An Optimizer’s View of Statistical Boosting Algorithms
(Colloquium of the Chilean Institute of Operations Research)

Robert Freund (research with Paul Grigas and Rahul Mazumder)

http://web.mit.edu/rfreund/www/talks.html

Massachusetts Institute of Technology

April 2013
The convex optimization problem is:

\[
f^* := \min_x f(x) \quad \text{s.t.} \quad x \in P
\]

\(P \subset \mathbb{R}^n\) is a convex set

\(f(x) : P \to \mathbb{R}\) is a convex function

\(f(x)\) is perhaps differentiable, or not

Let \(f^*\) denote the optimal objective function value

Let us discuss some algorithms for convex optimization
Four Relevant Algorithms for Convex Optimization

1. Gradient Descent

2. Subgradient Descent

3. Mirror Descent on the n-simplex $\{x \in \mathbb{R}^n : x \geq 0 \text{ and } \sum_j x_j = 1\}$

4. Frank-Wolfe Method
Our problem of interest is:

\[f^* := \min_x f(x) \]
\[\text{s.t. } x \in \mathbb{R}^n \]

Gradient Descent method for minimizing \(f(x) \) **on** \(\mathbb{R}^n \)

Initialize at \(x_1 \in \mathbb{R}^n, k \leftarrow 1 \).

At iteration \(k \):

1. Compute \(\nabla f(x_k) \).
2. Choose step-size \(\alpha_k \).
3. Set \(x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k) \).
Here is what we can say about the gradient descent method:

Computational Guarantees for Gradient Descent

If the step-size sequence \(\{ \alpha_k \} \) is chosen intelligently, then:

\[
f(x_k) - f^* \leq \frac{L}{k}
\]

where \(L \) is a certain constant related to the function \(f(x) \).
Subgradient Descent

Our problem of interest is:

\[f^* := \min_x f(x) \quad \text{s.t.} \quad x \in \mathbb{R}^n \]

where \(f(x) \) is not differentiable. Then \(f(x) \) has subgradients.
Subgradient Descent, continued

Our problem of interest is:

\[f^* := \min_{x} f(x) \quad \text{s.t.} \quad x \in \mathbb{R}^n \]

Subgradient Descent method for minimizing \(f(x) \) on \(\mathbb{R}^n \)

Initialize at \(x_1 \in \mathbb{R}^n, k \leftarrow 1 \).

At iteration \(k \):

1. Compute a subgradient \(g_k \) of \(f(x_k) \).
2. Choose step-size \(\alpha_k \).
3. Set \(x_{k+1} \leftarrow x_k - \alpha_k g_k \).
Here is what we can say about the subgradient descent method:

Computational Guarantees for Subgradient Descent

If the step-size sequence \{\alpha_k\} is chosen intelligently, then:

$$f(x_k) - f^* \leq \frac{L}{\sqrt{k}}$$

where L is a certain constant related to the function $f(x)$.
Our problem of interest is:

\[f^* := \min_x f(x) \]
\[\text{s.t. } \sum_j x_j = 1 \]
\[x \geq 0 \]

The feasible region is the \(n \)-simplex \(\{x \in \mathbb{R}^n : \sum_j x_j = 1, x \geq 0\} \)
Our problem of interest is:

\[
\begin{align*}
 f^* := \min_x & \quad f(x) \\
 \text{s.t.} & \quad \sum_j x_j = 1 \quad \text{and} \quad x \geq 0
\end{align*}
\]

Mirror Descent method for minimizing \(f(x) \) on the \(n \)-simplex

Initialize at \(x_1 = (1/n, 1/n, \ldots, 1/n) \), \(k \leftarrow 1 \).

At iteration \(k \):

1. Compute a subgradient \(g_k \) of \(f(x_k) \).
2. Choose step-size \(\alpha_k \).
3. Set

\[
(x_{k+1})_j \leftarrow \frac{(x_k)_j e^{-\alpha_k(g_k)_j}}{\sum_{\ell} (x_k)_\ell e^{-\alpha_k(g_k)_\ell}}.
\]
Here is what we can say about the mirror descent method:

Computational Guarantees for Mirror Descent

If the step-size sequence \(\{\alpha_k\} \) is chosen intelligently, then:

\[
 f(x_k) - f^* \leq \frac{L}{\sqrt{k}}
\]

where \(L \) is a certain constant related to the function \(f(x) \).
Our problem of interest is:

\[
f^* := \min_x f(x) \quad \text{s.t.} \quad x \in P
\]

\(f(x)\) is differentiable

The feasible region \(P\) is convex and it is "easy" to do linear programming on \(P\)
Frank-Wolfe Method, continued

Our problem of interest is:

\[f^* := \min_{x} f(x) \quad \text{s.t.} \quad x \in P \]

Frank-Wolfe method for minimizing \(f(x) \) on \(P \)

Initialize at \(x_1 \in P, \ k \leftarrow 1 \).

At iteration \(k \):

1. Compute \(\nabla f(x_k) \).
2. Compute \(\tilde{x}_k \leftarrow \arg \min_{x \in P} \{ \nabla f(x_k)^T x \} \).
3. Set \(x_{k+1} \leftarrow x_k + \bar{\alpha}_k (\tilde{x}_k - x_k) \), where \(\bar{\alpha}_k \in [0, 1] \).
Frank-Wolfe, continued

Here is what we can say about the Frank-Wolfe method:

Computational Guarantees for Frank-Wolfe

If the step-size sequence \(\{\bar{\alpha}_k\} \) is chosen intelligently, then:

\[
f(x_k) - f^* \leq \frac{L}{k}
\]

where \(L \) is a certain constant related to the function \(f(x) \).
Two Problems in Statistical Boosting

We consider two problems in statistical boosting:

1. Linear Regression

2. Binary Classification / Supervised Learning
Linear Regression

Consider the linear regression model:

\[y = X\beta + e \]

- \(n \) observations/records, \(p \) independent variables

- \(X \in \mathbb{R}^{n \times p} \) is the model matrix: \(X_{ij} \) is the \(i^{th} \) observation of independent variable \(j \)

- \(y \in \mathbb{R}^n \) is the vector of observed values of the dependent variable

- \(\beta \in \mathbb{R}^p \) are the regression coefficients, with \(\beta_j \) the coefficient of the \(j^{th} \) independent variable

- \(e \in \mathbb{R}^n \) is the vector of the errors (or noise) in the model
Linear Regression, continued

Linear regression:

\[y = X\beta + e \]

In the high-dimensional statistical regime, especially when \(p \gg n \gg 0 \), we desire:

- good predictive performance of the model (of course),
- good performance on currently available data (residuals \(r := y - X\beta \) are small),
- an “interpretable model” \(\beta \),
- coefficients are not excessively large (\(\sum_j |\beta_j| \leq \delta \)), and
- a “lean” or “sparse” solution: we do not want to use too many independent variables (\(\beta \) has few non-zero coefficients)
Linear Regression Performance Metrics

Linear regression:

\[y = X\beta + e \]

The classical metric is the least-squares of the residuals \(r := y - X\beta \)

minimize \(\sum_i (r_i)^2 \) \((= \| r \|_2^2) \)

Another metric is the maximum correlation of the residuals

minimize \(\max_i |(X^T r)_i| \) \((= \| X^T r \|_\infty) \)
A Boosting Version of Regression

Regression model:

\[y = X\beta + e \]

- \(n \) observations/records, \(p \) regression models
- \(X \in \mathbb{R}^{n \times p} \) is the model matrix: \(X_{ij} \) is the \(i^{th} \) observation of \(j \)-th regression model
- \(y \in \mathbb{R}^n \) is the vector of observed values of the dependent variable
- \(\beta \in \mathbb{R}^p \) are the boosting coefficients, with \(\beta_j \) the coefficient of the \(j^{th} \) regression model
- \(e \in \mathbb{R}^n \) is the vector of the errors (or noise) in the overall boosting model
Incremental Forward Stagewise Regression (FS_ε)

Initialize at $r^0 = y$, $\beta^0 = 0$, $k = 0$.

At iteration k:

1. Compute $j_k \in \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|$

2. Set:

 \[
 r^{k+1} \leftarrow r^k - \varepsilon \ \text{sgn}((r^k)^T X_{j_k}) X_{j_k}
 \]

 \[
 \beta_{j_k}^{k+1} \leftarrow \beta_{j_k}^k + \varepsilon \ \text{sgn}((r^k)^T X_{j_k})
 \]

 \[
 \beta_j^{k+1} \leftarrow \beta_j^k, \ j \neq j_k
 \]
Incrmental Forward Stagewise Regression, continued

What has been known about $F S_\varepsilon$:

- after k iterations, there are at most k non-zero coefficients of β^k
- after k iterations, $\sum_j |\beta^k_j| \leq k\varepsilon$
- method produces a fairly good model fairly quickly

What has not been known about $F S_\varepsilon$:

- why does it work efficiently in practice?
- will it fail on certain regression problems?
- how might we improve the method?
Incremental Forward Stagewise Regression, continued

Equivalence Theorem

Incremental Forward Stagewise Regression (FS$_\varepsilon$) is equivalent to subgradient optimization applied to the problem

$$\min_{r = y - X\beta} \max_i |(X^T r)_i| \equiv \|X^T r\|_\infty$$

with step-sizes $\alpha_k = \varepsilon$ at every iteration.
Incremental Forward Stagewise Regression, continued

Computational Guarantees for Incremental Forward Stagewise Regression

\(FS_\varepsilon \) has the following guarantee after \(k \) iterations:

The coefficients of \(\beta^\ell \) have at most \(\ell \) non-zeros, for \(\ell = 1, \ldots, k \), and the coefficients are not excessively large. Furthermore,

\[
\min_{\ell \in \{0, \ldots, k\}} \|X^T r^\ell\|_\infty \leq \frac{\|y\|^2}{2\varepsilon(k + 1)} + \frac{\varepsilon\|X\|^2}{2}
\]

If we choose the step-sizes like an optimizer does, then

\[
\min_{\ell \in \{0, \ldots, k\}} \|X^T r^\ell\|_\infty \leq \frac{\|y\|\|X\|}{\sqrt{k + 1}}
\]

and

\[
\sum_j |\beta_j^\ell| \leq \frac{\sqrt{k}\|y\|}{\|X\|}
\]
Frank-Wolfe for Regression

Let us apply Frank-Wolfe to solve the constrained least-squares problem:

\[
f^*_\delta := \min_{\beta} \sum_j (y - X\beta)^2 \quad \text{s.t.} \quad \sum_j |\beta_j| \leq \delta
\]

This is known as the LASSO problem
Frank-Wolfe for Regression, continued

Frank-Wolfe Method for LASSO Regression

Initialize at β_0 with $\sum_j |\beta_0^j| \leq \delta$.

At iteration k:

1. Compute:
 \[
 r^k \leftarrow y - X\beta^k
 \]
 \[
 j_k \leftarrow \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|
 \]

2. Set:
 \[
 \beta_{j_k}^{k+1} \leftarrow (1 - \bar{\alpha}_k) \beta_{j_k}^k + \bar{\alpha}_k \delta \text{sgn}((r^k)^T X_{j_k})
 \]
 \[
 \beta_j^{k+1} \leftarrow (1 - \bar{\alpha}_k) \beta_j^k \text{ for } j \neq j_k, \text{ and where } \bar{\alpha}_k \in [0, 1] \]
Suppose we run the Frank-Wolfe method using an intelligent step-size sequence. Then after k iterations, there exists an $\ell \in \{0, \ldots, k\}$ satisfying:

1. $\frac{1}{2} \|y - X\beta^\ell\|^2 - f_\delta^* \leq \frac{17.4\|X\|^2\delta^2}{k}$
2. $\|X^T r^\ell\|_\infty \leq \frac{1}{2\delta} \|y\|^2 + \frac{17.4\|X\|^2\delta}{k}$
3. there are at most k non-zero coefficients of β^ℓ
4. $\sum_j |\beta^\ell_j| \leq \delta$
We are given m points $x^1, \ldots, x^m \in \mathbb{R}^n$ each of which has a label 1 or -1

- each point $x^i = (x^i_1, x^i_2, \ldots, x^i_n)$ is an example
- we have m examples
- x^i_j is the value of feature j for example i
- the label of point x^i is y^i, and $y^i \in \{-1, 1\}$
 - the points x^i with label $y^i = 1$ have property “P”
 - the points x^i with label $y^i = -1$ do not have property “P”

We would like to use these m points to develop a linear rule that can be used to predict whether or not other points x might or might not have property P
Illustration of Supervised Learning

Illustration of the pattern classification problem
Another Illustration of Supervised Learning

Another Illustration of the pattern classification problem
Supervised Learning, continued

We seek a vector $\lambda \in \mathbb{R}^n$ for which:

- $(x^i)^T \lambda > 0$ for all x^i for which $y^i = 1$
- $(x^i)^T \lambda < 0$ for all x^i for which $y^i = -1$

We will then use λ to predict whether or not other points v have property P or not, using the rule:

- If $v^T \lambda > 0$, then we declare that v has property P
- If $v^T \lambda < 0$, then we declare that v does not have property P
We seek a vector $\lambda \in \mathbb{R}^n$ for which:

- $(x^i)^T \lambda > 0$ for all x^i for which $y^i = 1$
- $(x^i)^T \lambda < 0$ for all x^i for which $y^i = -1$

Define $a_i = y^i \cdot x^i$

We seek λ for which $(a^i)^T \lambda > 0$ for all $i = 1, \ldots, m$

Define

$$A = \begin{bmatrix}
- & - & a^1 & - & - \\
- & - & a^1 & - & - \\
& & & \ddots & \\
- & - & a^m & - & -
\end{bmatrix}$$

We therefore seek λ for which:

$$A\lambda > 0$$
Supervised Learning, Goals

We seek λ for which:

$$A\lambda > 0$$

where the i^{th} row of A is $a_i := y^i \cdot x^i$

We desire:

- good prospective performance of the model (of course): $v^T\lambda > 0$ when v has property P, $v^T\lambda < 0$ when v does not have property P
- good performance on the training data: $A\lambda > 0$,
- an “interpretable model” λ
- coefficients are not excessively large: $\sum_j |\lambda_j| \leq \delta$, and
- a “lean” or “sparse” solution: we do not want to use too many features (λ has few non-zero coefficients)
Statistical Learning Metrics

We seek λ for which:

$$A\lambda > 0$$

where i^{th} row of A is $a_i := y^i \cdot x^i$

One performance metric is the margin, which is the smallest of the $(a^i)^T \lambda$ values:

$$p(\lambda) := \min_{i \in \{1, \ldots, m\}} (A\lambda)_i$$

We seek to maximize $p(\lambda)$ over all λ satisfying $\sum_j |\lambda|_j \leq \delta$

Another metric is the exponential loss and is defined to be:

$$L_{\text{exp}}(\lambda) := \ln \left(\frac{1}{m} \sum_{i=1}^{m} \exp \left(- (A\lambda)_i \right) \right)$$

We seek to minimize $L_{\text{exp}}(\lambda)$ over all λ satisfying $\sum_j |\lambda|_j \leq \delta$
A Boosting Version of Statistical Learning

We seek λ for which:

$$A\lambda > 0$$

where i^{th} row of A is $a_i := y^i \cdot x^i$

- m examples x^1, \ldots, x^m,
- n different learning models,
- $A_{ij} = \pm 1$ is prediction of learning model j on the i^{th} example x^i
- $\lambda \in \mathbb{R}^n$ are the boosting coefficients, with λ_j the coefficient of the j^{th} learning model
The AdaBoost Algorithm

We seek λ for which:

$$A\lambda > 0$$

where i^{th} row of A is $a_i := y^i \cdot x^i$

AdaBoost Algorithm

Initialize at $w^0 = (1/m, \ldots, 1/m)$, $\lambda^0 = 0$, $k = 0$

At iteration k:

1. Compute $j_k \in \arg \max_{j=1,\ldots,n} |(w^T A)_j|$, $s = \text{sgn}((w^T A)_{j_k})$

2. Choose $\alpha_k \geq 0$ and set:

 $$\lambda^{k+1} \leftarrow \lambda^k + \alpha_k s e^{j_k}$$

 $$w_{i}^{k+1} \leftarrow w_{i}^{k} e^{-\alpha_k A_{i j_k}}$$ and re-normalize w^{k+1} so that $\sum_j w_{j}^{k+1} = 1$
AdaBoost, continued

What has been known about AdaBoost:

- after k iterations, there are at most k non-zero coefficients of λ^k
- method produces a fairly good model fairly quickly
- various guarantees on exponential loss criterion depending on very specific step-size assumptions $\{\alpha_k\}$

What has not been known about AdaBoost:

- What, if anything, is AdaBoost optimizing or working on?
- how is it connected, if at all, to optimization methods?
- when is it more or less likely to perform well?
- how might we improve the method?
AdaBoost, continued

AdaBoost Equivalence Theorem

AdaBoost is computationally equivalent to Mirror Descent applied to the (dual of the) maximum margin problem:

\[
p^* := \max_{\lambda} \min_i (A\lambda)_i
\]

s.t. \(\sum_j |\lambda_j| \leq 1 \)
AdaBoost, continued

Computational Guarantees for AdaBoost

AdaBoost has the following guarantee after k iterations:

If we re-normalize λ^k so that $\sum_j |\lambda_j| = 1$ and if we choose the step-sizes like an optimizer, then

$$p^* - p(\lambda^k) \leq \sqrt{\frac{2 \ln(m)}{k}}$$

Furthermore

- λ^k has at most k non-zero coefficients, and
- $\sum_j |\lambda_j^k| = 1$
Frank-Wolfe for Statistical Learning

We seek λ for which:

$$A\lambda > 0$$

where i^{th} row of A is $a_i := y_i \cdot x^i$

The exponential loss and is defined to be:

$$L_{\text{exp}}(\lambda) := \ln \left(\frac{1}{m} \sum_{i=1}^{m} \exp \left(-(A\lambda)_i \right) \right)$$

Let us apply Frank-Wolfe to minimize the exponential loss problem:

$$L_{\text{exp}}^* = \min_{\lambda} \quad L_{\text{exp}}(\lambda)$$

s.t. $\sum_j |\lambda_j| \leq \delta$
Frank-Wolfe for Exponential Loss Minimization

Frank-Wolfe method for Minimizing Exponential Loss

Initialize at λ^0 with $\sum_j |\lambda^0_j| \leq \delta$.

Set $w^0_i = \frac{\exp(-(A\lambda^0)_i)}{\sum_{l=1}^m \exp(-(A\lambda^0)_l)}$ for $i = 1, \ldots, m$. Set $k = 0$.

At iteration k:

1. Compute $j_k \in \arg\max_{j=1,\ldots,n} |((w^0)^TA)_j|$, $s = \text{sgn}((w^TA)_{j_k})$

2. Choose $\bar{\alpha} \in [0, 1]$ and set:

 $\lambda^{k+1}_{j_k} \leftarrow (1 - \bar{\alpha}_k)\lambda^k_{j_k} + \bar{\alpha}_k s \delta$

 $\lambda^{k+1}_j \leftarrow (1 - \bar{\alpha}_k)\lambda^k_j$ for $j \neq j_k$, and where $\bar{\alpha}_k \in [0, 1]$

 $w^{k+1}_j \leftarrow (w^k_j)^{1-\bar{\alpha}_k} \exp(-\bar{\alpha}_k s \delta A_{i,j_k})$, for $i = 1, \ldots, m$ and re-normalize w^{k+1} so that $e^T w^{k+1} = 1$
Suppose that we use Frank-Wolfe method to solve the exponential loss minimization problem, with an intelligent step-size rule. Then after k iterations:

- $L_{\text{exp}}(\lambda^k) - L_{\text{exp}}^* \leq \frac{8\delta^2}{k + 3}$
- $p^* - p(\bar{\lambda}^k) \leq \frac{8\delta}{k + 3} + \frac{\ln(m)}{\delta}$
- λ^k has at most k non-zero coefficients, and
- $\sum_j |\lambda_j| \leq \delta$

where $\bar{\lambda}^k$ is the normalization of λ^k, namely $\bar{\lambda}^k = \frac{\lambda^k}{e^T\lambda^k}$.
Remarks

- Optimization can inform and improve computational statistics
- Statistics can inform and improve optimization theory
- Statistics can inform and improve optimization practice