurred by unit k, and we assign them to different ordering decisions, in

the following manner. The rest of this section is mostly written under the assumption that the current time

is t = T + 1, so all quantities are deterministic.

Pipeline holding costs are the holding costs incurred by unit k while it is in transit from one stage to

another.2 After unit k has been ordered at stage n it will spend a total of Ln time periods in transit before

reaching stage 1, and will incur a total echelon-n pipeline holding cost of hnLn. We assign the echelon-

n pipeline holding costs to the order placed for unit k at stage n. The unit shipping costs are charged in

like manner. That means that for unit k, a total pipeline cost of cn + hnLn is assigned to the ordering

decision 〈ukn, n〉. Note that the total pipeline cost incurred by demand unit k is
∑N

n=1(cn + hnLn), which

is both inevitable and independent of k, if we ignore the beginning-of-horizon and end-of-horizon effects

(i.e., assuming that unit k is a demand unit that is at stage N + 1 at the beginning of time period 1).

Early holding costs are holding costs that are incurred while unit k is held in inventory at some stage of

the inventory system, when it is still possible to get the unit to the client by the due date. Early holding costs

are incurred in scenarios where unit k is ordered by some stage n prior to the critical period δk − Ln, that

is, where δk − Ln − ukn > 0. As we will argue in subsection 3.6 below, the total number of time periods

over which echelon-n early holding costs will be incurred is (δk − Ln − ukn)+. This is the total number of

time periods that unit k will be held in inventory at some stage between stage n and stage 1, if it is delivered

to the client at time δk. Therefore the total early holding cost of unit k at stage n is hn(δk − Ln − ukn)+.

We assign this cost to the ordering decision 〈ukn, n〉, adopting the viewpoint that these costs were caused

by the decision to order unit k at stage n, taken at time ukn.

Late holding costs are holding costs that are incurred while unit k is held in inventory at some stage of

the inventory system, when it is no longer possible to get the unit to the client by the due date. They are

incurred in scenarios where, for some stage n, unit k is not ordered by the end of the critical period, i.e.,

where δk−Ln−ukn < 0 for some n. Specifically, assume that unit k is stored at stage n from the some time

period s to period s + 1, and that after this occurs it is no longer possible to deliver the unit to the client on

time (i.e., that δk ≤ s+Ln−1). Every time that this happens, the conventional holding cost h′n =
∑

m≥n hm

is incurred for unit k. We adopt the view that this cost was caused by the fact that at time s, stage n− 1 did

not order unit k. Therefore, whenever a unit k is stored at stage n from some period s to period s + 1, and

δk ≤ s + Ln−1, then for unit k a late holding cost of h′n is assigned to the ordering decision 〈s, n− 1〉.
2This definition will be modified in Subsection 3.6 below, to accommodate end of horizon considerations.
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Finally we consider the backorder costs. Consider a unit k and a time period t such that t ≥ δk. If unit

k was not delivered to the client before the end of period t then a backorder cost of π is incurred for unit

k in period t. This cost would have been avoided if every stage m had ordered unit k by the critical period

t− Lm. Let n be the largest stage index at which unit k was not ordered by time t− Ln. Therefore, at time

t−Ln+1, stage n + 1 had ordered unit k. Hence, at time t−Ln+1 + ln+1 = t−Ln, unit k was on-hand at

stage n + 1, and could have been ordered by stage n. Our point of view is that the decision to not order unit

k at time t−Ln at stage n, caused the backorder that occurred at the end of period t. (Note that time t−Ln

falls on or after the critical period for stage n, period δk − Ln). Hence, for unit k, for each t ≥ δk such

that unit k has not reached the client by the end of period t, we assign a backorder cost of π to the ordering

decision 〈t− Ln, n〉, where n is defined in the manner just described.

Some comments regarding holding costs are in order. First, it is important understand the manner in

which we use the terms echelon-n holding cost and holding cost assigned to an order placed at stage n. An

echelon-n holding cost is a cost expression that is linear in the coefficient hn. Such a cost might, or might

not, be assigned to an order placed at stage n. Second, note again that at time s the value of ∆k is often

unknown. Therefore, when we make decision 〈s, n〉 we do not know whether unit k will assign early or late

holding costs to 〈s, n〉, and we do not know the amounts of these costs. Decisions at time s that effect unit k

must be made using expected values rather than exact costs. This is made possible by the fact (mentioned in

the second paragraph of this subsection) that at the beginning of time period s, subsequent decisions have no

impact on the costs assigned to 〈s, n〉. These costs depend only on the past, on the current ordering decision

for stage n, and on future demands. Thirdly, note that if unit k is at stage 1 at time s, and if δk ≤ s, then we

will deliver unit k to the client immediately rather than holding it in inventory to period s + 1. Therefore

no late holding costs are incurred while unit k is at stage n = 1. Fourth, since h′N+1 = 0, no late holding

costs are ever assigned to orders placed at stage N . (Backorder costs can be assigned to orders placed at

N .) However, to orders placed at all other stages 1 ≤ n < N , backordering penalty and late holding costs

are assigned together. That is, a decision not to order a unit after the critical period causes one period of

backorder costs and one period of late holding costs, both of which are assigned to the order.

The cause-effect assignment of costs usually gives rise to two crucial properties that enable balancing

approaches to inventory systems management. These properties will be explicitly stated later on, but briefly,

they are the following. First, for each order that is placed, the costs assigned to it are represented by two

functions, one being a non-decreasing function of the order quantity, and the other being a non-increasing

function of the quantity. Secondly, after the order has been placed, the costs captured by these two functions

are now beyond our control, because they are not impacted by any decisions that will be made in the future.
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These two properties are fundamental to the analysis of balancing algorithms, and are usually a natural con-

sequence of the process of assigning costs to decisions based on cause-and-effect logic. (In this subsection

we have given an overview of the assignment of costs to orders. We will discuss the aggregation of these

costs into functions in Subsections 3.6 and 3.7.)

3.4 A Graphical Scheme for Cost Accounting

Before analyzing the properties of our cost accounting scheme, we present a graphic representation for the

movement of each unit of supply through the inventory system over the time horizon. The stage-distance is

defined as the number of time periods required for the unit to arrive to stage 1 if there are no delays at any

intermediate stages. For example, a supply unit that is physically located at stage n has a stage-distance of

Ln−1. A supply unit that was shipped from stage n one time period ago has a stage-distance of Ln−1 − 1.

We can describe the complete history of a supply unit k, from the moment it is ordered by stage N to

the moment it is delivered to the client at stage 1, by visualizing its stage-distance as a function of time.

Consider a lattice of integer-valued points (t, j) with 1 ≤ t ≤ T + 1 and 0 ≤ j ≤ LN , illustrated in Figure

3.1. A supply unit that has stage-distance j at the beginning of time period t is said to pass through the

point (t, j). Thus, in the lattice, time is represented on the horizontal axis and stage-distance on the vertical

axis. The time horizon ends at the end of time period T , which is the beginning of time period T + 1

and corresponds to the last column in the lattice. The points in the lattice are interconnected by horizontal

arcs. In addition, from every point (t, j), j > 0 in the lattice there is an arc that descends to the right at a

45-degree angle. All arcs are oriented from left to right, and connect nodes that are one time unit apart.

The point (t, j) is called a stage point if j = Ln−1 for some stage n. When a supply unit is at stage point

(s, Ln−1) it is at stage n. If unit k is held in inventory at stage n from time t to time t + 1 then it traverses

the horizontal arc connecting the stage points (t, Ln−1) and (t + 1, Ln−1). In this case unit k travels in time

only, and does not get closer to the client. The bold horizontal arcs in Figure 3.1 go through the stage points,

and are the only horizontal arcs that can carry inventory.

The sequence of points linked by descending arcs is said to constitute a chain. Specifically, chain t

consists of the set of points (LN , t − LN ), (LN − 1, t − LN − 1), (LN − 2, t − LN − 2), ..., (0, t) (i.e.,

the set of points whose coordinates sum to t), and the arcs that link them. The diagonal paths in Figure 3.1

indicate chains. If a unit is ordered at stage n at time s, then while it is in transit, it travels along diagonal

arcs. Thus, if a policy orders a supply unit at time s at stage n, the unit will travel through the points

(s, Ln), (s + 1, Ln − 1), (s + 2, Ln − 2), ..., (s + ln, Ln−1). In other words, it travels both in time and

physical distance simultaneously, along part of chain s + Ln. In addition, unit k moves from one chain to
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Figure 3.1: The Lattice and the Chains

the next when it is carried in inventory at a certain stage. Specifically, if unit k is held in inventory at stage

n from period t − Ln to period t − Ln + 1, then unit k moved from chain t to chain t + 1, since now the

earliest period by which it can arrive at stage 1 is t + 1. The concept of moving between chains will be used

extensively throughout the paper, and especially in the proof of Lemma 5.7 below.

Node N +1 represents the external supplier. We assume that the external supplier has an infinite supply

of inventory, i.e., XN+1(t) = ∞ for all t. However, inventory that is at the external supplier is not part of

our inventory system, and does not incur any costs. If unit k is ordered by stage N at time s, then unit k

traverses the arc from point (LN , s) to point (LN − 1, s + 1). At time s, unit k enters the inventory system

and begins to incur costs. Unit k leaves the lattice (and the inventory system) when it is delivered to a client,

during or after time period δk, or at the end of time period T when the time horizon ends. As long as unit k

is in the system it traces a monotonic path in the lattice, proceeding to the right and downwards.

Recall that at time 1 we inherit an inventory system that is already in operation. Consequently, at the

beginning of time period 1, unit k might already be in the inventory system. In that case the path that unit k

traverses through the lattice will start at some point (1, j), j < LN rather than at point (1, LN ) (the external

supplier). Unit k will proceed from its current location in the lattice downwards and to the right, as described
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earlier. If unit k is in transit from stage n + 1 to stage n at the beginning of time period 1, then unit k is at

a non-stage point (1, j) where Ln−1 < j < Ln. In that case unit k will start out by following the diagonal

arcs connecting the lattice points (1, j), (2, j − 1), ..., (1 + j − Ln−1, Ln−1).

As we have mentioned in subsection 3.2 above, unit k will not be ordered at stage n after period T −Ln

because it would not reach the client before period T ends. Therefore, to the right of chain T , no inventory

will flow along diagonal arcs in the lattice. Inventory will flow horizontally to the right, until it reaches time

period T + 1.

Consider a supply unit k, whose demand occurs at time δk. We define the critical chain to be chain

δk, which is marked with a dashed line in Figure 3.1. The ideal strategy for unit k would be to keep the

unit at the external supplier (node N + 1) until the critical time period δk − LN , and then to send it to the

client along the critical chain. This is accomplished by ordering unit k at the critical time δk − Ln for each

stage n. That would incur the pipeline costs, but no early or late holding costs, and no backorder costs.

Unfortunately, when the key ordering decisions are made we usually do not know the value of the random

variable ∆k, so this strategy is usually impossible. Whatever strategy is used, the path traversed by a unit as

it moves through the lattice contains all of the information required to completely determine the costs that

it incurs. We will use the lattice and these paths as a framework to discuss the holding and backorder costs

incurred. We start with the holding costs incurred by unit k.

3.5 Cost Decomposition

In the remainder of this subsection we focus on a single policy P and a single supply unit k, with a few

exceptions that are specifically noted. We account for the holding costs incurred by unit k by examining

the path it traverses in the lattice of Figure 3.1. Unit k incurs holding costs whenever it is in the inventory

system at the end of a time period, i.e., whenever it traverses an arc in the lattice, other than the horizontal

arcs in the top row (i.e., when it is at stage N + 1). For unit k, our analysis splits the arcs in the lattice into

three different categories, which correspond to three different types of holding costs that the unit can incur.

The types of arcs, and of holding costs, follow.

1. The diagonal arcs in Figure 3.1 are pipeline arcs. The horizontal arcs that lie to the right of chain

T + 1 are also pipeline arcs. (Recall that to the right of chain T , unit k will only traverse horizontal

arcs in the lattice.) Pipeline holding costs are incurred when unit k traverses a pipeline arc, i.e., when

it traverses a diagonal arc along a chain, and when it traverses a horizontal arc to the right of chain

T + 1.
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The pipeline costs consist of the pipeline holding costs just described, plus the per-unit ordering costs.

Recall that when unit k is ordered at stage n (i.e., when k leaves the stage point (ukn, Ln) along the

diagonal emanating arc) a per-unit ordering cost of cn is incurred, and echelon-n pipeline holding

costs start to be incurred.

2. Early arcs are the horizontal arcs to the left of the chain δk. Early holding costs are incurred by unit k

whenever it traverses an early arc.

3. Late arcs are the horizontal arcs that lie between chain δk and chain T + 1. Late holding costs are

incurred whenever unit k traverses a late arc.

In defining early and late arcs, recall that if demand for unit k never occurs we say that δk = T + 1. In

that event there are no late arcs, and unit k does not incur any late holding costs. Note that the definition of

early and late arcs is dependent on the due date for unit k. Thus it differs from one supply unit to another,

and for unit k, it is not observed until the end of time period δk.

The three types of costs we have described comprise the total holding-plus-ordering cost incurred by a

unit. They account for its complete path from upstream to downstream. The ideal path for unit k to follow

through the lattice is to follow the critical chain (chain δk) from stage N +1 to stage 1. If unit k follows this

path, the total cost incurred by the unit is only the pipeline cost.

To obtain a cause-effect cost-accounting scheme we perform a second decomposition of the total holding

cost incurred by unit k into increments. An increment of holding cost is the echelon cost of holding a unit

of inventory for a single time period. Consider a stage n, and consider the set of all arcs [(t, j), (t + 1, j′)]

in the lattice such that Ln > j′. Note that j′ ∈ {j, j − 1}. When supply unit k traverses any one of the

arcs in this set, it has already been ordered by stage n, so it incurs a holding cost increment hn. (Note

that it simultaneously incurs holding cost increments for other stages as well.) It is obvious that the total

holding cost incurred by unit k is the sum of the increments described. A holding cost increment hn that

is incurred when unit k traverses an early arc is called an increment of echelon-n early holding costs. We

define an increment of echelon-n late holding costs and an increment of echelon-n pipeline holding costs

in like manner. Like units, cost increments are of infinitesimal size. The number of echelon-n holding cost

increments that meet some criterion is the number of units that meet the criterion, which is the length of the

interval on LD that corresponds to the units that satisfy the criterion.

Similarly, a increment of backorder cost π is incurred for each time period during which unit k is back-

ordered. Like the holding cost increments discussed above, backorder cost increments are of infinitesimal
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size. When we speak of the number of backorder cost increments that meet some criterion, we refer to the

length of the interval on LD that corresponds to the units that satisfy the criterion.

In the next two subsections we assign these cost increments to ordering decisions taken at specific stages

in specific time periods. The way the assignment is done depends on whether the increment is an increment

of early holding cost, of late holding cost or of pipeline holding cost. Recall that 〈s, n〉 is the ordering

decision taken at stage n in period s. If unit k passes through the lattice point (t, Ln) (i.e., unit k is at stage

n at the beginning of period t), then decision 〈t, n〉 determines whether k leaves (t, Ln) on the horizontal or

the diagonal emanating arc. Therefore the direct impact of decision 〈t, n〉 is felt at the lattice point (t, Ln).

3.6 Assignment of Pipeline and Early Holding Costs

We first consider the cost increments that we will assign to a decision to order a given unit at a given point

in time. (The next subsection deals with cost increments that are assigned to a decision to not order a given

unit.) These are the pipeline and early holding cost increments. In the remainder of Section 3 we will view

the system from time T + 1, so all quantities are deterministic. We will use s as the time at which a generic

order is placed, and not necessarily as the current time.
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Figure 3.2: Assignment of Early Holding Costs to Orders

The due date δk = 8 defines the critical period to be 3 for stage 4, and 4 for stage 3. Stage 4

orders k at time 2, and stage 3 at time 3. The orders at 〈2, 4〉 and 〈3, 3〉 are therefore one

period early, and incur h4 and h3 in early holding costs, respectively.

Early Holding Costs

If policy P orders supply unit k at stage n at time s, this decision causes unit k to travel diagonally along

chain s+Ln, from point (s, Ln) to point (s+ ln, Ln−1) (i.e., unit k will reach stage n at time s+ ln). If this

chain falls to the left of the critical chain (i.e., if δk > Ln + s) then because of this ordering decision, unit k

will incur δk − (Ln + s) increments of echelon-n, early holding cost. We adopt the view that the ordering

decision at time s at stage n caused all of these cost increments to be incurred. Consequently, we assign the

total echelon-n early holding cost hn[δk − (Ln + s)]+ incurred by unit k to the ordering decision at time s

at stage n, namely, to 〈s, n〉. See Figure 3.2. Note that s ≤ T − Ln, or we would not have placed the order

〈s, n〉 (see subsection 3.2).

We need to formally establish that if unit k is included in the order 〈s, n〉 then unit k will incur a total

of [δk − (Ln + s)]+ increments of echelon-n early holding costs. The proof of the claim is simple. Recall
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that δk ≤ T + 1, and that unit k cannot leave the inventory system before time δk. The unit first reaches

stage n when it reaches the lattice point (s + ln, Ln−1), on chain s + Ln. From that point onwards, unit k

will incur one increment of echelon-n early holding cost whenever it traverses an early arc, i.e., whenever

it transitions from one chain to the next, until it reaches chain δk. This happens a total of [δk − (Ln + s)]+

times.

In executing the assignment procedure described above we consider every unit k that is in the system

at any time during the time horizon [1, T ], and the costs that are incurred during time periods [1, T ]. The

essential point is that, when applied in this manner, the procedure defined above assigns every increment

of early holding cost to a unique ordering decision. Note, however, that some of the ordering decisions

we assign costs to took place in the past (i.e., in periods t, t ≤ 0) rather than in the future. For example,

suppose that l1 = 3, δk = 5, and unit k traverses the diagonal arc connecting lattice points (1, 1) and (2, 0),

followed by the horizontal arc connecting points (2, 0) and (3, 0). Then unit k was ordered by stage 1 at

time t = 2− l1 = −1, and the increment of echelon-1 early holding cost that unit k incurs when it traverses

the arc from (2, 0) to (3, 0) is assigned to the order 〈−1, 1〉, placed at time −1. We define H¿ to be the

total early holding cost of all increments assigned to all orders 〈s, n〉 that occurred in the past (i.e., having

s ≤ 0). The algebraic form of H¿ does not concern us, but two facts regarding H¿ are important. First, the

costs included in H¿ are uncontrollable, i.e., they are independent of the policy used. In addition, H¿ ≥ 0.

Consequently the value of H¿ does not effect our approximation results.

We define ĤP
sn to be the number of echelon-n early holding cost increments assigned to order 〈s, n〉

(placed at time s stage n), aggregated over all supply units k, assuming that policy P is followed. In other

words, hnĤP
sn is the total early holding cost assigned to the ordering decision 〈s, n〉, where 1 ≤ s ≤ T−Ln.

We now derive a closed-form algebraic expression for ĤP
sn. As we have just seen, the number of increments

of early holding cost that supply unit k contributes to order 〈s, n〉 is equal to the number of chains t satisfying

Ln + s ≤ t < δk. Stated differently, for each chain t such that Ln + s ≤ t ≤ T , supply unit k contributes

one holding cost increment to order 〈s, n〉 if unit k satisfies the following three conditions:

1. t < δk, i.e., demand for unit k occurs after time t,

2. Demand unit k has been ordered at stage n by the end of time period s, and

3. At the beginning of time period s, demand unit k had not been ordered at stage n.

For each fixed value of t we want to find the total number of units that meet these requirements. We will

then sum these numbers over t ≥ s + Ln to obtain ĤP
sn. Given t, from the definition of yP

n (s) we see

that (yP
n (s) − d[s,t])+ is the number of supply units k that meet conditions 1 and 2. (Recall that d[s,t] is
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the realized demand over the interval [s, t], and corresponds to the random variable D[s,t].) Similarly, the

definition of xP
n (s) implies that (xP

n (s)− d[s,t])+ is the number of supply units k that meet condition 1 and

fail condition 3. Finally, note that any supply unit that fails condition 3 must necessarily satisfy condition 2.

Therefore, the number of supply units that satisfy conditions 1-3 is (yP
n (s) − d[s,t])+ − (xP

n (s) − d[s,t])+.

Summing over all chains t ≥ Ln + s, and using the fact that yP
n (s) = xP

n (s) + qP
n (s) ≥ xP

n (s), we obtain

Lemma 3.1 The total early holding cost assigned to order 〈s, n〉 is hnĤP
sn, where

ĤP
sn =

T∑

t=s+Ln

[(
Y P

n (s)−D[s,t]

)+ − (
XP

n (s)−D[s,t]

)+
]

(1)

=
T∑

t=s+Ln

[
QP

n (s)− (
D[s,t] −XP

n (s)
)+

]+
.

Furthermore, H¿ +
∑

1≤n≤N

∑
1≤s≤T−Ln

hnĤP
sn is the sum of all early holding costs incurred by policy

P .

The proof of the lemma is in the preceding paragraphs. We note that the expression in (1) is similar to the

expression developed for the marginal holding cost in the single-stage model (see [11]).

Pipeline Costs and Excess End-of-Horizon Costs

We now consider the pipeline and excess end-of-horizon costs incurred by policy P . As we have men-

tioned in Subsection 3.5, the pipeline costs are the sum of the pipeline holding costs and the per-unit ordering

costs.

Assume that unit k is ordered by echelon n before period T − Ln + 1. The definitions of pipeline arcs

and holding cost increments in subsection 3.5 indicate that an increment of echelon-n pipeline holding costs

is incurred whenever unit k traverses an arc that enters into a stage point (s, j) satisfying 1 ≤ j < Ln, if

the arc is either a diagonal arc or a horizontal arc to the right of chain T + 1. Each echelon-n increment

results in an (echelon) holding cost of hn. Considering Figure 3.1, and recalling that no unit traverses any

diagonal arcs to the right of chain T + 1 in the lattice, it is not hard to see that for unit k, an increment of

echelon-n pipeline holding costs is incurred exactly Ln times, resulting in a total echelon-n pipeline holding

cost of hnLn. We assign this cost to the ordering decision 〈ukn, n〉, as Figure 3.3 indicates. (Recall that

ukn is the time when unit k was ordered at stage n, and that ukn might be negative.) We also assign the unit

shipping cost cn for stage n to decision 〈ukn, n〉. Consequently the total pipeline cost assigned to 〈ukn, n〉
is cn + hnLn for each unit k ordered at stage n time ukn. Aggregated over all units, the total pipeline cost

assigned to order 〈s, n〉 is (cn + hnLn)qP
n (s), if s ≥ 1.
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Figure 3.3: Assignment of Pipeline Holding Costs to Orders (order 〈2, 4〉 omitted)

The pipeline cost h3 is incurred when unit k traverses a diagonal arc with stage distance L3 or

less. Similarly, h2 is incurred when k traverses a diagonal arc with stage distance L2 or less.

However, we assumed in Subsection 3.2 that at the end of the time horizon, each excess supply unit will

be salvaged by refunding the pipeline costs that the unit incurred. Of the qP
n (s) units ordered at stage n at

time s, [qP
n (s)− (d[s,T ]−xP

n (s))+]+ units will receive the refund because they will not be demanded before

the end of period T . Consequently3, the sum of the pipeline and excess end-of-horizon costs allocated to

〈s, n〉 is (cn + hnLn){qP
n (s)− [qP

n (s)− (d[s,T ] − xP
n (s))+]+}.

The sum of the total pipeline and excess end-of-horizon costs that are assigned to all orders 〈s, n〉 such

that s ≤ 0 is H̄¿ which, like H¿, is non-negative and policy-independent. We have proven the following

lemma.

Lemma 3.2 The sum of the total pipeline and excess end-of-horizon costs assigned to order 〈s, n〉 with

s ≥ 1 is (cn + hnLn){QP
n (s) − [QP

n (s) − (D[s,T ] − XP
n (s))+]+}. The sum of all pipeline and excess

3If we use the general expression for excess end-of-horizon costs described in Subsection 3.2 then this cost expression becomes

(cn + hnLn)qP
n (s) + ξn[qP

n (s)− (d[s,T ] − xP
n (s))+]+.
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end-of-horizon costs incurred by policy P is H̄¿+
∑

1≤n≤N

∑
1≤s≤T−Ln

(cn +hnLn){QP
n (s)− [QP

n (s)−
(D[s,T ] −XP

n (s))+]+}.

Summary

We summarize this subsection as follows. We have discussed the early holding, pipeline and excess

end-of-horizon costs, which are the cost increments that we assign to a decision to order a unit at a given

point in time. For an arbitrary policy P , the sum of these costs is

H¿ + H̄¿ +
∑

1≤n≤N

∑

1≤t≤T−Ln

HP
tn , where (2)

HP
tn = hnĤP

tn + (cn + hnLn){QP
n (t)− [QP

n (t)− (D[t,T ] −XP
n (t))+]+}

= hn

T∑

s=t+Ln

[QP
n (t)− (D[t,s] −XP

n (t))+]+ + (cn + hnLn){QP
n (t)− [QP

n (t)− (D[t,T ] −XP
n (t))+]+}.

3.7 Assignment of Backorder Costs and Late Holding Costs

Now we will consider cost increments that are caused because policy P does not order a given unit at a

given stage and time period. These are the backorder costs, late holding costs and end-of-horizon shortage

costs.

As in the previous subsection, we can account for the total backorder cost incurred by supply unit k

over the horizon by examining the path it follows through the lattice of points. Recall that an increment of

backorder cost is the cost π of backordering a unit of inventory for a single time period. Unit k incurs an

increment of backorder cost in each period, starting in period δk (when unit k is demanded), and ending

with either the arrival of unit k at stage 1 or the beginning of period T + 1, whichever comes first. It is easy

to see that the number of increments of backorder cost that supply unit k incurs is equal to the number of

late arcs (horizontal arcs in the lattice between chain δk and chain T + 1) that unit k traverses (see Figure

3.1). In the event that the path for unit k does not cross chain δk, unit k incurs no backorder cost and no late

holding cost, because it arrives at stage 1 before it is demanded.

We now describe the assignment of backorder costs and late holding costs to ordering decisions 〈s, n〉.
Specifically, let [(s, Ln), (s + 1, Ln)] be a late arc in the lattice that the path for unit k traverses; hence

s + Ln ≥ δk. Then unit k was at stage n + 1 at time s and could have been included in the order

〈s, n〉 that was placed at stage n at time s, but it was not included. This decision caused unit k to tra-

verse the late arc [(s, Ln), (s + 1, Ln)] and, in so doing, to incur the (echelon) late holding cost incre-
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Figure 3.4: Assignment of Late Holding and Backorder Costs to Orders

The critical period for stage 2 is 5. Unit k was available for stage 2 to order in period 5 (i.e.,

was on-hand at stage 3), but was not included in order 〈5, 2〉. Therefore, 〈5, 2〉 is assigned both

π and h′3 = h3 + h4. 〈8, 1〉 is similar.

ments hn+1, hn+2, ..., hN , whose sum is h′n+1. All of these late holding cost increments are assigned

to decision 〈s, n〉. The decision also shifted unit k from chain s + Ln to chain s + Ln + 1, where

δk + 1 ≤ s + Ln + 1 ≤ T + 1. In so doing, it caused one more increment of backorder cost for unit

k to be incurred - a cost of π. We assign this backorder cost increment to order 〈s, n〉 as well. Therefore,

the total backorder-plus-late-holding cost assigned to 〈s, n〉 by unit k is h′n+1 + π. This is illustrated in

Figure 3.4. It is not difficult to verify that this procedure assigns each increment of late holding costs and of

backorder costs to a unique ordering decision 〈s, n〉 satisfying s ≤ T − Ln.

We define Π¿ to be the backorder and late holding cost assigned to orders 〈s, n〉 placed in the past

(meaning that s ≤ 0), aggregated over all units k. As before, Π¿ is policy-independent and non-negative.

Let (h′n+1 + π) Π̂P
sn be the total backorder-plus-late-holding cost incurred by policy P . As before, we

seek a closed-form expression for the number Π̂P
sn of backorder increments assigned to decision 〈s, n〉. We
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have seen that h′n+1 + π in backorder and late holding costs are assigned to decision 〈s, n〉 by unit k if and

only if the following conditions hold:

4. Unit k has reached stage n + 1 by the beginning of time period s.

5. At the end of time period s, unit k has still not been ordered by stage n.

6. Demand for unit k occurs at time δk, where 1 ≤ δk ≤ s + Ln.

For each ordering decision 〈s, n〉, we are interested in the total number of units k that meet these conditions.

Since stage n cannot order a unit that has not yet reached stage n + 1, the set of units that fail condition 4 is

a subset of the set of units that satisfy condition 5. Following the argument that was used for early holding

costs and the definition of yP
n (s), the number of units k that meet conditions 5 and 6 is (d[s,s+Ln]−yP

n (s))+.

Similarly, the number of units k that meet condition 6 and fail condition 4 is (d[s,s+Ln] − niPn+1(s))
+.

Consequently, the number of units that satisfy conditions 4 - 6 is (d[s,s+Ln] − yP
n (s))+ − (d[s,s+Ln] −

niPn+1(s))
+. For each of these units, a cost of h′n+1+π is assigned to the ordering decision 〈s, n〉, comprised

of late holding and backorder costs. The arguments in the preceding paragraphs prove the following lemma.

(The second equality in (3) follows from niPn+1(s) ≥ yP
n (s) = qP

n (s) + xP
n (s)).

Lemma 3.3 The total backorder and late-holding cost assigned to 〈s, n〉 is (h′n+1 + π) Π̂P
sn, where

Π̂P
sn =

[(
D[s,s+Ln] − Y P

n (s)
)+ − (

D[s,s+Ln] −NIP
n+1(s)

)+
]

(3)

= min
[(

D[s,s+Ln] − (QP
n (s) + XP

n (s))
)+

, NIP
n+1(s)− (QP

n (s) + XP
n (s))

]
.

Furthermore, the total backorder-plus-late-holding cost of policy P is

Π¿ +
∑

1≤n≤N

∑
1≤s≤T−Ln

(h′n+1 + π) Π̂P
sn.

End-of-Horizon Shortage Costs We now consider the end-of-horizon shortage costs incurred by policy

P . These costs are only incurred if unit k is a demand unit (i.e., if δk ≤ T ) that is at some stage n + 1

where 1 ≤ n ≤ N , at the beginning of time period T + 1. In that case, an end-of-horizon shortage cost of
∑n

m=1(cm + hmLm) is incurred. This cost was caused by the fact that unit k was at stage n + 1 at time

T − Ln, and policy P did not include it in the order 〈T − Ln, n〉 placed at stage n. Consequently, for unit

k we assign a cost of
∑n

m=1(cm + hmLm) to 〈T − Ln, n〉.
Clearly, the end-of-horizon shortage costs are all allocated to ordering decisions in a proper manner.

Note that all end-of-horizon shortage costs are assigned to orders 〈s, n〉 such that the stage point (s, Ln) is

on chain T (i.e., s = T − Ln). Recall that T ≥ LN + 1, which implies that all points (t, T − t) on chain T
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satisfy t ≥ 1. We conclude that all end-of-horizon shortage costs are assigned to orders 〈s, n〉 placed after

the beginning of the planning horizon, i.e., at or after time s = 1.

For a given ordering decision 〈s, n〉, we seek a closed-form algebraic expression for the total end-

of-horizon shortage cost incurred by P and assigned to 〈s, n〉, aggregated over all supply units k. This

number is zero if s 6= T − Ln. If s = T − Ln then unit k contributes an end-of-horizon shortage cost of
∑n

m=1(cm + hmLm) to decision 〈T − Ln, n〉, if conditions 4-6 above hold (with s = T − Ln)4 . By the

argument given above, the number of units k that satisfy conditions 4-6 is Π̂P
T−Ln,n.

Let 11(S) = 1 if S is a true statement, and 11(S) = 0 otherwise. We have proven the following lemma.

Lemma 3.4 The total end-of-horizon shortage cost assigned to order 〈s, n〉 is

11(s = T − Ln)
( ∑n

m=1(cm + hmLm)
)

Π̂P
sn. The sum of all end-of-horizon shortage costs incurred by

policy P is
∑

1≤n≤N

∑
1≤s≤T−Ln

[
11(s = T − Ln)

( ∑n
m=1(cm + hmLm)

)
Π̂P

s,n

]
.

Summary

The total backorder, late holding and end-of-horizon shortage cost incurred by an arbitrary policy P is

Π¿ +
∑

1≤n≤N

∑

1≤s≤T−Ln

ΠP
sn, where

ΠP
sn =

[
(h′n+1 + π) + 11(s = T − Ln)

( n−1∑

m=1

(cm + hmLm)
)]

Π̂P
sn (4)

=
[
(h′n+1 + π) + 11(s = T − Ln)

( n−1∑

m=1

(cm + hmLm)
)]×

[(
D[s,s+Ln] − (QP

n (s) + XP
n (s))

)+ − (
D[s,s+Ln] −NIP

n+1(s)
)+

]
.

4 Balancing Policy

In this section, we describe a policy for the periodic-review serial inventory system with stochastic demands.

Following [11, 12], we call it a balancing policy. We shall show that this policy, when applied to Model 1,

has a worst-case performance guarantee of 2, i.e., for each instance of the problem, the expected cost of the

policy is at most twice the expected cost of an optimal policy. We next describe the policy and its worst-case
4If we use the general expression for end-of-horizon shortage costs described in Subsection 3.2, then in this subsection we

replace all instances of (cm + hmLm) with σm.
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analysis under the assumptions described in Section 2, and then discuss the worst-case performance of the

policy under different assumptions on the model.

The balancing policy presented in this paper is based on the cause-effect cost accounting scheme de-

scribed in Section 3 above and extends the cost-balancing techniques used in [11, 12] for single-stage mod-

els. Without capacity constraints, the cause-effect (marginal) cost-accounting scheme in the single-stage

models associates with each decision two costs, the marginal holding costs incurred by the units ordered

in the current period over the entire horizon, and the marginal backordering penalty cost incurred a lead

time ahead. These costs are opposing in that the holding costs are increasing in the size of the order and

the backordering penalty cost is decreasing in the size of the order. In each period s, conditioned on the

observed information set fs, the dual-balancing policy balances the expected marginal holding cost of the

units ordered in the period against the (conditional) expected marginal backordering cost incurred a lead

time into the future (see [11, 12] for details). Next we shall show how to generalize this approach to the

multi-stage serial system.

Using the cause-effect cost accounting scheme described in Section 3, the effective expected cost of

each policy P can be written as

E[C(P )] = E[
∑

1≤n≤N

∑

1≤s≤T−Ln

HP
sn + ΠP

sn], (5)

where again

HP
sn = hnĤP

sn + (cn + hnLn)QP
n (s)− (cn + hnLn)

(
QP

n (s)− (D[s,T ] −XP
n (s))+

)+

denotes the respective early holding, pipeline and excess end-of-horizon costs, and ΠP
sn denotes the backo-

rdering penalty, late holding and end-of-horizon shortage costs, all assigned to decision 〈s, n〉 (see Lemmas

3.1, 3.2, 3.3 and 3.4). Equation (5) above ignores the beginning-of-horizon expected costs (the terms H¿,

H̄¿ and Π¿ in Section 3 above) because they are incurred by any feasible policy. In addition, Equation (5)

naturally decomposes into single-stage cost functions, where in each period s, the cost function of stage n

is E[HP
sn + ΠP

sn].

This leads to the following natural balancing policy. In each period s, conditioned on the observed

information set fs, consider each of the functions E[HP
sn(qP

n (s)) + ΠP
sn(qP

n (s))|fs] (for n = 1, . . . , N )

separately, and apply cost-balancing similar to the single-stage cost-balancing used in [11, 12]. That is,

the size of the order placed by the balancing policy at stage n in period s, denoted by q′n(s), is such that

E[HP
sn(q′n(s))|fs] = E[ΠP

sn(q′n(s))|fs]. However, before we show that the above policy is well-defined we

first discuss a more refined view of the ordering decisions of regular policies.
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Consider some unit k, and let s be the first period such that s > δk and unit k is at, say, stage n + 1, at

the beginning of period s. That is, at the beginning of s, the demand for unit k has already occurred, and

unit k is part of the on-hand inventory at stage n + 1. Assume that demand unit k can be satisfied before

time T + 1, i.e., that s ≤ T −Ln. Because we restrict attention to regular policies, we assume, without loss

of generality, that in the future any policy P will not defer ordering unit k at any stage in the serial system.

Moreover, it is clear that the chain on which unit k will be sent (specifically, chain s + Ln) is to the right

of the critical chain δk. Thus, by definition, unit k will not incur any early holding costs for stages n, . . . , 1

or be in excess inventory at the end of the horizon (i.e., it will not incur any salvage costs at the end of the

horizon). Furthermore, since unit k will not be delayed at any stage, it is clear that it incurs no backordering

penalty or late holding costs that will be assigned to decisions taken after period δk. Consequently, the only

costs that unit k assigns to any of the decisions 〈s′, n′〉 with s′ > δk are the pipeline costs cm + hmLm,

assigned to the orders 〈s + Ln − Lm,m〉 for which 1 ≤ m ≤ n. We use the term immediate orders to

refer to orders of units that have already occurred (like unit k above). Denote by Q̄P
n (s) ≥ 0 the size of

the immediate order placed by policy P at stage n in time period s. Let Q̃P
n (s) = QP

n (s) − Q̄P
n (s) be

the size of the order for units whose demand has not yet occurred, and call it a regular order. Note that at

the beginning of period s all the immediate orders in that period are known. We will adopt the view that

these orders are not part of the decisions taken by the policy P at the beginning of period s. Following this

approach let X̃P
n (s) = XP

n (s) + Q̄P
n (s) be the respective echelon inventory position of policy P in stage n

at the beginning of period s after immediate orders are placed (by all stages) and before regular orders are

placed, that is, XP
n (s) ≤ X̃P

n (s) ≤ Y P
n (s).

We claim that, under the new definitions, Q̃P
n (s) can be positive only if X̃P

n (s) is nonnegative. Note that

if X̃P
n (s) is strictly negative then we have not been able to place immediate orders for all of the units whose

demand has already occurred, because stage n + 1 does not have enough on-hand inventory. We conclude

that NIP
n+1(s) = X̃P

n (s) < 0, i.e., after placing immediate orders the on-hand inventory at stage n + 1 is

0, and so no regular order can be placed. Because the regular order is also constrained by the availability of

inventory at stage n + 1, Q̃P
n (s) ≤ NIP

n+1(s)− X̃P
n (s) = 0.

We have already seen that units included in immediate orders do not incur any early holding costs. Thus,

it is readily verified that, given the definitions of Q̃P
n (s) and X̃P

n (s), the expression in Lemma 3.1 for early

holding costs is still valid for the regular order placed at stage n at the beginning of period s. In particular,

the early holding costs assigned to decision 〈s, n〉 can be expressed as

hnĤP
sn = hn

T∑

t=s+Ln

[
Q̃P

n (s)−
(
D[s,t] − X̃P

n (s)
)+

]+

. (6)
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Similarly, we claim that the expression in Lemma 3.2 for the pipeline costs with Q̃P
n (s) and X̃P

n (s) instead

of QP
n (s) and XP

n (s), respectively, is still valid in that it accurately accounts for the pipeline costs incurred

by regular orders placed in period s at stage n. (The proof of Lemma 3.2 applies, when applied to the regular

order only, after the immediate order has been placed.) That is, the pipeline costs incurred by the regular

order placed in period s at stage n can be expressed as

(cn + hnLn)
[
Q̃P

n (s)−
(
Q̃P

n (s)− (D[s,T ] − X̃P
n (s))+

)+
]

. (7)

Finally, because Q̃P
n (s) + X̃P

n (s) = QP
n (s) + XP

n (s) = Y P
n (s), the expression in Lemma 3.3 for the

backordering penalty and late holding costs is unchanged (again with Q̃P
n (s) and X̃P

n (s) instead of QP
n (s)

and XP
n (s)), i.e.,

ΠP
ns =

(
h′n+1 + π + 11(s = T − Ln)

∑n
m=1(cm + hmLm)

)× (8)

min
[(

D[s,s+Ln] − (Q̃P
n (s) + X̃P

n (s))
)+

, NIP
n+1(s)− (Q̃P

n (s) + X̃P
n (s))

]
.

Let H̃P
sn be the early holding costs and pipeline costs incurred by the regular order placed in period s at stage

n (i.e., the sum of (6) and (7)). Recalling that immediate orders incur no salvage costs, we now conclude

that Equation (5) can be equivalently expressed as

E[C(P )] = E


 ∑

1≤n≤N

∑

1≤s≤T−Ln

(H̃P
sn + ΠP

sn + (cn + hnLn)Q̄P
n (s))


 . (9)

Consider now the following policy, called again the balancing policy B. At the beginning of time

period s, conditioned on the observed information set fs, we first place immediate orders, at each stage

n = 1, . . . , N , as described above. Next we place regular orders. The regular order at stage n is set

to balance the conditional expected early holding and pipeline costs incurred by the units included in the

regular order in that period, against the conditional expected backordering penalty and late holding costs

assigned to the decision 〈s, n〉. That is, we set q̃B
n (s) = q′n(s) such that

E[H̃B
sn(q′n(s))|fs] = E[ΠB

sn(q′n(s))|fs]. (10)

The random variables H̃B
sn and ΠB

sn are functions of many other quantities. However, at the beginning

of period s, all of these quantities have been observed except for future demands (which we cannot control),

and the decision variable q̃B
n (s) (which is no longer random). Consequently the expectations in (10), which

are conditioned on the current information set fs, are deterministic functions of the size of the regular order

q̃B
n (s) placed at the beginning of period s. Next we show that the above policy is well-defined, i.e., that
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indeed in each period s, the quantity q′n(s) is well-defined, for each n = 1, . . . , N . First, we claim that

E[H̃B
sn(q̃B

n (s))|fs] is an increasing function that starts at 0 when q̃B
n (s) = 0, and diverges to infinity as

q̃B
n (s) grows.

Lemma 4.1 For each stage n, period 1 ≤ s ≤ T − Ln and information set fs ∈ Fs, the function

E[H̃B
sn(q̃B

n (s))|fs] is increasing in q̃B
n (s), is equal to 0 for the value qB

n (s) = 0, and goes to infinity as

q̃B
n (s) approaches infinity.

The proof of Lemma 4.1 follows immediately from the fact that H̃B
sn is the sum of (6) and (7) above. Next

we claim that the E[ΠB
sn(q̃B

n (s))|fs] is a convex decreasing function function of q̃B
n (s) that is nonnegative

for the value q̃B
n (s) = 0 and is equal 0 for the value q̃B

n (s) = niBn+1(s)− x̃B
n (s) (except for the case n = N ).

Lemma 4.2 For each stage n = 1, . . . , N , period s between 1 and T−Ln, and information set fs ∈ Fs, the

function E[ΠB
sn(q̃B

n (s))|fs] is nonnegative, and is convex and decreasing in q̃B
n (s) ≥ 0. As q̃B

n approaches

infinity, E[ΠB
sn(q̃B

n (s))|fs] approaches 0. Furthermore, if n < N , then the function E[ΠB
sn(q̃B

n (s))|fs] is

equal to 0 when qB
n (s) = niBn+1 − x̃B

n (s) (i.e., when all of the available inventory at stage n + 1 has been

ordered).

Proof : Note again that conditioning on the information set fs, the value x̃B
n (s) is already known deter-

ministically. It follows from equations (3) and (8) that E[ΠB
sn(q̃B

n (s))|fs] is indeed a function only of q̃B
n (s)

with the claimed nonnegativity, monotonicity, convexity and convergence properties. Moreover, Equation

(8) implies that for n < N , E[ΠB
sn(q̃B

n (s))|fs] = 0 for the value q̃B
n (s) = niBn+1 − x̃B

n (s).

The fact that fractional orders are allowed implies that the functions E[H̃B
sn(q̃B

n (s))|fs] and

E[ΠB
sn(q̃B

n (s))|fs] are continuous. Thus, Lemmas 4.1 and 4.2 imply that q̃B
n (s) = q′n(s) is indeed well-

defined for each n = 1, . . . , N and s = 1, . . . , T − Ln.

As argued in [11, 12], the balancing policy can be implemented efficiently as long as there exist efficient

procedures to evaluate the functions E[H̃B
sn(q̃B

n (s))|fs] and E[ΠB
sn(q̃B

n (s))|fs]. We note that in most com-

mon scenarios there are efficient and straightforward ways to evaluate these functions (for a more detailed

discussion see [11, 12]). In fact, the computations that we perform at each stage and in each time period, are

computationally very similar to the ones performed in each time period in the single-stage models [11, 12].

Since E[H̃B
sn(q̃B

n (s))|fs] and E[ΠB
sn(q̃B

n (s))|fs] are functions only of q̃B
n (s) the balancing policy can be

implemented in an on-line manner, i.e., the decision made in the current period is independent of any future

decision. It is readily verified that the computational effort is modest, in contrast to the standard dynamic

programming approach, which requires a state space that specifies both the inventory levels and all possible
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realizations of the information set fs. In the next subsection we shall describe the worst-case analysis of the

balancing policy described above.

5 Analysis

In this section, we shall show that the balancing policy described in Section 4 above has a worst-case

performance guarantee. The worst-case analysis is based on an amortization of the costs incurred by the

balancing policy (which is again denoted by the superscript B) against the costs incurred by an optimal

policy (denoted by the superscript OPT ). We first analyze the worst-case performance guarantee under the

assumptions described in Section 2, and then discuss several important variants and extensions.

First, we express the expected cost of the balancing policy. For each decision 〈s, n〉where n = 1, . . . , N

and s = 1, . . . , T − Ln, let Zsn be the following random variable:

Zsn := E[H̃B
sn|Fs] = E[ΠB

sn|Fs].

Recall that Fs is the random information set that will be realized at the beginning of period s (or equivalently

at the end of period s − 1). Thus, Zsn is a random variable that is realized at the beginning of period s as

a function of the observed information set fs. The second equality follows from the construction of the

balancing policy (see Section 4). Using equation (9) and standard arguments of conditional expectation, we

establish the following lemma.

Lemma 5.1 The expected cost of the balancing policy is equal to twice the expected sum of the Zsn vari-

ables plus the expected pipeline costs incurred by immediate orders. That is,

E[C(B)] = 2E[
∑

1≤n≤N

∑

1≤s≤T−Ln

Zsn] + E[
∑

1≤n≤N

∑

1≤s≤T−Ln

(cn + hnLn)Q̄B
n (s)].

Proof : Using standard arguments of conditional expectations and the definition of the Zsn variables we

get

E[H̃B
sn + ΠB

sn] = E[E[H̃B
sn + ΠB

sn|Fs]] = 2E[Zsn].

Using this and Equation (9) applied to the balancing policy, we have

E[C(B)] =
∑

1≤n≤N

∑

1≤s≤T−Ln

E[H̃B
sn + ΠB

sn] + E[
∑

1≤n≤N

∑

1≤s≤T−Ln

(cn + hnLn)Q̄B
n (s)] = (11)

2
∑

1≤n≤N

∑

1≤s≤T−Ln

E[Zsn] + E[
∑

1≤n≤N

∑

1≤s≤T−Ln

(cn + hnLn)Q̄B
n (s)].

This concludes the proof of the lemma.
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Next we show that the expected cost C(OPT ) incurred by OPT is at least

∑

1≤n≤N

∑

1≤s≤T−Ln

E[Zsn] + E[
∑

1≤n≤N

∑

1≤s≤T−Ln

(cn + hnLn)Q̄B
n (s)]. (12)

This and Lemma 5.1 above imply that the balancing policy has a worst-case performance guarantee of 2.

For the optimal policy OPT we do not use the cause-effect cost accounting scheme of Section 3 to

assign costs to ordering decisions. The costs incurred by OPT are not assigned to decisions at all. Recall

that a cost increment is an echelon-n cost if it is linear in the coefficient hn. We describe and analyze the

costs incurred by OPT as echelon-n early holding costs, echelon-n late holding costs, echelon-n excess

end of horizon costs, echelon-n end of horizon shortage costs, and backorder costs.

Partition all of the ordering decisions 〈s, n〉 (for n = 1, . . . , N and s = 1, . . . , T − Ln) into two sets

according to the echelon inventory positions of OPT and the balancing policy in each period at each stage.

The set TΠ contains all ordering decisions 〈s, n〉 such that the echelon inventory position of the balancing

policy at stage n after ordering in period s is (strictly) higher than the respective echelon inventory position

of OPT . That is, at the end of period s the balancing policy has more units than OPT at or in transit

to stages n, . . . , 1. Similarly, the complement set TH contains the ordering decisions 〈s, n〉 such that the

echelon inventory position of the balancing policy at stage n after ordering in period s is not higher than the

respective echelon inventory position of OPT . Specifically,

TΠ := {〈s, n〉 : Y B
n (s) > Y OPT

n (s)}

and

TH := {〈s, n〉 : Y B
n (s) ≤ Y OPT

n (s)}.

Note that TH and TΠ are random sets that are not fully realized until period T − L1. Thus, they induce a

random partition of the ordering decisions 〈s, n〉.
As we have already mentioned, the analysis is based on an amortization of the costs incurred by the

balancing policy against costs incurred by OPT . Specifically, we shall show that the costs incurred by

OPT are always higher than a portion of the costs incurred by the balancing policy. The expectation of

this portion is at least half of the total costs incurred by the balancing policy. Central to the strategy just

described is the following inequality that, as we shall show below, holds with probability 1:

C(OPT ) ≥
∑

〈s,n〉∈TH

H̃B
sn +

∑

〈s,n〉∈TΠ

ΠB
sn +

∑

〈s,n〉
(cn + hnLn)Q̄B

n (s). (13)
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Taking expectations and again using properties of conditional expectations, this implies that

E[C(OPT )] ≥
∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)H̃B

sn + 11(〈s, n〉 ∈ TΠ)ΠB
sn + (cn + hnLn)Q̄B

n (s)
]

= (14)

∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)H̃B

sn + 11(〈s, n〉 ∈ TΠ)ΠB
sn + (cn + hnLn)Q̄B

n (s)
]

=

∑

〈s,n〉
E

[
E[11(〈s, n〉 ∈ TH)H̃B

sn + 11(〈s, n〉 ∈ TΠ)ΠB
sn|Fs]

]
+

∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)] =

∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)E[H̃B

sn|Fs] + 11(〈s, n〉 ∈ TΠ)E[ΠB
sn|Fs]

]
+

∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)] =

∑

〈s,n〉
E[Zsn] +

∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)].

The third equality follows from the fact that conditioning on the information set at the beginning of period

s, we already know deterministically the echelon inventory positions of OPT and the balancing policy (i.e.,

we know yOPT
n (s) and yB

n (s)). Thus, it is already known whether 〈s, n〉 ∈ TH or 〈s, n〉 ∈ TΠ. Lemma 5.1

and (14) imply that indeed the balancing policy has a worst-case performance guarantee of 2.

The proof of the key inequality, (13), is based on a unit by unit analysis. We consider each unit k and

compare the respective costs it incurs under the balancing policy and OPT . Consider any information set

fT+1 ∈ FT+1 (i.e., a complete evolution of the system until the end of the horizon). Focus on on some unit k

and let Ik be the set of all stages at which the balancing policy ordered unit k. In particular, Ik = [m1,m2)

for some 1 ≤ m1 ≤ m2 ≤ N +1. Note that m1 is the realization of M1 which is a-priori a random variable.

Similarly, the set Ik is a-priori random. However, m2 denotes the first stage to which unit k arrived at or

after the beginning of period 1. This corresponds either to stage N + 1, or to a stage with a lower index if

unit k was ordered by stage N prior to time period 1. Thus, m2 was already known deterministically at the

beginning of period 1.

In the remainder of this section we use ukn = uB
kn to indicate the period in which the balancing policy

ordered unit k at stage n. In particular, for each n ∈ Ik we have ukn ≥ 1. Similarly, ukm2 ≤ 0 denotes

the period in which unit k was ordered at stage m2 (defined above), that is, unit k reached stage m2 at

the beginning of time period ukm2 + lm2 ≥ 1. For completeness, if m2 = N + 1, then uk,N+1 = 0 and

lN+1 = 1.

Partition the stages in Ik into three (disjoint) sets. Let Ik
E ⊆ Ik be all of the stages in which unit k

was included in an immediate order placed by the balancing policy. Since immediate orders occur only

when demand for unit k has already occurred and can be satisfied before the end of the horizon, it is readily
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verified that if Ik
E 6= ∅, then m1 = 1 and Ik

E = [1,m] for some 1 ≤ m < m2. Let Ik
H ⊆ Ik \ Ik

E be

the set of all stages n such that unit k was included in a regular order placed by the balancing policy at

stage n in period ukn, where the corresponding echelon inventory position of the balancing policy was not

higher than the echelon inventory position of OPT . That is, Ik
H = {n ∈ Ik \ Ik

E : 〈ukn, n〉 ∈ TH}. (Note

that being sets, TH , TΠ, Ik, Ik
H , Ik

E are written in upper case, even after they have been realized and have

become deterministic.) Finally, let Ik
Π = Ik \ (Ik

E ∪ Ik
H) be the set of all stages such that unit k has been

included in a regular order placed by the balancing policy at stage n in period ukn, where the corresponding

echelon inventory position of the balancing policy was (strictly) higher than the respective echelon inventory

position of OPT , i.e. Ik
Π = {n ∈ Ik \ (Ik

E ∪ Ik
H)}. Observe that the set {〈ukn, n〉 : n ∈ Ik

Π} is contained

in TΠ.

Next we state and prove several lemmas, from which the proof of inequality (13) above follows. In

all of the subsequent lemmas we focus on a specific unit k, and a specific information set fT+1 ∈ FT+1

that specifies the complete evolution of the system. In particular we know δk, i.e., if and when unit k was

demanded. (Recall that if unit k was not demanded then δk = T + 1, and k is an excess supply unit rather

than a demand unit). We will prove the following lemmas for each unit k and each information set fT+1,

establishing that inequality (13) holds with probability 1.

The first of these lemmas amortizes the pipeline costs incurred due to immediate orders placed by the

balancing policy, i.e.,
∑
〈s,n〉(cn + hnLn)Q̄B

n (s). Specifically, we focus on the pipeline costs unit k has

assigned under the balancing policy to stages n ∈ Ik
E . Under the balancing policy, we say that a specific

cost increment is assigned by unit k to stage n if unit k assigns the cost increment to any one of the ordering

decisions 〈s, n〉, 1 ≤ s ≤ T − Ln placed at stage n. These costs can be amortized against the echelon-n

pipeline costs and end of horizon shortage costs incurred by unit k under OPT , for stages n ∈ Ik
E .

Lemma 5.2 Consider a stage n at which unit k was included in an immediate order placed by the balancing

policy, i.e., a stage n ∈ Ik
E . Under the balancing policy, all of the costs that unit k assigned to n are

pipeline costs, in the amount cn + hnLn. Moreover, under OPT , unit k incurred echelon-n pipeline and

end of horizon shortage costs, which are greater than or equal to the pipeline costs assigned to n under the

balancing policy. That is, for each stage n ∈ Ik
E , unit k incurred under OPT echelon-n pipeline and end

of horizon shortage costs of at least cn + hnLn.

Proof : We have already shown in Section 3 that all units k included in an immediate order at a stage

n ∈ Ik
E are demand units (i.e., δk ≤ T ), and that to stage n they assign only the echelon pipeline costs

cn + hnLn. Thus, if Ik
E 6= ∅, then there are two possible cases. Either unit k was satisfied by OPT before
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the end of the horizon, i.e., OPT ordered unit k at stages n = N, . . . , 1 and incurred echelon-n pipeline

costs cn + hnLn for each n, or OPT has not satisfied demand unit k at the end of the horizon. In the

latter case, unit k is at some stage n′ > 1 at the end of the horizon. In particular, it has incurred echelon-n

pipeline costs cn + hnLn for each stage n ∈ [n′, N ]. In addition, unit k has incurred echelon-n end of

horizon shortage costs cn + hnLn for each n ∈ [1, n′). Applying this argument to stages n ∈ Ik
E (and only

to those stages), the lemma follows.

In the next lemma we show how to amortize the echelon pipeline costs, early holding costs and excess

end-of-horizon costs incurred when the balancing policy places a regular order for unit k, in periods where

the echelon inventory position of the balancing policy is no higher than that of OPT . That is, we amortize

the pipeline, early holding and excess end-of-horizon costs incurred by unit k under the balancing policy

that are assigned to ordering decisions in the set T k
H = {〈ukn, n〉 : n ∈ Ik

H} (this set is contained in TH ).

These costs are amortized against the echelon-n pipeline, early holding and excess end-of-horizon costs

incurred by unit k under OPT , for stages n ∈ Ik
H . More generally, this lemma shows how to amortize the

costs
∑
〈s,n〉∈TH

H̃B
sn.

Lemma 5.3 Consider the pipeline, early holding and excess end-of-horizon costs incurred by unit k under

the balancing policy that are assigned to ordering decisions in the set T k
H = {〈ukn, n〉 : n ∈ Ik

H}. To

each such ordering decision 〈ukn, n〉, unit k assigns pipeline, early holding and excess end-of-horizon costs

that are equal hn(δk − Ln − ukn)+ + 11(δk ≤ T )(cn + hnLn) (where again ukn is the unique period in

which the balancing policy has ordered unit k at stage n). Moreover, these costs are no greater than the

corresponding costs unit k has incurred under OPT . In particular, for each n ∈ Ik
H , unit k incurred under

OPT echelon-n pipeline, early holding and excess end-of-horizon costs of at least hn(δk − Ln − ukn)+ +

11(δk ≤ T )(cn + hnLn).

Proof : Consider an ordering decision 〈ukn, n〉 with n ∈ Ik
H . Recall the pipeline, early holding and excess

end-of-horizon cost definitions in Section 3. Specifically, the pipeline, early holding and excess end-of-

horizon costs assigned to the ordering decision 〈ukn, n〉 are hn(δk−Ln−ukn)+ +11(δk ≤ T )(cn +hnLn)

(the pipeline costs are salvaged if unit k is an excess supply unit, i.e., if δk = T + 1). Our assumptions

imply that the ordering decision 〈ukn, n〉 belongs to the set TH , i.e., that yB
n (ukn) ≤ yOPT

n (ukn). However,

this implies that unit k was ordered by OPT at stage n at the same time period in which it was ordered by

the balancing policy at that stage, or earlier. That is, uOPT
kn ≤ ukn (where uOPT

kn is the time period in which

unit k was ordered by OPT at stage n). The echelon-n pipeline, early holding and excess end-of-horizon

costs incurred by unit k under OPT are equal hn(δk −Ln − uOPT
kn )+ + 11(δk ≤ T )(cn + hnLn) (see again
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Section 3). As we have already observed, uOPT
kn ≤ ukn, from which the proof of lemma follows.

Finally, the next lemmas show how to amortize the late holding and backordering penalty costs incurred

by unit k under the balancing policy that are assigned to ordering decisions in TΠ. In Section 3, we have

already seen that late holding and backordering penalty costs are assigned to decisions not to order a unit

at a given stage, in a time period when the unit was on hand at the parent stage. Recall that unit k was

ordered by the balancing policy at stages n ∈ Ik, where Ik = [m1,m2). Moreover, the balancing policy

placed these orders for unit k in the time periods {ukn : n ∈ Ik}. Recall that m2 ≤ N + 1 is the first

stage to which unit k arrives (at or after time period 1) due to decisions made prior to time period 1 (i.e.,

ukm2 ≤ 0). It is readily verified that under the balancing policy, all of the late holding and backordering

penalty costs incurred by unit k, are assigned to decisions 〈s, n〉 made in time periods s that fall in the

intervals {[uk,n+1 + ln+1, ukn) : n + 1 ∈ Ik ∪ {N + 1}} where, for completeness, we define uk,N+1 = 0,

lN+1 = 1 and uk,m1−1 = T + 1. Specifically, over the interval [uk,n+1 + ln+1, ukn), unit k was on hand

at stage n + 1 and was not ordered by stage n. In particular, we amortize the part of the late holding and

backordering penalty costs that were incurred by unit k under the balancing policy, which were assigned to

ordering decisions in the set

T k
Π =

{
〈s, n〉 ∈ TΠ : n + 1 ∈ Ik ∪ {N + 1}, s ∈ [uk,n+1 + ln+1, uk,n)

}
.

More generally, the next lemmas show how to amortize the costs
∑
〈s,n〉∈TΠ

ΠB
sn. In the next lemma we

amortize the backordering and end of horizon shortage costs incurred by unit k under the balancing policy

that are assigned to ordering decisions in T k
Π above.

Lemma 5.4 Consider the part of the backordering costs incurred by unit k under the balancing policy

which is assigned to ordering decisions in the set T k
Π defined above. These costs are no higher than the

total backordering costs incurred by unit k in OPT . Similarly, the end of horizon shortage costs incurred

by unit k under the balancing policy and assigned to decisions in T k
Π , are no higher than the echelon-n end

of horizon shortage costs incurred by k under OPT , summed over n /∈ Ik.

Proof : First observe that unless unit k is a demand unit it incurs no backordering or end of horizon

shortage costs. In other words, we must have δk ≤ T . Consider any period t′ ≥ δk in which unit k has

been backordered under the balancing policy. Further assume that the respective backordering penalty cost

increment π is assigned to some ordering decision 〈s, n〉 ∈ T k
Π . From the cause-effect cost accounting

scheme we know that s = t′ − Ln, and that under the balancing policy, throughout time period s, unit k

was on hand at stage n + 1, i.e., at stage-distance Ln. By the assumption that 〈s, n〉 ∈ T k
Π we conclude
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that yB
n (s) > yOPT

n (s). This implies that at the end of period s = t′ − Ln, under OPT , unit k was at

stage-distance Ln or higher. However, this implies that in period t′ unit k was backordered under OPT

and incurred a backordering penalty π. It is now readily verified that the overall backordering cost incurred

by unit k under OPT is greater than or equal to the backordering penalty costs it has incurred under the

balancing policy that are assigned to orders 〈s, n〉 ∈ T k
Π .

Suppose that the balancing policy assigned end of horizon shortage costs to an order 〈s, n〉 ∈ T k
Π ; hence

s = T − Ln. (Note that for each n there is at most one such order). As we explained in Subsection 3.7,

the costs assigned to 〈s, n〉 are
∑n

m=1(cm + hmLm). We also know that unit k was at stage n + 1 at time

T −Ln (on chain T ), and k was not included in the order 〈T −Ln, n〉. In other words, under the balancing

policy unit k first reached chain T + 1 at stage n + 1, and it stayed at n + 1 from period T − Ln to period

T + 1. Consequently {m : 1 ≤ m ≤ n} ∩ Ik = ∅ (i.e., the balancing policy did not order unit k at these

stages), and n + 1 ∈ Ik ∪ {N + 1}. Because 〈T − Ln, n〉 ∈ T k
Π , under OPT unit k was at stage-distance

Ln or higher at the end of period T − Ln + 1, which implies that at period T + 1 it was at some stage

n′ ≥ n + 1. Therefore, the total end of horizon shortage cost incurred by the balancing policy for unit k is
∑n

m=1(cm + hmLm) =
∑

m/∈Ik(cm + hmLm), and for each stage m /∈ Ik, OPT incurred an echelon-m

end of horizon shortage cost of cm + hmLm.

The fact that Lemma 5.4 uses only echelon-n end of horizon shortage costs incurred by k under OPT

for stages that are not in Ik, is crucial. This fact insures that none of OPT ’s end of horizon costs that are

used in Lemma 5.4, are also used in Lemmas 5.2 and 5.7. The next lemma bounds the number of increments

of late holding cost incurred by unit k that are assigned to ordering decisions at a given stage, under the

balancing policy. Recall that in the lattice, when unit k traversed the late arc [(s, Ln), (s, Ln + 1)] at stage

n+1, it generated a late holding cost increment of hm for each m, n < m ≤ N , all of which were assigned

to the order 〈s, n〉 (see Figure 3.4).

Lemma 5.5 Consider some stage n. The late holding cost that unit k assigns to n is at most h′n+1(Ln +1).

In other words, the overall late holding cost incurred by unit k under the balancing policy and assigned to

any of the ordering decisions made at stage n is at most h′n+1(Ln+1) = (
∑

m≥n+1 hm)(Ln+1). Moreover,

for each stage m > 1, the total echelon-m late holding cost incurred by unit k under the balancing policy

is at most hm(Lm−1 + 1) (i.e., there are at most Lm−1 + 1 echelon-m late holding cost increments).

Proof : If δk = T + 1 then unit k incurs no late holding costs and the lemma holds, so we assume that

δk ≤ T . Because the balancing policy is a regular policy, starting at time period δk + 1, unit k incurred no

late holding costs. (Either end of horizon assumptions were in effect because unit k had already reached
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chain T + 1, meaning that at time δk + 1 it was already impossible for unit k to reach stage 1 before the

end of the time horizon, or from period δk + 1 onwards unit k was included in immediate orders until it was

satisfied).

Let n′ ≥ 2 be the minimum index stage which unit k had reached by the end of period δk. In other

words, at the beginning of period δk + 1 unit k was at stage-distance j (on chain δk + 1 + j), such that

Ln′−2 < j ≤ Ln′−1. Then unit k incurred no echelon-m late holding costs for any m ≤ n′ − 1, and

assigned no late holding costs to orders placed at any stage n, n ≤ n′ − 2. Furthermore, because we have a

regular policy, the last time when unit k was backordered was at the end of period min(T, δk + j). Thus, the

number of backorder cost increments incurred by k, which is also the total number of late arcs traversed by

k, is min(T, δk + j)− δk + 1 ≤ j + 1 ≤ Ln′−1 + 1. (Recall that for each time period in which unit k incurs

late holding costs, there is a uniquely corresponding time period in which unit k is backordered, and that

the correspondence is based on chains (see Figure 3.4).) Hence Ln′−1 + 1 is an upper bound on the number

of echelon-m late holding cost increments incurred by unit k for any m, m ≥ n′. In addition, to any stage

n ≥ n′ − 1, a total late holding cost of at most h′n+1(Ln′−1 + 1) ≤ h′n+1(Ln + 1) was assigned.

The above lemma has an immediate corollary.

Corollary 5.6 There can be at most one stage n < N , for which the number of late holding increments that

unit k incurred under the balancing policy, that are assigned to ordering decisions in the set {〈s, n〉 : s ∈
[uk,n+1 + ln+1, ukn)}, is equal Ln + 1.

Proof : Focus on some stage n < N + 1. From the proof of Lemma 5.5 above, it is clear that the upper

bound Ln + 1 is achieved only in one scenario – if unit k was on hand at stage n + 1 from the beginning of

time period δk − Ln to the beginning of time period δk + 1. Clearly, this can happen for at most one stage

n.

Lemma 5.7 Consider the part of the late holding costs incurred by unit k under the balancing policy, which

is assigned to the set of ordering decisions in T k
Π defined above. These costs are no higher than the echelon-

n pipeline and end of horizon shortage costs incurred by unit k under OPT for stages n ∈ Ik
Π, plus the sum

of all late holding costs incurred by k under OPT .

Proof : If unit k did not incur any late holding costs under the balancing policy then the lemma holds.

Assume that unit k did incur late holding costs and, consequently, that unit k is a demand unit (i.e., δk ≤ T ).

Let J be the set of stages (possibly empty) at which unit k was ordered before the time horizon began, i.e.,

41



if Ik = [m1,m2) then J = {m : m2 ≤ m ≤ N}. Consider the total late holding cost assigned by unit

k to the ordering decisions in T k
Π under the balancing policy. We divide this cost into three quantities – the

total echelon-n late holding cost summed over all n ∈ Ik
E , the total echelon-n cost for n ∈ Ik

Π, and the total

echelon-n cost for n ∈ Ik
H ∪J . With respect to the first quantity, observe that Ik

E = [1, n′] for some n′ (we

allow n′ = 0, meaning that Ik
E = ∅), and that unit k was included in immediate orders placed at each stage

n ∈ Ik
E . Hence under the balancing policy, for each n ∈ [1, n′], unit k is not delayed at stage n and does

not incur any echelon-n late holding costs. Consequently, the first quantity is zero.

As for the second quantity, recall that there are no echelon-1 late holding costs, because we will never

backorder inventory at stage 1. For any given n ≥ 2, Lemma 5.5 above implies that the total echelon-n

late holding cost incurred by unit k under the balancing policy is at most hn(Ln−1 + 1) ≤ hnLn (recall

that ln ≥ 1 and that Ln = Ln−1 + ln). This is bounded by the echelon-n pipeline and end of horizon

shortage costs incurred by unit k under OPT for stage n. To be specific, by the arguments used in the proof

of Lemma 5.2, we know that under OPT , either unit k incurred an echelon-n pipeline cost of hnLn, or it

incurred an echelon-n end of horizon shortage cost of hnLn. We apply this logic to the stages n ∈ Ik
Π,

proving that the second of the three quantities described above, is bounded by the echelon-n pipeline and

end of horizon shortage costs for stages n ∈ Ik
Π, incurred for unit k under OPT . Observe that these costs

are distinct from the echelon-n end of horizon shortage costs incurred under OPT for stages n ∈ Ik
E and

n /∈ Ik, which were discussed in Lemmas 5.2 and 5.4, respectively.

We will complete the proof by proving that the third quantity described above is bounded by the late

holding costs incurred by unit k under OPT . The third quantity is the total echelon-m late holding cost

assigned by unit k to ordering decisions in T k
Π under the balancing policy, summed over all m ∈ Ik

H ∪ J .

Consider a given increment of echelon-m late holding costs incurred by unit k under the balancing policy

at some stage m ∈ Ik
H ∪ J , which is assigned under the cause-effect cost accounting scheme to some

ordering decision 〈s, n〉 ∈ T k
Π (see Figure 5.5). Since the echelon-m late holding cost increment is assigned

to 〈s, n〉, it is clear that n < m and that under the balancing policy unit k was on hand at stage n+1 (where

n+1 ≤ m) at both the beginning and the end of period s. (Recall that in the lattice, stage n+1 corresponds

to row Ln.) In other words, the echelon-m late holding cost increment was incurred when the balancing

policy sent unit k from chain t′ = s + Ln to chain t′ + 1 (see Section 3 above), at stage n + 1. (Because

it is a late holding cost increment, δk ≤ t′ = s + Ln. Recall that δk − Ln ≤ s is the critical period for

stage n induced by unit k, so k is backordered in period t′.) We will amortize this echelon-m late holding

cost increment using the echelon-m late holding cost increment that was incurred when, under OPT , unit

k moved from chain t′ to chain t′ + 1 (see Section 3). Since OPT sent unit k from chain t′ to chain t′ + 1 at

42



Figure 5.5: Proof of Lemma 5.7, the Third Quantity

most one time, this amortization does not use any increment of echelon-m late holding cost incurred by unit

k under OPT more than once. To complete the proof we need to show that the echelon-m late holding cost

increment in question was actually incurred under OPT , i.e., that under OPT unit k moved from chain t′

to chain t′ + 1 at some stage m′ satisfying 1 < m′ ≤ m, after the time horizon began. (Recall that k moved

from chain t′ to chain t′ + 1 at m′ if k was held at m′ throughout time period t′ − Lm′−1.)

Because 〈s, n〉 ∈ T k
Π , and because under the balancing policy unit k was on hand at stage n + 1 at both

the beginning and the end of period s, we know that under OPT at time s + 1, unit k was either at stage

n + 1 or had not yet reached stage n + 1 (i.e., k was at stage-distance ≥ Ln; see Figure 5.5). Either way,

under OPT unit k crossed from chain t′ = s+Ln to chain t′+1 at some stage m′ ≥ n+1. In other words,

under OPT there exists some maximum index m′ ≥ n + 1 such that unit k was not ordered by OPT at

stage m′ − 1 in period t′ − Lm′−1, although it was on hand at stage m′ at that time. This implies that m′

does exist. It now suffices to show that m′ ≤ m and t′ − Lm′−1 ≥ 1 (i.e., that under OPT unit k crossed

from chain t′ to chain t′ + 1 at or below stage m after the time horizon began).

Observe that at time t′ − Ln, under the balancing policy unit k was at stage n + 1, on chain t′. Hence,

for each stage n′ > n, unit k was ordered at stage n′ at or before time t′ − Ln′ . We first show that under
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OPT unit k was ordered at stage m by period t′ − Lm, which implies that m′ ≤ m. It is sufficient to show

that at stage m unit k was ordered by OPT at the same period it was ordered by the balancing policy or

even earlier. The claim is trivially true if m ∈ J since unit k was ordered at these stages prior to period

1, and these decisions are common to all feasible policies. If m ∈ Ik
H , then the claim follows because

at period ukm when unit k was ordered at stage m by the balancing policy, OPT had higher echelon-m

inventory position. We conclude that indeed m′ ≤ m. Recall that Ik = [m1,m2) and m2 is defined to be

the first period at which unit k arrives after the beginning of the horizon. We finish the proof by showing

that m′ ≤ m2, which implies that t′ − Lm′−1 ≥ 1. However, this again follows from the fact that at all

stages n′ ≥ m2 unit k was ordered prior to period 1 in the same period by all feasible policies, and that the

balancing policy ‘ordered’ unit k at these stages by period t′ − Ln′ .

In Lemmas 5.2, 5.3, 5.4 and 5.7, we have amortized the following costs incurred by unit k under the

balancing policy: pipeline costs assigned to immediate orders (i.e., pipeline costs unit k assigned to stages

n ∈ Ik
E ; Lemma 5.2), pipeline, early holding and excess end of horizon costs assigned to orders in TH

(Lemma 5.3), and backordering, end of horizon shortage and late holding costs assigned to orders in TΠ

(Lemmas 5.4 and 5.7). Summing over all units k, we have shown how to amortize the costs

∑

〈s,n〉∈TH

H̃B
sn +

∑

〈s,n〉∈TΠ

ΠB
sn +

∑

〈s,n〉
(cn + hnLn)Q̄B

n (s).

Observe that the amortization uses the following costs incurred by unit k under OPT : echelon-n pipeline

and end of horizon shortage costs for stages n ∈ Ik
E (Lemma 5.2), echelon-n pipeline, early holding and

excess end of horizon costs for stages n ∈ Ik
H (Lemma 5.3), echelon-n end of horizon shortage costs for

stages n /∈ Ik, backorder costs (Lemma 5.4), echelon-n pipeline and end of horizon shortage costs for stages

n ∈ Ik
Π, and late holding costs at all stages (Lemma 5.7). It is readily verified that this cost amortization

does not use any increment of cost incurred by OPT more than once. Thus, inequality (13) indeed holds

with probability 1, which implies that (14) holds. We have established the following theorem.

Theorem 5.8 The balancing policy has a worst-case performance guarantee of 2 for the periodic-review

serial inventory system with stochastic demands, under the assumptions of Model 1.

We note that this analysis is tight. That is, there exists a sequence of problem instances such that

the ratio between the expected cost of the balancing policy and the expected cost of the optimal policy is

asymptotically 2. We obtain the problems by modifying the sequence of problem instances discussed in [11]

for the single stage so that they hold under the assumption that holding costs are incurred from the moment a
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unit is ordered. (In other words, we make the problems conform to Model 1, whereas they currently conform

to Model 2.)

5.1 Model 2

The only difference between Model 2 and Model 1 is the fact that in Model 2, echelon holding costs begin

to be charged when a unit arrives at the stage, and not when it was ordered by the stage. Specifically, if a

unit was ordered at stage n in period s, the echelon-n holding cost for this unit will be charged from period

s + ln until it leaves the system (instead of charging the echelon-n holding cost starting in period s). We

make corresponding changes to the end of horizon assumptions, incurring an excess end of horizon cost of
∑N

m=n(cm + hmLm−1) for each excess supply unit that is at stage n in period T + 1, and an end of horizon

shortage cost of
∑n−1

m=1(cm + hmLm−1) for each demand unit that is at stage n at time T + 1.

The different assumptions above do not conceptually change the cause-effect cost accounting scheme

described in Section 3. In fact the only change is in the pipeline costs that are now equal to cn + hnLn−1

(instead of cn+hnLn before). In equations (7) and (9) above the corresponding changes occur (cn+hnLn−1

is used instead of cn + hnLn). Similarly, the excess end of horizon cost assigned to the order 〈s, n〉 is now

(cn + hnLn−1)QP
n , and the end of horizon shortage cost assigned to 〈T − Ln, n〉 is now

( ∑n−1
m=1(cm +

hmLm−1)
)

Π̂P
T−Ln,n. Moreover, we can still apply the same balancing policy described in Section 4. That

is, in each period, conditioned on the observed information set fs and after immediate orders are placed, at

each stage n we order a quantity q′n(s) such that E[H̃B
sn(q′n(s))|fs] = E[ΠB

sn(q′n(s))|fs].

Next we shall show that in model 2 the balancing policy has a worst-case performance guarantee of 4.

Then we discuss certain modifications in the policy that improve the guarantee to 3. Observe that if we

replace all instances of cn +hnLn with cn +hnLn−1, the new assumption on the echelon holding costs does

not affect the proofs of Lemmas 5.1, 5.2, 5.3 and 5.4, in which we amortize the pipeline costs incurred by

immediate orders, the pipeline, early holding and excess end of horizon costs assigned to ordering decisions

in TH , and the backordering, end of horizon shortage and late holding costs assigned to ordering decisions

in TΠ. In addition, this does not change the proofs of Lemma 5.5 and Corollary 5.6, in which we bound the

number of echelon late holding cost increments assigned to ordering decisions at stage n by Ln−1 + 1.

The new assumption on the echelon holding costs does affect, however, Lemma 5.7, which needs to

restated. In particular, the proof of Lemma 5.7 is divided into three parts, with each part bounding a separate

quantity. The discussion of the first and third quantities still applies, but not that of the second one. The

second quantity we bound is the echelon-n late holding cost assigned to ordering decisions in T k
Π under the

balancing policy, summed over n ∈ Ik
Π. We bound (i.e., amortize) this cost by the echelon-n pipeline and
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end of horizon shortage costs for stages n ∈ Ik
Π, incurred under OPT . However, under the new assumption,

OPT ’s echelon-n pipeline holding and end-of-horizon shortage costs are only hnLn−1. This might not be

sufficient to cover the balancing policy’s echelon-n late holding costs, which in the worst case can be equal

to hn(Ln−1 + 1). Specifically, it is possible that the balancing policy might have an increment of echelon-n

holding cost hn, for a single stage n, that can not be amortized against the costs of OPT , i.e., we might be

able to amortize only hnLn−1 out of the overall cost hn(Ln−1 + 1).

This implies that we can only prove a weaker version of Inequality (13), that is,

C(OPT ) ≥
∑

〈s,n〉∈TH

H̃B
sn +

Ln

Ln + 1

∑

〈s,n〉∈TΠ

ΠB
sn +

∑

〈s,n〉
(cn + hnLn)Q̄B

n (s). (15)

Observe that the expression Ln
Ln+1 is increasing in Ln, i.e., with longer lead times we can amortize a higher

fraction of the late holding costs of OPT . Moreover, since Ln ≥ 1, we conclude that Ln
Ln+1 ≥ 1

2 . Similar to

(14), we can write

E[C(OPT )] ≥ (16)
∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)H̃B

sn +
1
2
· 11(〈s, n〉 ∈ TΠ)ΠB

sn + (cn + hnLn−1)Q̄B
n (s)

]
=

∑

〈s,n〉
E

[
E[11(〈s, n〉 ∈ TH)H̃B

sn +
1
2
· 11(〈s, n〉 ∈ TΠ)ΠB

sn|Fs]
]

+
∑

〈s,n〉
E[(cn + hnLn−1)Q̄B

n (s)] =

∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)E[H̃B

sn|Fs] +
1
2
· 11(〈s, n〉 ∈ TΠ)E[ΠB

sn|Fs]
]

+
∑

〈s,n〉
E[(cn + hnLn−1)Q̄B

n (s)] ≥

1
2

∑

〈s,n〉
E[Zsn] +

∑

〈s,n〉
E[(cn + hnLn−1)Q̄B

n (s)].

Lemma 5.1 and (16) imply the balancing policy has a worst-case performance guarantee of 4. We have

proven the following theorem.

Theorem 5.9 The balancing policy has a worst-case performance guarantee of 4 for model 2 of the periodic-

review serial inventory system with stochastic demands.

Observe that second line of (16) is not balanced, in that the first term has weight 1 and the second term

has weight 1
2 . Next we shall show that by modifying the balancing policy above, we can exploit this fact

to improve the worst-case performance guarantee to 3. However, before we explain the details of the mod-

ifications, we note that the above problem does not exist (i.e., the balancing policy still has a worst-case

performance guarantee of 2) under either one of the following two assumptions:
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Assumption 1. Consider model 2 but under continuous review. It is readily verified that in a continuous

review system, we can strengthen Lemma 5.5 above and bound the number increments of n-echelon late

holding costs (n ≥ 2) by Ln−1 (rather than Ln−1 + 1). This implies that Lemma 5.7 is again valid, since

we can again amortize the full echelon-n late holding costs with the echelon-n pipeline costs.

Assumption 2. Suppose that, for each n ≥ 2, we have cn ≥ hn. It is then readily verified that the echelon-n

late holding costs can be amortized with the echelon-n pipeline costs; thus, Lemma 5.7 is again valid.

Consider again model 2 under no further assumptions. We shall describe a modified policy that is called

a β−balancing policy. This policy takes into account the fact that in model 2, the echelon late holding

costs may not be fully amortized. As we have already mentioned this policy has an improved worst-case

performance guarantee. Specifically, in each period s, conditioned on the observed information set fs, the

β−balancing policy first places immediate orders as before, and then places a regular order of q′n(s) units at

each stage n, such that E[H̃B
sn(q′n(s))|fs] = βE[ΠB

sn(q′n(s))|fs]. That is, instead of equating the quantities

E[H̃B
sn(qB

n (s))|fs] and E[ΠB
sn(q′n(s))|fs], it balances them in a ratio of β:1. Note that this induces a family

of policies one of which is the balancing policy described in Section 4 above (this policy corresponds to the

value β = 1).

The next lemma is a generalization of Lemma 5.1, and is proven using similar arguments. For each

n = 1, . . . , N and s = 1, . . . , T − Ln, let Zsn := E[ΠB
s |Fs]. Observe that by the construction of the

β−balancing policy, E[H̃B
sn] = βZsn, with probability 1.

Lemma 5.10 The expected cost of the balancing policy is equal to (1 + β) times the expected sum of the

Zsn variables plus the expected pipeline costs incurred by immediate orders placed the β−balancing policy.

That is,

E[C(B)] = (1 + β)E[
∑

1≤n≤N

∑

1≤s≤T−Ln

Zsn] + E[
∑

1≤n≤N

∑

1≤s≤T−Ln

(cn + hnLn−1)Q̄B
n (s)].
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The rest of the analysis is identical with the exception that (16) is now written as

E[C(OPT )] ≥
∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)H̃B

sn +
1
2
· 11(〈s, n〉 ∈ TΠ)ΠB

sn + (cn + hnLn)Q̄B
n (s)

]
= (17)

∑

〈s,n〉
E

[
E[11(〈s, n〉 ∈ TH)H̃B

sn +
1
2
· 11(〈s, n〉 ∈ TΠ)ΠB

sn|Fs]
]

+
∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)] =

∑

〈s,n〉
E

[
11(〈s, n〉 ∈ TH)E[H̃B

sn|Fs] +
1
2
· 11(〈s, n〉 ∈ TΠ)E[ΠB

sn|Fs]
]

+
∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)] ≥

min(1
2 , β)

∑

〈s,n〉
E[Zsn] +

∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)].

Thus the worst-case performance guarantee of the β−balancing policy is (1 + β)/min(1
2 , β). It is readily

verified that this expression is minimized by the value β = 1
2 and its minimal value is equal to 3.

Theorem 5.11 The 1
2−balancing policy has a worst-case performance guarantee of 3 for model 2 of the

periodic-review serial inventory system with stochastic demands.

Finally, we consider model 2 under an additional assumption that π ≥ hn, for each n ≥ 2. Focus again

on unit k. We have already observed that each late holding cost increment assigned to an ordering decision

〈s, n〉 corresponds to one increment of backordering penalty cost incurred in period s + Ln. Thus, for each

increment of late holding cost due to unit k that is assigned to 〈s, n〉, there is an increment of backordering

penalty cost due to unit k that is also assigned to 〈s, n〉.
Now consider some stage n′, the ordering decisions 〈s′, n′〉 ∈ TΠ, and the total late holding cost assigned

to these decisions by unit k (under the balancing policy). Lemma 5.5 and Corollary 5.6 imply that there is

only one scenario in which we can not necessarily fully amortize these costs against respective costs of

OPT . Specifically, that scenario is when unit k was on hand at stage n + 1 from the beginning of period

δk−Ln to the beginning of period δk +1, under the balancing policy. In that case, the total late holding and

backorder cost assigned to ordering decisions in Dn′ by unit k are (h′n+1 + π)(Ln + 1). Lemmas 5.4 and

5.7 imply that we can amortize all of these costs except possibly one increment of echelon-n+1 holding cost

hn+1. Since π ≥ hn+1, it is readily verified that [h′n+1Ln+π(Ln+1)] / [(h′n+1+π)(Ln+1)] ≥ 1− 1
2(Ln+1)

of the cost can be amortized. Recall that Ln ≥ 1, which implies that at least 1 − 1
2(Ln+1) ≥ 3

4 of the cost

can be amortized.

Consider the 3
4−balancing policy as described above. Using similar arguments as in Lemma 5.10, the

expected cost of this policy can be expressed as

E[C(B)] =
7
4

∑

〈s,n〉
E[Zsn] +

∑

〈s,n〉
E[(cn + hnLn−1)Q̄B

n (s)].
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In addition, similar to (18) above, we conclude that

E[C(OPT )] ≥ 3
4

∑

〈s,n〉
E[Zsn] +

∑

〈s,n〉
E[(cn + hnLn)Q̄B

n (s)]. (18)

This implies that the worst-case performance guarantee of the 3
4−balancing policy is 7

4/3
4 = 21

3 .

Theorem 5.12 The 3
4−balancing policy has a worst-case performance guarantee of 21

3 for model 2 of the

periodic-review serial inventory system with stochastic demands, under the assumption that π ≥ hn, for

each n = 2, . . . , N .

We note that this analysis for Model 2 is not tight. The sequence of problem instances discussed in

[11] shows a lower bound of 2 on the worst-case guarantee, while the analysis that we present establishes

guarantees higher than 2.

5.2 Integer-Valued Demand

In this section, we briefly discuss a randomized version of the β−balancing policy that can be applied in

scenarios, where orders are restricted to be integers, and the demands are integer-valued random variables.

The randomized policy achieves the same worst-case performance guarantees described above for the case

where fractional orders are allowed. The modifications to the policy and the analysis are almost identical

to what is described in [11, 12] for the single-stage models. Thus, we discuss only the high level ideas and

refer the reader to these references for more details.

For ease of exposition we consider the case where β = 1. In each period, conditioned on the observed in-

formation set fs, we first place immediate orders as before. In each stage n, we again consider the functions

E[H̃B(qB
n (s))|fs] and E[ΠB(qB

n (s))|fs]. These functions are originally defined only for integer values of

qB
n (s). We define these functions for any value of qB

n (s) by interpolating piecewise linear extensions of the

integer values. It is clear that these extended functions preserve the properties of convexity and monotonic-

ity discussed in the previous (continuous) case. However, it is still possible (and even likely) that the value

q′n(s) that balances these functions is not an integer. Instead we consider the two consecutive integers q1
n(s)

and q2
n(s) := q1

n(s) + 1 such that q1
n(s) < q′n(s) < q2

n(s). In particular, q′n(s) := λq1
n(s) + (1−λ)q2

n(s) for

some 0 < λ < 1. The randomized balancing policy orders q1
n(s) units with probability λ and q2

n(s) units

with probability 1− λ. This constructs what we call a randomized balancing policy.

In [11, 12] it has been shown that by slightly changing the definition of the sets TH and TΠ above, a

similar worst-case analysis goes through and theorems analogous to Theorems 5.8, 5.9, 5.11 and 5.12 can

be established.
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6 Assembly Systems

In assembly systems, each stage may have more than one predecessor. Each predecessor stage has its own

non-zero lead time. We assume that each unit produced at a stage is assembled using one unit from each of

its predecessors. For convenience, we use stage numbers to denote unit types. Thus, the end unit is of type

1.

Let Mn denote the total lead time for stage n and all its successors. Thus, Mn is the minimum number

of time periods that can possibly elapse, starting when we order a unit at stage n, and ending when that

unit reaches stage 1. (Mn is a generalization of Ln). We assume that the stages are numbered so that Mn

increases with n. This implies that whenever stage k succeeds stage n, k < n.

We continue to use the notion of stage-distance to mean the number of periods required for a unit to

pass from its present position in the assembly system to stage 1 if there are no delays at intermediate stages.

For j ≤ Mn, let Xj
n(t) be the number of supply units of type n in the system at stage-distances less than or

equal to j, in period t. We say a system is in long-run balance in period t if and only if

Xj
n(t) ≤ Xj

n+1(t) (19)

for all j ≤ Mn and all n.

Assuming that a system is in long-run balance in the first period, Rosling shows that the assembly system

can be mapped to a corresponding series system. In the series system stage n immediately succeeds stage

n − 1, and the lead time to make a shipment from stage n + 1 to stage n is Mn − Mn−1. All feasible

policies for the series system naturally give rise to feasible policies for the assembly system, which have

the same cost, and which keep the assembly system in balance. (Rosling’s results are formally stated for

stationary, discounted, infinite-horizon systems, but the relevant proofs clearly apply to the systems that

we are studying as well.) Therefore, any policy for the serial system can be used to manage an in-balance

assembly system. The important fact is that in so doing there is no loss of optimality.

Theorem 6.1 (Rosling) If the echelon holding costs hn and backorder cost π are non-negative, and the

assembly system starts out in long-run balance, then an optimal policy for the assembly system naturally

gives rise to an optimal policy for the corresponding pure series system, and these policies have the same

cost.

The long-run balance condition is a natural requirement for the following reason:

Theorem 6.2 (Rosling) If the echelon holding costs hn and backorder cost π are non-negative then the

optimal policy eventually leads the assembly system into long-run balance and keeps it in balance.
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These theorems of Rosling are stated for Model 2 with continuous order quantities, infinite time horizons

and base stock policies. However the logic of the proofs applies directly to general policies, to finite time

horizons, to Model 1, and to systems with integer-valued demands as well. Thus, we establish similar results

for the assembly system.

Theorem 6.3 The balancing policy has a worst-case performance guarantee of 2 for the assembly system

under model 1; a performance guarantee of 3 for the assembly system under model 2; and a performance

guarantee of 21
3 under model 2 with the assumption that the backorder parameter is greater than the echelon

holding cost parameters of all stages but stage 1.
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