Boosting Methods: Implicit Combinatorial Optimization via First-Order Convex Optimization

Robert M. Freund Paul Grigas Rahul Mazumder

rfreund@mit.edu

M.I.T.

ADGO October 2013
Motivation

Boosting methods are learning methods for combining weak models into accurate and predictive models

- Add one new weak model per iteration
- The weight on each weak model is typically small

We consider boosting methods in two modeling contexts:

- Binary (confidence-rated) Classification
- (Regularized/sparse) Linear Regression

Boosting methods are typically tuned to perform implicit regularization
Review of Subgradient Descent and Frank-Wolfe Methods

1. Subgradient Descent method

2. Frank-Wolfe method (also known as Conditional Gradient method)
Subgradient Descent

Our problem of interest is:

\[f^* \ := \ \min_x f(x) \quad \text{s.t.} \quad x \in \mathbb{R}^n \]

where \(f(x) \) is convex but not differentiable. Then \(f(x) \) has subgradients.
Subgradient Descent, continued

\[f^* := \min_{x} f(x) \quad \text{s.t.} \quad x \in \mathbb{R}^n \]

\(f(\cdot) \) is a (non-smooth) Lipschitz continuous convex function with Lipschitz value \(L_f \):

\[|f(x) - f(y)| \leq L_f \| x - y \| \quad \text{for any } x, y \]

\(\| \cdot \| \) is prescribed norm on \(\mathbb{R}^n \)
Subgradient Descent, continued

\[f^* := \min_{x} f(x) \quad \text{s.t.} \quad x \in \mathbb{R}^n \]

Subgradient Descent method for minimizing \(f(x) \) on \(\mathbb{R}^n \)

Initialize at \(x_1 \in \mathbb{R}^n \), \(k \leftarrow 1 \).

At iteration \(k \) :

1. Compute a subgradient \(g_k \) of \(f(x_k) \).
2. Choose step-size \(\alpha_k \).
3. Set \(x_{k+1} \leftarrow x_k - \alpha_k g_k \).
For each $k \geq 0$ and for any $x \in P$, the following inequality holds:

$$\min_{i \in \{0, \ldots, k\}} f(x^i) - f(x) \leq \frac{\|x - x^0\|_2^2 + L_f^2 \sum_{i=0}^{k} \alpha_i^2}{2 \sum_{i=0}^{k} \alpha_i}$$
Frank-Wolfe Method (Conditional Gradient method)

Here the problem of interest is:

\[
 f^* := \min_x f(x) \quad \text{s.t.} \quad x \in P
\]

- \(P\) is compact and convex
- \(f(x)\) is differentiable and \(\nabla f(\cdot)\) is Lipschitz on \(P\):
 \[
 \|\nabla f(x) - \nabla f(y)\|_* \leq L\nabla \|x - y\| \quad \text{for all } x, y \in P
 \]
- it is “very easy” to do linear optimization on \(P\) for any \(c\) :
 \[
 \tilde{x} \leftarrow \arg\min_{x \in P} \{ c^T x \}
 \]
Frank-Wolfe Method, continued

\[f^* := \min_x f(x) \]
\[\text{s.t. } x \in P \]

Frank-Wolfe Method for minimizing \(f(x) \) on \(P \)

Initialize at \(x_0 \in P, \ k \leftarrow 0 \).

At iteration \(k \):

1. Compute \(\nabla f(x_k) \).
2. Compute \(\tilde{x}_k \leftarrow \arg \min_{x \in P} \{ \nabla f(x_k)^T x \} \).
3. Set \(x_{k+1} \leftarrow x_k + \tilde{\alpha}_k (\tilde{x}_k - x_k), \) where \(\tilde{\alpha}_k \in [0, 1] \).
Here is one (simplified) computational guarantee:

A Computational Guarantee for Frank-Wolfe Method

If the step-size sequence \(\{\alpha_k\} \) is chosen as \(\alpha_k = \frac{2}{k+2}, \, k \geq 0 \), then for all \(k \geq 1 \) it holds that:

\[
 f(x_k) - f^* \leq \frac{C}{k + 3}
\]

where \(C = 2 \cdot L_\nabla \cdot \text{diam}(P)^2 \).
Binary Classification

<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of SD and FW(CG)</td>
</tr>
<tr>
<td>Binary Classification and Boosting</td>
</tr>
<tr>
<td>Linear Regression and Boosting</td>
</tr>
</tbody>
</table>

Binary Classification
The set-up of the general binary classification boosting problem consists of:

- Data/training examples \((x_1, y_1), \ldots, (x_m, y_m)\) where each \(x_i \in \mathcal{X}\) and each \(y_i \in [-1, +1]\)
- A set of base classifiers \(\mathcal{H} = \{h_1, \ldots, h_n\}\) where each \(h_j : \mathcal{X} \rightarrow [-1, +1]\)
- Assume that \(\mathcal{H}\) is closed under negation \((h_j \in \mathcal{H} \Rightarrow -h_j \in \mathcal{H})\)

We would like to construct a nonnegative combination of weak classifiers

\[H_\lambda = \lambda_1 h_1 + \cdots + \lambda_n h_n \]

that performs significantly better than any individual classifier in \(\mathcal{H}\).
Binary Classification Feature Matrix

Define the feature matrix $A \in \mathbb{R}^{m \times n}$ by $A_{ij} = y_i h_j(x_i)$
We seek $\lambda \geq 0$ for which:

$$A\lambda > 0 \quad \text{or perhaps} \quad A\lambda \approx 0$$

In application/academic context:

- m is large-scale
- n is huge-scale, too large for many computational tasks
- we wish only to work with very sparse λ, namely $\|\lambda\|_0$ is small
- we have access to a weak learner $\mathcal{W}(\cdot)$ that, for any distribution w on the examples ($w \geq 0$, $e^T w = 1$), returns the base classifier $j^* \in \{1, \ldots, n\}$ that does best on the weighted example determined by w:

$$j^* \in \arg \max_{j=1,\ldots,n} w^T A_j$$
We seek $\lambda \geq 0$ for which:

$$A\lambda > 0 \quad \text{or perhaps} \quad A\lambda \gtrsim 0$$

In the high-dimensional regime with $n \gg 0$, $m \gg 0$ and often $n \gg \gg 0$, we seek:

- Good predictive performance (on out-of-sample examples)
- Good performance on the training data ($A_i\lambda > 0$ for “most” $i = 1, \ldots, m$)
- Sparsity of the coefficients ($\|\lambda\|_0$ is small)
- Regularization of the coefficients ($\|\lambda\|_1$ is small)
Two Objective Functions for Boosting

We seek $\lambda \geq 0$ for which:

$$A\lambda > 0 \text{ or perhaps } A\lambda \approx 0$$

Two objective functions are often considered in this context:

- when the data are **separable**, maximize the **margin**:
 $$p(\lambda) := \min_{i \in \{1, \ldots, m\}} (A\lambda)_i$$

- when the data are **non-separable**, minimize **exponential loss**
 $$L_{exp}(\lambda) := \frac{1}{m} \sum_{i=1}^{m} \exp(- (A\lambda)_i)$$

 (\equiv the log-exponential loss
 $$L(\lambda) := \log(L_{exp}(\lambda)))$$

It is known that a high margin implies good generalization properties [Schapire 97]. On the other hand, the exponential loss upper bounds the empirical probability of misclassification.
The margin is \(p(\lambda) := \min_{i \in \{1,...,m\}} (A\lambda)_i \).

\(p(\lambda) \) is positively homogeneous, so we normalize the variables \(\lambda \).

Let \(\Delta_n := \{ \lambda \in \mathbb{R}^n : e^T \lambda = 1, \lambda \geq 0 \} \).

The problem of maximizing the margin over all normalized variables is:

\[
(PM): \quad \rho^* = \max_{\lambda \in \Delta_n} p(\lambda)
\]

Recall that we have access to a weak learner \(\mathcal{W}(\cdot) \) that, for any distribution \(w \) on the examples \((w \geq 0, e^T w = 1)\), returns the base classifier \(j^* \in \{1, \ldots, n\} \) that does best on the weighted example determined by \(w \):

\[
j^* \in \arg \max_{j=1,...,n} w^T A_j
\]
AdaBoost Algorithm

Initialize at $w^0 = (1/m, \ldots, 1/m)$, $\lambda^0 = 0, k = 0$

At iteration $k \geq 0$:

- Compute $j_k \in \mathcal{W}(w^k)$
- Choose step-size $\alpha_k \geq 0$ and set:
 - $\lambda^{k+1} \leftarrow \lambda^k + \alpha_k e^{j_k}$
 - $\bar{\lambda}^{k+1} \leftarrow \frac{\lambda^{k+1}}{e^T \lambda^{k+1}}$
 - $w_{i}^{k+1} \leftarrow w_i^k \exp(-\alpha_k A_{ij}) \quad i = 1, \ldots, m$, and re-normalize w^{k+1} so that $e^T w^{k+1} = 1$

AdaBoost has the following sparsity/regularization properties:

$$\|\lambda^k\|_0 \leq k \quad \text{and} \quad \|\lambda^k\|_1 \leq {k-1} \sum_{i=0}^{k-1} \alpha_i$$
What has been known about AdaBoost in the context of optimization:

- AdaBoost has been interpreted as a coordinate descent method to minimize the exponential loss [Mason et al., Mukherjee et al., etc.]
- A related method, the Hedge Algorithm, has been interpreted as dual averaging [Baes and Bürgisser]
- Rudin et al. in fact show that AdaBoost can fail to maximize the margin, but this is under the particular popular “optimized” step-size \(\alpha_k := \frac{1}{2} \ln \left(\frac{1 + r_k}{1 - r_k} \right) \)
- Lots of other work as well...
Recall $L(\lambda) := \log \left(\frac{1}{m} \sum_{i=1}^{m} \exp \left(- (A \lambda)_i \right) \right)$ and ρ^* is the maximum (normalized) margin

Complexity of AdaBoost: General Case

For all $k \geq 1$, the sequence of variables λ^k and $\bar{\lambda}^k$ produced by AdaBoost satisfy:

$$\min_{i \in \{0, \ldots, k-1\}} \| \nabla L(\lambda^i) \|_\infty - p(\bar{\lambda}^k) \leq \frac{\ln(m) + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_i^2}{\sum_{i=0}^{k-1} \alpha_i}. $$

If we decide a priori to run AdaBoost for $k \geq 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2 \ln(m)}{k}}$ for all $i = 0, \ldots, k - 1$, then we have:

$$\min_{i \in \{0, \ldots, k-1\}} \| \nabla L(\lambda^i) \|_\infty - p(\bar{\lambda}^k) \leq \sqrt{\frac{2 \ln(m)}{k}}. $$
If the data is separable, then $\rho^* > 0$ and the margin is informative.

For all $k \geq 1$, the sequence $\bar{\lambda}^k$ produced by AdaBoost satisfies:

$$p(\bar{\lambda}^k) \geq \rho^* - \frac{\ln(m)}{2} + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_i^2 \sum_{i=0}^{k-1} \alpha_i.$$

If we decide a priori to run AdaBoost for $k \geq 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2\ln(m)}{k}}$ for all $i = 0, \ldots, k - 1$, then we have:

$$p(\bar{\lambda}^k) \geq \rho^* - \sqrt{\frac{2\ln(m)}{k}}.$$
Complexity of AdaBoost: Non-separable Case

If the data is not separable, then $\rho^* = 0$ and the log-exponential loss function is informative.

If the data is not separable, then for all $k \geq 1$, the sequence λ^k produced by AdaBoost satisfies:

$$\min_{i \in \{0, \ldots, k-1\}} \| \nabla L(\lambda^i) \|_\infty \leq \ln(m) + \frac{1}{2} \sum_{i=0}^{k-1} \alpha_i^2 \sum_{i=0}^{k-1} \alpha_i.$$

If we decide a priori to run AdaBoost for $k \geq 1$ iterations and use a constant step-size $\alpha_i := \sqrt{\frac{2\ln(m)}{k}}$ for all $i = 0, \ldots, k - 1$, then we have:

$$\min_{i \in \{0, \ldots, k-1\}} \| \nabla L(\lambda^i) \|_\infty \leq \sqrt{\frac{2 \ln(m)}{k}}.$$
What drives these results?

- **observation** that AdaBoost corresponds to the Mirror Descent method [N-Y, B-M-T, B-T] of non-differentiable convex optimization, using the “entropy prox function” applied to the dual of the maximum margin problem.
- **application** of Mirror Descent convergence theory for various step-size sequences.
- **development** of some new algorithmic properties of the Mirror Descent method in general.
What about Regularized Log-Exponential Loss Minimization?

Log-exponential loss function is:

\[L(\lambda) := \log \left(\frac{1}{m} \sum_{i=1}^{m} \exp \left(-(A\lambda)_i \right) \right) \]

In the non-separable case, AdaBoost guarantees \(\|\nabla L(\lambda^i)\|_\infty \searrow 0 \)

Let us consider directly tackling \(L(\lambda) \) in the regularized setting:

\[L^*_\delta = \min_\lambda L(\lambda) \]

s.t. \(\|\lambda\|_1 \leq \delta \)
\[\lambda \geq 0 \]
Consider using the FW method. At iteration \(k \) the method needs to:

- compute \(\nabla L(\lambda^k) \)
- solve \(\min_{\lambda:\|\lambda\|_1 \leq \delta, \lambda \geq 0} \nabla L(\lambda^k)^T \lambda \)
- update \(\lambda^{k+1} \)

We cannot necessarily do first two steps But we do have access to a weak learner \(\mathcal{W}(\cdot) \): for \(w \in \Delta_m \), \(\mathcal{W}(w) \) computes:

\[
\mathcal{W}(w) = \arg \max_{j=1,...,n} w^T A_j
\]
Log-Exponential Loss Minimization, continued

Instead, work with log-exponential loss function in conjugate (adjoint) form. Let \(e(w) := \sum_{i=1}^{m} w_i \ln(w_i) + \ln(m) \) be the entropy function.

Proposition

\[
L(\lambda^k) = \max_{w \in \Delta_m} \left\{ -w^T A \lambda^k - e(w) \right\}
\]

\[
\nabla L(\lambda^k) = -A^T w^k \text{ where }
\]

\[
w_i^k = \frac{\exp(-(A \lambda^k)_i)}{\sum_{l=1}^{m} \exp(-(A \lambda^k)_l)} \quad i = 1, \ldots, m
\]

Weak learner can be used to solve the linear optimization subproblem using \(w^k \):

\[
j_k \in \mathcal{W}(w^k) \iff \delta e_{j_k} \in \arg \min_{\lambda: \|\lambda\|_1 \leq \delta, \lambda \geq 0} \nabla L(\lambda^k)^T \lambda
\]
FW-Boost Algorithm Description

FW-Boost Algorithm

Initialize at $\lambda^0 = 0$, $w^0 = (1/m, \ldots, 1/m)$, $k = 0$

At iteration $k \geq 0$:

- Compute:

 $$j_k \in \mathcal{W}(w^k)$$

- Choose $\bar{\alpha}_k \in [0, 1]$ and set:

 $$\lambda^{k+1} \leftarrow (1 - \bar{\alpha}_k)\lambda^k + \bar{\alpha}_k \delta e_j$$
 $$w_{i}^{k+1} \leftarrow (w_i^{k})^{1-\bar{\alpha}_k} \exp(-\bar{\alpha}_k \delta A_{ij}) \quad i = 1, \ldots, m$$

 Re-normalize w^{k+1} so that $e^T w^{k+1} = 1$

Note that FW-Boost has the sparsity property that $\|\lambda^k\|_0 \leq k$
Complexity of FW-Boost

With the step-size rule $\bar{\alpha}_k := \frac{2}{k+2}$, for all $k \geq 1$ the following inequalities hold:

(i) $L(\lambda^k) - L^* \leq \frac{8\delta^2}{k+3}$

(ii) $p(\bar{\lambda}^k) \geq \rho^* - \left(\frac{8\delta}{k+3} + \frac{\ln(m)}{\delta}\right)$

(iii) $\|\lambda^k\|_1 \leq \delta$

(iv) $\|\lambda^k\|_0 \leq k$
AdaBoost is interpretable as an instance of the Mirror Descent method applied to the dual of the maximum margin problem.

Computational complexity guarantees for AdaBoost for maximizing the margin, minimizing the log-exponential loss in AdaBoost.

New properties of the Mirror Descent method.

Frank-Wolfe method to minimize the log-exponential loss is seen to be a slight modification of AdaBoost, with associated computational complexity guarantees in the separable and non-separable cases.
Linear Regression
Consider the linear regression model

\[y = X\beta + e \]

- \(y \in \mathbb{R}^n \) is given response data
- \(X \in \mathbb{R}^{n \times p} \) is the given model matrix
- \(\beta \in \mathbb{R}^p \) are the coefficients
- \(e \in \mathbb{R}^n \) is noise
Linear Regression and Boosting

Linear regression model:

\[y = X\beta + e \]

In the setting of boosting:

- the column \(X_j \) represents the data of the \(j^{\text{th}} \) weak model
- \(\beta_j \) is the regression coefficient for the \(j^{\text{th}} \) weak model
Linear Regression Aspirations

Linear regression model:

\[y = X\beta + e \]

In the high-dimensional regime with \(p \gg 0, n \gg 0 \) and often \(p > n \), we seek:

- Good predictive performance (on out-of-sample data)
- Good performance on the training data (residuals \(r := y - X\beta \) are small)
- “Shrinkage” in the coefficients (\(\|\beta\|_1 \) is small)
- Sparsity in the coefficients (\(\|\beta\|_0 := \) number of non-zero coefficients of \(\beta \) is small)
Traditional Least-Squares Regression

\[L(\beta) := \frac{1}{2} ||y - X\beta||_2^2 \]

\(L(\beta) := \frac{1}{2} ||y - X\beta||_2^2 \) is the least-squares loss

Let \(r := y - X\beta \), then \(L(\beta) = \frac{1}{2} ||r||_2^2 \)

\(L^* := \min_{\beta} L(\beta) \)

\(\beta_{LS} \) is any solution of LS
L1-Regularization and LASSO

L_1-Penalized Least-Squares optimization problem:

$$\text{LASSO}^\tau : \min_\beta \frac{1}{2} ||y - X\beta||_2^2 + \tau ||\beta||_1$$

LASSO stands for Least Absolute Shrinkage and Selection Operator

Let β^*_τ be an optimal solution of LASSO$^\tau$

$$||\beta^*_\tau||_0 \downarrow \text{ as } \tau \uparrow$$

There is a well-developed theory of sparse L_1-regularized solutions
Constraint Version of LASSO

\[
\text{LASSO}^\tau : \quad \min_\beta \quad \frac{1}{2} \| \mathbf{y} - \mathbf{X} \beta \|_2^2 + \tau \| \beta \|_1
\]

\[
\text{LASSO}_\delta : \quad \min_\beta \quad L(\beta) := \frac{1}{2} \| \mathbf{y} - \mathbf{X} \beta \|_2^2
\]

s.t. \quad \| \beta \|_1 \leq \delta

Both LASSO^\tau for \(\tau \in [0, \infty) \) and LASSO_\delta for \(\delta \in [0, \infty) \) generate the same solution path, which is simply called the LASSO path.
Incremental Forward Stagewise Regression Algorithm (FS_ε)

Incremental Forward Stagewise Regression (FS_ε) is a simple boosting algorithm:

Start with $\beta^0 \leftarrow 0$, and hence $r^0 \leftarrow y$.

Given β^k and $r^k := y - X\beta^k$, determine the weak model X_j most correlated with the current residuals r^k:

$$j_k \leftarrow \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|$$

Adjust $\beta^k_{j_k}$ by $\pm \varepsilon$ depending on $\text{sgn}((r^k)^T X_j)$.
FS_ε Algorithm

Initialize at $r^0 = y$, $\beta^0 = 0$, $k = 0$, set $\varepsilon > 0$

At iteration $k \geq 0$:

- Compute:

 $$r^k \leftarrow y - X \beta^k$$

 $$j_k \in \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|$$

- Set:

 $$\beta^{k+1} \leftarrow \beta^k + \varepsilon \operatorname{sgn}((r^k)^T X_{j_k}) e^{j_k}$$

FS_ε has the following regularization/sparsity properties:

$$\|\beta^k\|_1 \leq k\varepsilon \quad \text{and} \quad \|\beta^k\|_0 \leq k.$$
With the constant shrinkage factor ε, for any $k \geq 0$ there exists $i \leq k$ for which:

(i) $L(\beta^i) - L^* \leq \frac{p}{2(\lambda_{\min}(X))^2} \left[\frac{\|X_\beta_{LS}\|^2}{\varepsilon(k+1)} + \varepsilon \|X\|^2_{1,2} \right]^2$

(ii) there exists a solution β_{LS} for which

$$\|\beta^i - \beta_{LS}\|_2 \leq \frac{\sqrt{p}}{(\lambda_{\min}(X))^2} \left[\frac{\|X_\beta_{LS}\|^2}{\varepsilon(k+1)} + \varepsilon \|X\|^2_{1,2} \right]$$

(iii) $\|\beta^i\|_1 \leq k\varepsilon$

(iv) $\|\beta^i\|_0 \leq k$

(v) $\|\nabla L(\beta^i)\|_\infty \leq \frac{\|X_\beta_{LS}\|^2}{2\varepsilon(k+1)} + \frac{\varepsilon \|X\|^2_{1,2}}{2}$

Notes: Recall L^* is the optimal least-squares loss, β_{LS} is an optimal least-squares solution, therefore $\|X_\beta_{LS}\|_2 \leq \|y\|_2$
For a given number of iterations k, set $\varepsilon := \frac{\|X\beta_{LS}\|_2}{\|X\|_{1,2} \sqrt{k+1}}$. Then there exists $i \leq k$ for which:

(i) $L(\beta^i) - L^* \leq \frac{2p}{(\lambda_{\min}(X))^2} \frac{\|X\|_{1,2}^2 \|X\beta_{LS}\|_2^2}{k+1}$

(ii) there exists a solution β_{LS} for which $\|\beta^i - \beta_{LS}\|_2 \leq \frac{\sqrt{4p}}{(\lambda_{\min}(X))^2} \frac{\|X\|_{1,2} \|X\beta_{LS}\|_2}{\sqrt{k+1}}$

(iii) $\|\beta^i\|_1 \leq \frac{\sqrt{k} \|X\beta_{LS}\|_2}{\|X\|_{1,2}}$

(iv) $\|\beta^i\|_0 \leq k$

(v) $\|\nabla L(\beta^i)\|_\infty \leq \frac{\|X\|_{1,2} \|X\beta_{LS}\|_2}{\sqrt{k+1}}$
A “Smarter” Forward Stagewise Regression Algorithm (FS)

Forward Stagewise regression (FS) chooses $\varepsilon = \varepsilon_k$ “optimally” with respect to $L(\beta)$ at each iterate:

Start with $\beta^0 \leftarrow 0$, and hence $r^0 \leftarrow y$.

Given β^k and $r^k := y - X\beta^k$, determine the weak model X_j most correlated with the current residuals r^k:

$$j_k \leftarrow \arg \max_{j \in \{1,...,p\}} |(r^k)^T X_j|$$

Adjust $\beta^k_{j_k}$ by $\varepsilon_k \leftarrow \arg \min_\varepsilon L(\beta^k + \varepsilon e^{j_k})$
FS Algorithm

Initialize at $r^0 = y$, $\beta^0 = 0$, $k = 0$, set $\varepsilon > 0$

At iteration $k \geq 0$:

- **Compute:**

 \[
 r^k \leftarrow y - X\beta^k
 \]

 \[
 j_k \in \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|\]

- **Set:**

 \[
 \varepsilon_k \leftarrow (r^k)^T X_{j_k} / \| X_{j_k} \|^2
 \]

 \[
 \beta^{k+1} \leftarrow \beta^k + \varepsilon_k e_{j_k}
 \]
Complexity of FS

With the shrinkage factors $\varepsilon_k \leftarrow (r^k)^T X_{jk} / \|X_{jk}\|^2$, for all $k \geq 0$ it holds that:

(i) $L(\beta^k) - L^* \leq (y^T y - L^*) \left(1 - \frac{(\lambda_{\min}(X))^2}{4p\|X\|_{1,2}^2}\right)^k$

(ii) there exists a solution β_{LS} for which

$\|\beta^k - \beta_{LS}\|_2 \leq \frac{\sqrt{2(y^T y - L^*)}}{\lambda_{\min}(X)} \left(1 - \frac{(\lambda_{\min}(X))^2}{4p\|X\|_{1,2}^2}\right)^{k/2}$

(iii) $\|\beta^k\|_1 \leq \frac{\sqrt{k}\|X\|_{\beta_{LS}}\|_2}{\min_j\{\|X_j\|_2\}}$

(iv) $\|\beta^k\|_0 \leq k$

(v) $\min_{i \in \{0, \ldots, k\}} \|\nabla L(\beta^i)\|_\infty \leq \frac{\|X\|_{1,2}\|X\|_{\beta_{LS}}\|_2}{\sqrt{k+1}}$
What drives these results?

- observation that FS_{ε} “looks like” subgradient descent for some objective function $f(\cdot)$ and some decision variable (\cdot)
 - indeed, the objective function is $f(r) := \|X^T r\|_{\infty}$
- and the variables are the residuals r in the affine space $P_{\text{res}} := \{r \in \mathbb{R}^n : r = y - X\beta \text{ for some } \beta \in \mathbb{R}^p\}$
- application of subgradient descent convergence theory for various step-size sequences
- development of some new theory on algorithmic implications of positive semi-definite quadratic functions
Recall LASSOδ:

$$L^*_{\delta} := \min_{\beta} \quad L(\beta) := \frac{1}{2}\|y - X\beta\|^2_2$$

s.t. \(\|\beta\|_1 \leq \delta\)

FSε guarantees that \(\|\beta^k\|_0 \leq k\). A method with similar sparsity properties is the Frank-Wolfe method on the LASSO

At iteration k, the Frank-Wolfe method needs to:

- Compute \(\nabla L(\beta^k) = -X^T(y - X\beta^k) = -(r^k)^T X\)
- Solve \(\min_{\beta: \|\beta\|_1 \leq \delta} \nabla L(\beta^k)^T \beta\)
- Update \(\beta^{k+1}\)
FW for LASSO, Linear Optimization Subproblem

Linear optimization subproblem is:

$$\min_{\beta} \nabla L(\beta^k)^T \beta$$

s.t. \(\|\beta\|_1 \leq \delta \)

Extreme points of feasible region are \(\{\pm \delta e^j : j = 1, \ldots, p\} \)

\(\nabla L(\beta^k) = -X^T(y - X\beta^k) = -(r^k)^T X \)

Therefore:

\[j^* \in \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j| \iff \delta \text{sgn}((r^k)^T X_{j^*}) e^{j^*} \in \arg \min_{\beta : \|\beta\|_1 \leq \delta} \nabla L(\beta^k)^T \beta \]

This is the same subproblem that FS_\varepsilon solves, namely find the weak model \(X_{j^*} \) that is most correlated with the current residuals \(r^k \).
FW-LASSO Algorithm

Initialize at $\beta^0 = 0$, $k = 0$

At iteration $k \geq 0$:

1. Compute:

 $$r^k \leftarrow y - X\beta^k$$

 $$j_k \in \arg \max_{j \in \{1, \ldots, p\}} |(r^k)^T X_j|$$

2. Choose $\bar{\alpha}_k \in [0, 1]$ and set:

 $$\beta^{k+1} \leftarrow (1 - \bar{\alpha}_k)\beta^k + \bar{\alpha}_k \delta \ \text{sgn}((r^k)^T X_{j_k})e_{j_k}$$

Note that FW-LASSO is structurally very similar to FS_ε
Properties of FW-LASSO

Note that FW-LASSO shares similar sparsity/regularization properties as FS_{ε}:

- $\|\beta^k\|_0 \leq k$
- $\|\beta^k\|_1 \leq \delta$
Complexity of FW-LASSO

With the step-size rule \(\bar{\alpha}_k := \frac{2}{k+2} \), after \(k \) iterations there exists an \(i \in \{1, \ldots, k\} \) such that the following hold:

(i) \(L(\beta^i) - L^*_\delta \leq \frac{17.4\|X\|_{1,2}^2 \delta^2}{k} \)

(ii) \(\|\beta^k\|_1 \leq \delta \)

(iii) \(\|\beta^k\|_0 \leq k \)

(iv) \(\|\nabla L(\beta^i)\|_\infty \leq \frac{1}{2\delta} \|X\|_{1,2}^2 \beta_{LS}^2 + \frac{17.4\|X\|_{1,2}^2 \delta}{k} \)
FS_\varepsilon and FS are interpretable as subgradient descent to minimize the correlation between the residuals and the predictors in the space of residuals.

Computational complexity guarantees for least-squares loss of iterates, distance of iterate solutions to optimal least-squares loss, sparsity and regularization bounds for FS_\varepsilon and FS.

New theory of algorithmic implications of positive semi-definite quadratic functions.

Frank-Wolfe method to minimize the explicitly regularized least-squares loss (LASSO_\delta) is seen to be a slight modification of FS_\varepsilon, with associated computational complexity guarantees.