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An Introduction to Applicable Game 
Theory 

Robert Gibbons 

ame theory is rampant in economics. Having long ago invaded industrial 
organization, game-theoretic modeling is now commonplace in interna-
tional, labor, macro and public finance, and it is gathering steam in de-

velopment and economic history. Nor is economics alone: accounting, finance, law, 
marketing, political science and sociology are beginning similar experiences. Many 
modelers use game theory because it allows them to think like an economist when 
price theory does not apply. That is, game-theoretic models allow economists to 
study the implications of rationality, self-interest and equilibrium, both in market 
interactions that are modeled as games (such as where small numbers, hidden 
information, hidden actions or incomplete contracts are present) and in nonmar-
ket interactions (such as between a regulator and a firm, a boss and a worker, and 
so on). 

Many applied economists seem to appreciate that game theory can comple-
ment price theory in this way, but nonetheless find game theory more an entry 
barrier than a useful tool. This paper is addressed to such readers. I try to give clear 
definitions and intuitive examples of the basic kinds of games and the basic solution 
concepts. Perhaps more importantly, I try to distill the welter of solution concepts 
and other jargon into a few basic principles that permeate the literature. Thus, I 
envision this paper as a tutorial for economists who have brushed up against game 
theory but have not (yet) read a book on the subject. 

The theory is presented in four sections, corresponding to whether the game 
in question is static or dynamic and to whether it has complete or incomplete 
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information. ("Complete information" means that there is no private information: 
the timing, feasible moves and payoffs of the game are all common knowledge.) 
We begin with static games with complete information; for these games, we focus 
on Nash equilibrium as the solution concept. We turn next to dynamic games with 
complete information, for which we use backward induction as the solution con- 
cept. We discuss dynamic games with complete information that have multiple Nash 
equilibria, and we show how backward induction selects a Nash equilibrium that 
does not rely on noncredible threats. We then return to the context of static games 
and introduce private information; for these games we extend the concept of Nash 
equilibrium to allow for private information and call the resulting solution concept 
Bayesian Nash equilibrium. Finally, we consider signaling games (the simplest dy- 
namic games with private information) and blend the ideas of backward induction 
and Bayesian Nash equilibrium to define perfect Bayesian equilibrium. 

This outline may seem to suggest that game theory invokes a brand new equi- 
librium concept for each new class of games, but one theme of this paper is that 
these equilibrium concepts are very closely linked. As we consider progressively 
richer games, we progressively strengthen the equilibrium concept to rule out im- 
plausible equilibria in the richer games that would sunive if we applied equilibrium 
concepts suitable for simpler games. In each case, the stronger equilibrium concept 
differs from the weaker concept only for the richer games, not for the simpler 
games. 

Space constraints prevent me from presenting anything other than the basic 
theory. I omit several natural extensions of the theory; I only hint at the terrific 
breadth of applications in economics; I say nothing about the growing body of field 
and experimental evidence; and I do not discuss recent applications outside eco- 
nomics, including fascinating efforts to integrate game theory with behavioral and 
social-structural elements from other social sciences. To conclude the paper, there- 
fore, I offer a brief guide to further reading.' 

Static Games with Complete Information 

We begin with two-player, simultaneous-move games. (Everything we do for 
two-player games extends easily to three or more players; we consider sequential- 
move games below.) The timing of such a game is as follows: 

1) Player 1 chooses an action al from a set of feasible actions Al. Simulta- 
neously, player 2 chooses an action from a set of feasible actions AB. 

2) After the players choose their actions, they receive payoffs: ul(al,  e )  to 
player 1 and u2(a l ,e )  to player 2. 

' Full disclosure requires me to reveal that I wrote one of the books mentioned in this guide to further 
reading, so readers should discount my objectivity accordingly. By the gracious consent of the publisher, 
much of the material presented here is drawn from that book. 
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Figure 1 
An Example of Iterated Elimination of Dominated Strategies 

Player 2 

Left Middle Right 

Player 1 
Down 

A classic example of a static game with complete information is Cournot's (1838) 
duopoly model. Other examples include Hotelling's (1929) model of candidates' 
platform choices in an election, Farber's (1980) model of final-offer arbitration and 
Grossman and Hart's (1980) model of takeover bids. 

Rational Play 
Rather than ask how one should play a given game, we first ask how one should 

not play the game. Consider the game in Figure 1. Player 1 has two actions, {Up, 
Down]; player 2 has three, {Left, Middle, Right]. For player 2, playing Right is dom- 
inated by playing Middle: if player 1 chooses Up, then Right yields 1 for player 2, 
whereas Middle yields 2; if 1 chooses Down, then Right yields 0 for 2, whereas 
Middle yields 1. Thus, a rational player 2 will not play Right.' 

Now take the argument a step further. If player 1 knows that player 2 is rational, 
then player 1 can eliminate Right from player 2's action space. That is, if player 1 
knows that player 2 is rational, then player 1can play the game as ifplayer 2's only 
moves were Left and Middle. But in this case, Down is dominated by Up for player 
1: if 2 plays Left, then Up is better for 1, and likewise if 2 plays Middle. Thus, if 
player 1 is rational (and player 1 knows that player 2 is rational, so that player 2's 
only moves are Left and Middle), then player 1 will not play Down. 

Finally, take the argument one last step. If player 2 knows that player 1 is 
rational, and player 2 knows that player 1 knows that player 2 is rational, then player 
2 can eliminate Down from player 1's action space, leaving Up as player 1's only 
move. But in this case, Left is dominated by Middle for player 2, leaving (Up, 
Middle) as the solution to the game. 

This argument shows that some games can be solved by (repeatedly) asking 
how one should not play the game. This process is called iterated elimination of 
dominated strategies. Although it is based on the appealing idea that rational 

'More generally, action a; is dominatedby action a'; for player 1 if, for each action player 2 might choose, 
1's payoff is higher from playing a'; than from playing a;. That is, u,(a ; ,a2)< ul(a';, a>)for each action 
a2in 2's action set, A?. A rational player will not play a dominated action. 
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Figure 2 
A Game without Dominated Strategies to be Eliminated 

players do not play dominated strategies, the process has two drawbacks. First, 
each step requires a further assumption about what the players know about each 
other's rationality. Second, the process often produces a very imprecise predic- 
tion about the play of the game. Consider the game in Figure 2, for example. 
In this game there are no dominated strategies to be eliminated. Since all the 
strategies in the game survive iterated elimination of dominated strategies, the 
process produces no prediction whatsoever about the play of the game. Thus, 
asking how one should not play a game sometimes is no help in determining 
how one should play. 

We turn next to Nash equilibrium-a solution concept that produces much tighter 
predictions in a very broad class of games. We will see that each of the two games above 
has a unique Nash equilibrium. In any game, the players' strategies in a Nash equilibrium 
always survive iterated elimination of dominated strategies; in particular, we will see that 
(Up, Middle) is the unique Nash equilibrium of the game in Figure 1. 

Nash Equilibrium 
We have just seen that asking how one should not play a given game can 

shed some light on how one should play. To introduce Nash equilibrium, we 
take a similarly indirect approach: instead of asking what the solution of a given 
game is (that is, what all the players should do),  we ask what outcomes cannot 
be the solution. After eliminating some outcomes, we are left with one or more 
possible solutions. We then discuss which of these possible solutions, if any, 
deserves further attention. We also consider the possibility that the game has no 
compelling solution. 

Suppose game theory offers a unique prediction about the play of a particular 
game. For this predicted solution to be correct, it is necessary that each player be 
willing to choose the strategy that the theory predicts that individual will play. Thus, 
each player's predicted strategy must be that player's best response to the predicted 
strategies of the other players. Such a collection of predicted strategies could be 
called "strategically stable" or "self-enforcing," because no single player wants to 
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Figure 3 
The Prisoners' Dilemma 

Player 2 

L2 R 2 

Player 1 

deviate from his or her predicted strategy. We will call such a collection of strategies 
a Nash equilibrium." 

To relate this definition to the motivation above, suppose game theory offers 

the actions (a:, &) as a solution. Saying that (a:, &) is not a Nash equilibrium is 

equivalent to saying that either a: is not a best response for player 1 to 4,or 4is 

not a best response for player 2 to a:, or both. Thus, if the theory offers the strat- 

egies (a:, &) as the solution, but these strategies are not a Nash equilibrium, then 
at least one player will have an incentive to deviate from the theory's prediction, so 
the prediction seems unlikely to be true. 

To see the definition of Nash equilibrium at work, consider the games in Fig- 
ures 1and 2. For five of the six strategy pairs in Figure 1,at least one player would 
want to deviate if that strategy pair were proposed as the solution to the game. Only 
(Up, Middle) satisfies the mutual-best-response criterion of Nash equilibrium. Like- 
wise, of the nine strategy pairs in Figure 2, only (B, R) is "strategically stable" or 
"self-enforcing." In Figure 2, it happens that the unique Nash equilibrium is effi- 
cient: it yields the highest payoffs in the game for both players. In many games, 
however, the unique Nash equilibrium is not efficient-consider the Prisoners' 
Dilemma in Figure 3.4 

Some games have multiple Nash equilibria, such as the Dating Game (or Battle 
of the Sexes, in antiquated terminology) shown below in Figure 4. The story behind 
this game is that Chris and Pat will be having dinner together but are currently on 
their separate ways home from work. Pat is supposed to buy the wine and Chris the 
main course, but Pat could buy red or white wine and Chris steak or chicken. Both 
Chris and Pat prefer red wine with steak and white with chicken, but Chris prefers 
the former combination to the latter and Pat the reverse; that is, the players prefer 

' Formally, in the two-player, simultaneous-move game described above, the actions (a:, a:) are a Nash 


equilibrium if a: is a best response for player 1 to a;, and a; is a best response for player 2 to a:. That 


is, a: must satisfy u,(aT,a;) 2 u l (a l ,a;) for every al in A ] ,and & must satisfy zc2 (a:, d ) 2 %(a:, a2) 

for every a, in A2. 


4Another well-known example in which the unique Nash Equilibrium is not efficient is the Cournot 

duopoly model. 
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Figure 4 
The Dating Game 

Pat 

Red White 

Steak 
Chris 

Chicken 

to coordinate but disagree about how to do so.5 In this game, Red Wine and Steak 
is a Nash equilibrium, as is White Wine and Chicken, but there is no obvious way 
to decide between these equilibria. When several Nash equilibria are equally com- 
pelling, as in the Dating Game, Nash equilibrium loses much of its appeal as a 
prediction of play. In such settings, which (if any) Nash equilibrium emerges as a 
convention may depend on accidents of history (Young, 1996). 

Other games, such as Matching Pennies in Figure 5,do not have a pair of strategies 
satisfylng the mutual-best-response definition of Nash equilibrium given above. The 
distinguishing feature of Matching Pennies is that each player would like to outguess 
the other. Versions of this game also arise in poker, auditing and other settings. In 
poker, for example, the analogous question is how often to bluE if player i is known 
never to bluff, then i's opponents will fold whenever i bids aggressively, thereby making 
it worthwhile for i to bluff on occasion; on the other hand, bluffing too often is also a 
losing strategy. Similarly, in auditing, if a subordinate worked diligently, then the boss 
prefers not to incur the cost of auditing the subordinate, but if the boss is not going 
to audit, then the subordinate prefers to shirk, and so on. 

In any game in which each player would like to outguess the other, there is no 
pair of strategies satisfylng the definition of Nash equilibrium given above. Instead, 
the solution to such a game necessarily involves uncertainty about what the players 
will do. To model this uncertainty, we will refer to the actions in a player's action 
space (A,) as pure strategzes, and we will define a mixed strategy to be a probability 
distribution over some or all of the player's pure strategies. A mixed strategy for 
player i is sometimes described as player i rolling dice to pick a pure strategy, but 
later in the paper we will offer a much more plausible interpretation based on player 
j's uncertainty about the strategy player i will choose. Regardless of how one inter- 
prets mixed strategies, once the mutual-best-response definition of Nash equilib 

'I owe the nonsexist, nonheterosexist player names to Matt Rabin. Allison Beezer noted, however, that 
no amount of Rabin's relabeling could overcome the game's original name, so she suggested the Dating 
Game. Larry Samuelson suggested the updated choices available to the players. 

There are of course many applications of this game, including political groups attempting to establish 
a constitution, firms attempting to establish an industry standard, and colleagues deciding which days to 
work at home. 
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Figure 5 
Matching Pennies 

Player 2 

Heads Tails 

Player 1 
Heads 

Tails 1, -1 

rium is extended to allow mixed as well as pure strategies, then any game with a 
finite number of players, each of whom has a finite number of pure strategies, has 
a Nash equilibrium (possibly involving mixed strategies). See Nash's (1950) classic 
paper for the proof, based on a fixed-point theorem. 

Dynamic Games with Complete Information 

We turn next to dynamic games, beginning with two-player, sequential-move 
games. The timing of such a game is as follows: 

1) Player 1 chooses an action a, from a set of feasible actions A,. 
2) Player 2 observes 1's choice and then chooses an action from a set of 

feasible actions A?. 
3) After the players choose their actions, they receive payoffs: ul (al,  a2)to 

player 1 and w2(al, a2)to player 2. 

A classic example of a dynamic game with complete information is Stackelberg's 
(1934) sequential-move version of Cournot duopoly. Other examples include Leon- 
tiefs (1946) monopoly-union model and Rubinstein's (1982) bargaining model 
(although the latter may not end after only two moves). 

The new solution concept in this section is backward induction. We will see 
that in many dynamic games there are many Nash equilibria, some of which depend 
on noncredible threats-defined as threats that the threatener would not want to 
carry out, but will not have to carry out if the threat is believed. Backward induction 
identifies a Nash equilibrium that does not rely on such threats. 

Backward Induction 
Consider the Trust Game in Figure 6, in which player 1 first chooses either to 

Trust or Not Trust player 2. For simplicity, suppose that if player 1 chooses Not 
Trust then the game ends-1 terminates the relationship. If player 1 chooses to 
Trust 2, however, then the game continues, and 2 chooses either to Honor or to 
Betray 1's trust. If player 1 chooses to end the relationship, then both players' 
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Figure 6 
The Trust Game 

Player 1 

Player 2 

Honor Betray 

Trust 
Player 1 Not 

Trust 

payoffs are 0. If 1 chooses to Trust 2, then both players' payoffs are 1 if 2 Honors 
1's trust, but player 1 receives -1 and player 2 receives 2 if player 2 Betrays 1's trust. 
All of this is captured by the game tree on the left-hand side of Figure 6. The game 
begins with a decision node for player 1 and reaches a decision node for player 2 
if 1 chooses Trust. At the end of each branch of the tree, player 1's payoff appears 
above player 2's. The bold branches in the tree will be explained momentarily. 

We solve the Trust Game by working backward through the game tree. If player 
2 gets to move (that is, if player 1 chooses Trust) then 2 can receive a payoff of 1 
by choosing to Honor 1's trust or a payoff of 2 by choosing to Betray 1's trust. Since 
2 exceeds 1, player 2 will Betray 1's trust. Knowing this, player 1's initial choice 
amounts to ending the relationship (and so receiving a payoff of 0) or Trusting 
player 2 (and so receiving a payoff of -1, after player 2 Betrays 1's trust). Since 0 
exceeds -1, player 1 should Not Trust. These arguments are summarized by the 
bold lines in the game tree. 

Thus far, it may appear that simultaneous-move games must be represented in 
matrix (or "normal") form, as in the previous section, while sequential-move games 
must be represented using game trees. Similarly, it may appear thatwe use two different 
methods to solve these two kinds of games: Nash equilibrium in simultaneous-move 
games and backward induction in sequential-move games. Theseperceptions are not cmrect. 
Either kind of game can be represented in either normal form or a game tree, but for 
some games it is more convenient to use one than the other. The Trust Game, for 
example, is represented in normal form on the right-hand side of Figure 6, and using 
this representation one can venfy that the Nash equilibrium is (Not Trust, Betray), just 
as we found by working backward through the game tree. 

The reassurances just offered obscure one subtle point: in some games, there 
are several Nash equilibria, some of which rely on noncredible threats or promises. 
Fortunately, the backward-induction solution to a game is always a Nash equilibrium 
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Figure 7 
A Game that Relies on a Noncredible Threat 

that does not rely on noncredible threats or promises. As an illustration of a Nash 
equilibrium that relies on a noncredible threat (but does not satisfy backward in- 
duction), consider the game tree and associated normal form in Figure 7. Working 
backward through this game tree shows that the backward-induction solution is for 
player 2 to play R' if given the move and for player 1 to play R But the normal 
form reveals that there are two Nash equilibria: (R, R') and (L, L'). The second 
Nash equilibrium exists because player 1's best response to L' by 2 is to end the 
game by choosing L. But (L, L') relies on the noncredible threat by player 2 to play 
L' rather than R' if given the move. If player 1 believes 2's threat, then 2 is off the 
hook because 1 will play L, but 2 would never want to carry out this threat if given 
the opportunity. 

Backward induction can be applied in any finite-horizon game of complete 
information in which the players move one at a time and all previous moves are 
common knowledge before the next move is chosen. The method is simple: go to 
the end of the game and work backward, one move at a time. In dynamic games 
with simultaneous moves or an infinite horizon, however, we cannot apply this 
method directly. We turn next to subgame-perfect Nash equilibrium, which extends 
the spirit of backward induction to such games. 

Subgame-Perfect Nash Equilibrium 
Subgame-perfect Nash equilibrium is a reJnement of Nash equilibrium; that is, 

to be subgame-perfect, the players' strategies must first be a Nash equilibrium and 
must then fulfill an additional requirement. The point of this additional require- 
ment is, as with backward induction, to rule out Nash equilibria that rely on non- 
credible threats. 

To provide an informal definition of subgame-perfect Nash equilibrium, we 
return to the motivation for Nash equilibrium-namely, that a unique solution to 
a game-theoretic problem must satisfy Nash's mutual-best-response requirement. 
In many dynamic games, the same argument can also be applied to certain pieces 
of the game, called subgames. A subgame is the piece of an original game that 
remains to be played beginning at any point at which the complete history of the 
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play of the game thus far is common knowledge. In the one-shot Trust Game, for 
example, the history of play is common knowledge after player 1 moves. The piece 
of the game that then remains is very simple-just one move by player 2. 

As a second example of a subgame (and, eventually, of subgame-perfect Nash 
equilibrium), consider Lazear and Rosen's (1981) model of a tournament. First, 
the principal chooses two wages- WHfor the winner, W, for the loser. Second, the 
two workers observe these wages and then simultaneously choose effort levels. Fi- 
nally, each worker's output (which equals the worker's effort plus noise) is observed, 
and the worker with the higher output earns WH.In this game, the history of play 
is common knowledge after the principal chooses the wages. The piece of the game 
that then remains is the effort-choice game between the workers. 

Because the workers' effort-choice game has simultaneous moves, we cannot 
go to the end of the game and work backward one moue at a time, as with backward 
induction. (If we go to the end of the game, which worker's move should we analyze 
first?) Instead, we analyze both workers' moves together. That is, we analyze the 
entire subgame that remains after the principal sets the wages by solving for the 
Nash equilibrium in the workers' effort-choice game given arbitrary wages chosen 
by the principal. Given the workers' equilibrium response to these arbitrary wages, 
we can then work backward, solving the principal's problem: choose wages that 
maximize expected profit given the workers' equilibrium response. This process 
yields the subgame-perfect Nash equilibrium of the tournament game. 

There typically are other Nash equilibria of the tournament game that are 
not subgame-perfect. For example, the principal might pay very high wages be- 
cause the workers both threaten to shirk if she pays anything less. Solving for 
the workers' equilibrium response to an arbitrary pair of wages reveals that this 
threat is not credible. This solution process illustrates Selten's (1965) definition 
of a subgame-perfect Nash equilibrium: a Nash equilibrium (of the game as 
whole) is subgame-perfect if the players' strategies constitute a Nash equilibrium 
in every subgame." 

Repeated Games 
When people interact over time, threats and promises concerning future 

behavior may influence current behavior. Repeated games capture this fact of 
life, and hence have been applied more broadly than any other game-theoretic 
model (by my armchair count) -not only in virtually every field of economics 
but also in finance, law, marketing, political science and sociology. 

In this section, we analyze the infinitely repeated Trust Game, borrowed from 
Kreps's (1990a) analysis of corporate culture. All previous outcomes are known 
before the next period's Trust Game is played. Both players share the interest rate 
r per period.7 Consider the following "trigger" strategies: 

finite game has a subgame-perfect Nash equilibrium, possibly involving mixed strategies, because 
each subgame is itself a finite game and hence has a Nash equilibrium. 
'The interest rate rcan be interpreted as reflecting both the rate of time preference and the probability 
that the current period will be the last, so that the "infinitely repeated" game ends at a random date. 
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Player I: In the first period, play Trust. Thereafter, if all moves in all pre- 
vious periods have been Trust and Honor, play Trust; otherwise, play Not 
Trust. 

Player 2: If given the move this period, play Honor if all moves in all previous 
periods have been Trust and Honor; otherwise, play Betray. 

Recall that in the one-shot version of the Trust Game, backward induction 
yields (Not Trust, Betray), with payoffs of (0, 0) .  Given the trigger strategies 
stated above for the repeated game, this backward-induction outcome of the 
stage game will be the "punishment" outcome if cooperation collapses in the 
repeated game. Under these trigger strategies, the payoffs from "cooperation" 
are (1, I ) ,  but cooperation creates an incentive for "defection," at least for 
player 2: if player 1 chooses Trust, player 2's one-period payoff would be max- 
imized by choosing to Betray, producing payoffs of (-1, 2). Thus, player 2 will 
cooperate if the present value of the payoffs from cooperation (1 in 
each period) exceeds the present value of the payoffs from detection followed 
by punishment (2 immediately, but 0 thereafter). The former present 
value exceeds the latter if the interest rate is sufficiently small (here, 
r 5 

What about player l?Suppose player 2 is playing his strategy given above. 
Because player 1 moves first, she has no chance to defect, in the sense of cheat- 
ing while player 2 attempts to cooperate. The only possible deviation for player 
1 is to play Not Trust, in which case player 2 does not get the move that period. 
But 2's strategy then specifies that any future Trusts will be met with Betrayal. 
Thus, by playing Not Trust, player 1 gets 0 this period and 0 thereafter (be- 
cause playing Not Trust forever after is 1's best response to 2's anticipated 
Betrayal of Trust). So if player 2 is playing his strategy given above, then it is 
optimal for player 1 to play hers. Thus, if the interest rate is sufficiently small, 
then the trigger strategies stated above are a Nash equilibrium of the repeated 
game." 

The general point is that cooperation is prone to defection-otherwise we 
should call it something else, such as a happy alignment of the players' self-interests. 
But in some circumstances, defection can be met with punishment, in which case 
a potential defector must weigh the present value of continued cooperation against 
the short-term gain from defection followed by the long-term loss from punishment. 
If the players are sufficiently patient (that is, the interest rate is sufficiently small), 
then cooperation can occur in an equilibrium of the repeated game when it cannot 
in the one-shot game. 

* If player 1 is playing her strategy given above, then it is a best response for player 2 to play his strategy 
if 11 + ( l / r ) ] l  2 2 + ( l / r )  . O ,  or r 5 1. More generally, if a player's payoffs (per period) are Cfrom 
cooperation, D from defection and P from punishment, then the player has an incentive to cooperate 
if (1 + ( l / r ) lC? D + (l /r)P,  or rzs (C-  P)/(D - C). 
" In fact, this Nash equilibrium of the repeated game is subgame-perfect. 
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Static Games with Incomplete Information 

We turn next to games with incomplete information, also called Bayesian games. 
In a game of complete information, the players' payoff functions are common 
knowledge, whereas in a game of incomplete information at least one player is 
uncertain about another player's payoff function. One common example of a static 
game of incomplete information is a sealed-bid auction: each bidder knows his or 
her own valuation for the good being sold, but does not know any other bidder's 
valuation; bids are submitted in sealed envelopes, so the players' moves are effec- 
tively simultaneous. Most economically interesting Bayesian games are dynamic, 
however, because the existence of private information leads naturally to attempts 
by informed parties to communicate (or mislead) and to attempts by uninformed 
parties to learn and respond. 

We first use the idea of incomplete information to provide a new interpretation 
for mixed-strategy Nash equilibria in games with complete information-an inter-
pretation of player i's mixed strategy in terms of player j's uncertainty about i's 
action, rather than in terms of actual randomization on i's part. Using this simple 
model as a template, we then define a static Bayesian game and a Bayesian Nash 
equilibrium. Reassuringly, we will see that a Bayesian Nash equilibrium is simply a 
Nash equilibrium in a Bayesian game: the players' strategies must be best responses 
to each other. 

Mixed Strategies Reinterpreted 
Recall that in the Dating Game discussed earlier, there are two pure-strategy 

Nash equilibria: (Steak, Red Wine) and (Chicken, White Wine). There is also a 
mixed-strategy Nash equilibrium, in which Chris chooses Steak with probability ?j 

and Chicken with probability 4,and Pat chooses White Wine with probability 5 and 
Red Wine with probability 4.To verify that these mixed strategies constitute a Nash 
equilibrium, check that given Pat's strategy, Chris is indifferent between the pure 
strategies of Steak and Chicken and so also indifferent among all probability dis- 
tributions over these pure strategies. Thus, the mixed strategy specified for Chris 
is one of a continuum of best responses to Pat's strategy. The same is true for Pat, 
so the two mixed strategies are a Nash equilibrium. 

Now suppose that, although they have known each other for quite some time, 
Chris and Pat are not quite sure of each other's payoffs, as shown in Figure 8. Chris's 
payoff from Steak with Red Wine is now 2 + t,, where t, is privately known by Chris; 
Pat's payoff from Chicken with White Wine is now 2 + tp,where tpis privately known 
by Pat; and t, and tpare independent draws from a uniform distribution on [0, x]. 
The choice of a uniform distribution is only for convenience, but we do have in 
mind that the values of t, and tp only slightly perturb the payoffs in the original 
game, so think of x as small. All the other payoffs are the same as in the original 
complete-information game. 

We will construct a pure-strategy Bayesian Nash equilibrium of this incomplete- 
information version of the Dating Game in which Chris chooses Steak if t, exceeds 
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Figure 8 
The Dating Game with Incomplete Information 

Pat 

Red White 

Steak 2 + t,, 1 0, 0 
Chris 

Chicken 0, 0 1 ,2  + t, 

a critical value, c, and chooses Chicken otherwise, and Pat chooses White Wine if 
tp exceeds a critical value, p, and chooses Red Wine otherwise. In such an equilib- 
rium, Chris chooses Steak with probability (x - c)/x, and Pat chooses White Wine 
with probability (x - p)/x. (For example, if the critical value cis nearly x, then the 
probability that t, will exceed cis almost zero.) We will show that as the incomplete 
information disappears-that is, as x approaches zero-the players' behavior in 
this pure-strategy Bayesian Nash equilibrium of the incomplete-information game 
approaches their behavior in the mixed-strategy Nash equilibrium in the original 
complete-information game. That is, both (x - c)/x and (x - p)/x approach as x 
approaches zero. 

Suppose that Pat will play the strategy described above for the incomplete- 
information game. Chris can then compute that Pat chooses White Wine with prob- 
ability (x - p)/x and Red with probability p/x, so Chris's expected payoffs from 
choosing Steak and from choosing Chicken are p(2 + t,)/x and (x - p)/x, respec- 
tively. Thus, Chris's best response to Pat's strategy has the form described above: 
choosing Steak has the higher expected payoff if and only if t, 2 ( x  - 3p)/p = c. 
Similarly, given Chris's strategy, Pat can compute that Chris chooses Steak with 
probability (x - c)/x and Chicken with probability c/x, so Pat's expected payoffs 
from choosing White Wine and from choosing Red Wine are c(2 + t,,)/x and 
(x - c)/x, respectively. Thus, choosing White Wine has the higher expected payoff 
if and only if tp r (x - 3c)/c = p. 

We have now shown that Chris's strategy (namely, Steak if and only if 
t, 2 c) and Pat's strategy (namely, White Wine if and only if tp 2 p) are best 
responses to each other if and only if (x - 3p)/p = c and (x - 3c)/c = p. Solving 
these two equations for p and c shows that the probability that Chris chooses 
Steak, namely, (x - c)/x, and the probability that Pat chooses White Wine, 
namely, (x - p)/x, are equal. This probability approaches as x approaches zero 
(by application of 1'Hopital's rule). Thus, as the incomplete information dis- 
appears, the players' behavior in this pure-strategy Bayesian Nash equilibrium 
of the incomplete-information game approaches their behavior in the mixed- 
strategy Nash equilibrium in the original game of complete information. 

Harsanyi (1973) showed that this result is quite general: a mixed-strategy Nash 
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equilibrium in a game of complete information can (almost always) be interpreted 
as a pure-strategy Bayesian Nash equilibrium in a closely related game with a little 
bit of incomplete information. Put more evocatively, the crucial feature of a mixed- 
strategy Nash equilibrium is not that player jchooses a strategy randomly, but rather 
that player i is uncertain about player j's choice; this uncertainty can arise either 
because of randomization or (more plausibly) because of a little incomplete 
information. 

Static Bayesian Games and Bayesian Nash Equilibrium 
Recall from the first section that in a two-player, simultaneous-move game of 

complete information, first the players simultaneously choose actions (player z 
chooses a, from the feasible set A,) and then payoffs u,(a,, a,) are received. To 
describe a two-player, simultaneous-move game of incomplete information, the first 
step is to represent the idea that each player knows his or her own payoff function 
but may be uncertain about the other player's payoff function. Let player z's possible 
payoff functions be represented by u,(a,, a,; t,), where t, is called player z's type and 
belongs to a set of possible types (or type space) T,. Each type t, corresponds to a 
different payoff function that player z might have. In an auction, for example, a 
player's payoff depends not only on all the players' bids (that is, the players' actions 
a, and a,) but also on the player's own valuation for the good being auctioned (that 
is, the player's type t,) . 

Given this definition of a player's type, saying that player z knows his or her 
own payoff function is equivalent to saying that player z knows his or her type. 
Likewise, saying that player z may be uncertain about player 1's payoff function is 
equivalent to saying that player z may be uncertain about player 1's type t,. (In an 
auction, player z may be uncertain about player 1's valuation for the good.) We use 
the probability distribution p(t,l t,) to denote player z's belief about player j's type, 
t,, given player z's knowledge of her own type, t,. For notational simplicity we assume 
(as in most of the literature) that the players' types are independent, in which case 
p( t ,  I t,) does not depend on t,, so we can write player z's belief as p(t,).'" 

Joining these new concepts of types and beliefs with the familiar elements of 
a static game of complete information yields a statzc Bayeszan game, as first defined 
by Harsanyi (1967, 1968a,b). The timing of a two-player static Bayesian game is as 
follows: 

1) Nature draws a type vector t = (t,, t2),where t, is independently drawn from 
the probability distribution p(t,) over player i's set of possible types T,. 

2) Nature reveals t, to player i but not to player j. 

"'As an example of correlated types, imagine that two firms are racing to develop a new technology. 
Each firm's chance of success depends in part on how difficult the technology is to develop, which is 
not known. Each firm knows only whether it has succeeded, not whether the other has. If firm 1 has 
succeeded, however, then it is more likely that the technology is easy to develop and so also more likely 
that firm 2 has succeeded. Thus, firm 1's belief about firm 2's type depends on firm 1's knowledge of 
its own type. 
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3) The players simultaneously choose actions, player i choosing a, from the 
feasible set A,. 

4) Payoffs u,(a,, a,; t,) are received by each player.' ' 
It may be helpful to check that the Dating Game with incomplete information 
described above is a simple example of this abstract definition of a static Bayesian 
game. 

We now need to define an equilibrium concept for static Bayesian games. To 
do so, we must first define the players' strategy spaces in such a game, after which 
we will define a Bayesian Nash equilibrium to be a pair of strategies such that each 
player's strategy is a best response to the other player's strategy. That is, given the 
appropriate definition of a strategy in a static Bayesian game, the appropriate def- 
inition of equilibrium (now called Bayesian Nash equilibn'um) is just the familiar 
definition from Nash.12 

A strategy in a static Bayesian game is an action rule, not just an action. More 
formally, a (pure) strategy for player i specifies a feasible action (a,) for each of 
player i's possible types (t,). In the Dating Game with incomplete information, for 
example, Chris's strategy was a rule specifying Chris's action for each possible value 
of t,: Steak if t, exceeds a critical value, c, and Chicken otherwise. Similarly, in an 
auction, a bidder's strategy is a rule specifying the player's bid for each possible 
valuation the bidder might have for the good. 

In a static Bayesian game, player 1's strategy is a best response to player 2's if, 
for each of player 1's types, the action specified by 1's action rule for that type 
maximizes 1's expected payoff, given 1's belief about 2's type and given 2's action 
rule. In the Bayesian Nash equilibrium we constructed in the Dating Game, for 
example, there was no incentive for Chris to change even one action by one type, 
given Chris's belief about Pat's type and given Pat's action rule (namely, choose 
White Wine if tp exceeds a critical value, p, and choose Red Wine otherwise). Like- 
wise, in a Bayesian Nash equilibrium of a two-bidder auction, bidder 1 has no 
incentive to change even one bid by one valuation-type, given bidder 1's belief about 
bidder 2's type and given bidder 2's bidding rule.'" 

There are games in which one player has private information not only about his or her own payoff 
function but also about another player's payoff function. As an example, consider an asyrnmetric-
information Cournot model in which costs are common knowledge, but one firm knows the level of 
demand and the other does not. Since the level of demand affects both players' payoff functions, the 
informed firm's type enters the uninformed firm's payoff function. To allow for such information struc- 
tures, the payoff functions in a Bayesian game can be written as u,(a,,a,; t,, t ,) .  
''Given the close connection between Nash equilibrium and Bayesian Nash equilibrium, it should not 
be surprising that a Bayesian Nash equilibrium exists in any finite Bayesian game. 
I' It may seem strange to define equilibrium in terms of action rules. In an auction, for example, why 
can't a bidder simply consider what bid to make given her actual valuation? Why does it matter what 
bids she would have made given other valuations? To see through this puzzle, note that for bidder 1 to 
compute an optimal bid, bidder 1 needs a conjecture about bidder 2's entire bidding rule. And to 
determine whether even one bid from this rule is optimal, bidder 2 would need a conjecture about 
bidder 1's entire bidding rule. Akin to a rational expectations equilibrium, these conjectured bidding 
rules must be correct in a Bayesian Nash equilibrium. 
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Dynamic Games with Incomplete Information 

As noted earlier, the existence of private information leads naturally to at- 
tempts by informed parties to communicate (or to mislead) and to attempts by 
uninformed parties to learn and respond. The simplest model of such attempts is 
a signaling game: there are two players-one with private information, the other 
without; and there are two stages in the game-a signal sent by the informed party, 
followed by a response taken by the uninformed party. In Spence's (1973) classic 
model, for example, the informed party is a worker with private information about 
his or her productive ability, the uninformed party is a potential employer (or a 
market of same), the signal is education, and the response is a wage offer. 

Richer dynamic Bayesian games allow for reputations to be developed, main- 
tained or milked. In the first such analysis, Kreps, Milgrom, Roberts and Wilson 
(1982) showed that a finitely repeated prisoners' dilemma that begins with a little 
bit of (the right kind of) private information can have equilibrium cooperation in 
all but the last few periods. In contrast, a backward-induction argument shows that 
equilibrium cooperation cannot occur in any round of a finitely repeated prisoners' 
dilemma under complete information, because knowing that cooperation will break 
down in the last round causes it to break down in the next-to-last round, and so on 
back to the first round. Signaling games, reputation games and other dynamic 
Bayesian games (like bargaining games) have been very widely applied in many 
fields of economics and in accounting, finance, law, marketing and political science. 
For example, see Benabou and Laroque (1992) on insiders and gurus in financial 
markets, Cramton and Tracy (1992) on strikes and Rogoff (1989) on monetary 
policy. 

Perfect Bayesian Equilibrium 
To analyze dynamic Bayesian games, we introduce a fourth equilibrium con- 

cept: perfect Bayesian equilibrium. The crucial new feature of perfect Bayesian 
equilibrium is due to Kreps and Wilson (1982): beliefs are elevated to the level of 
importance of strategies in the definition of equilibrium. That is, the definition of 
equilibrium no longer consists of just a strategy for each player but now also in- 
cludes a belief for each player whenever the player has the move but is uncertain 
about the history of prior play.14 The advantage of making the players' beliefs an 
explicit part of the equilibrium is that, just as we previously insisted that the players 
choose credible (that is, subgame-perfect) strategies, we can now also insist that 
they hold reasonable beliefs. 

14 Kreps and Wilson (1982) formalize this perspective on equilibrium by defining sequentzal equilibrium, 

an equilibrium concept that is equivalent to perfect Bayesian equilibrium in many economic applications 
but in some cases is slightly stronger. Sequential equilibrium is more complicated to define and to apply 
than perfect Bayesian equilibrium, so most authors now use the latter. Kreps and Wilson show that any 
finite game (with or without private information) has a sequential equilibrium, so the same can be said 
for perfect Bayesian equilibrium. 
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Figure 9 
Why Players' Beliefs are as Important as their Strategies 
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To illustrate why the players' beliefs are as important as their strategies, 
consider the example in Figure 9. (This example shows that perfect Bayesian 
equilibrium refines subgame-perfect Nash equilibrium; we return to dynamic 
Bayesian games in the next subsection.) First, player 1 chooses among three 
actions: L, M and R If player 1 chooses R then the game ends without a move 
by player 2. If player 1chooses either Lor  M then player 2 learns that Rwas not 
chosen (but not which of L or M was chosen) and then chooses between two 
actions, L' and R', after which the game ends. (The dashed line connecting 
player 2's two decision nodes in the game tree on the left of Figure 9 indicates 
that if player 2 gets the move, player 2 does not know which node has been 
reached-that is, whether player 1 has chosen L or M. The probabilities p and 
1- p attached to player 2's decision nodes will be explained below.) Payoffs are 
given in the game tree. 

The normal-form representation of this game on the right-hand side of Figure 
9 reveals that there are two pure-strategy Nash equilibria: (L, L') and (R, R'). We 
first ask whether these Nash equilibria are subgame-perfect. Because a subgame is 
defined to begin when the history of prior play is common knowledge, there are 
no subgames in the game tree above. (After player 1's decision node at the begin- 
ning of the game, there is no point at which the complete history of play is common 
knowledge: the only other nodes are player Z's, and if these nodes are reached, 
then player 2 does not know whether the previous play was L or M.) If a game has 
no subgames, then the requirement of subgame-perfection-namely, that the play- 
ers' strategies constitute a Nash equilibrium on every subgame-is trivially satisfied. 
Thus, in any game that has no subgames the definition of subgame-perfect Nash 
equilibrium is equivalent to the definition of Nash equilibrium, so in this example 
both (L, L') and (R, R') are subgame-perfect Nash equilibria. Nonetheless, (R, R') 
clearly depends on a noncredible threat: if player 2 gets the move, then playing L' 
dominates playing R', so player 1 should not be induced to play R by 2's threat to 
play R' if given the move. 
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One way to strengthen the equilibrium concept so as to rule out the sub- 
game-perfect Nash equilibrium (& R') is to impose two requirements. 

Requirement 1: Whenever a player has the move and is uncertain about the 
history of prior play, the player must have a beliefover the set of feasible histories 
of play. 

Requirement 2: Given their beliefs, the players' strategies must be sequentially 
rational. That is, whenever a player has the move, the player's action (and the 
player's strategy from then on) must be optimal given the player's belief at that 
point (and the other players' strategies from then on).  

In the example above, Requirement 1implies that if player 2 gets the move, then 
player 2 must have a belief about whether player 1 has played L or M. This belief 
is represented by the probabilities p and 1 - p attached to the relevant nodes in 
the game tree. Given player 2's belief, the expected payoff from playing R' is 
p .0  + (1 - p) . 1  = 1 - p, while the expected payoff from playing L' is 
p 1 + (1 - p) . 2  = 2 - p. Since 2 - p > 1 - p for any value of p, Requirement 
2 prevents player 2 from choosing R'. Thus, simply requiring that each player 
have a belief and act optimally given this belief suffices to eliminate the implau- 
sible equilibrium (R, R') in this example. 

What about the other subgame-perfect Nash equilibrium, (L, L')? Require- 
ment 1dictates that player 2 have a belief but does not specify what it should be. 
In the spirit of rational expectations, however, player 2's belief in this equilibrium 
should be p = 1.We state this idea a bit more formally as 

Requirement3:Where possible, beliefs should be determined by Bayes' rule from 
the players' equilibrium strategies. 

We give other examples of Requirement 3 below. 
In simple economic applications, including the signaling games discussed be- 

low, Requirements 1 through 3 constitute the definition of perfect Bayesian equilib 
rium. In richer applications, more requirements need to be imposed to eliminate 
implausible equilibria. l5  

Signaling Games 
We now return to dynamic Bayesian games, where we will apply perfect Bayes- 

ian equilibrium. For simplicity, we restrict attention to (finite) signaling games, 
which have the following timing: 

1) Nature draws a type t, for the Sender from a set of feasible types T = {tl, 
. . . , t,] according to a probability distribution p(t,). 

1 5 ' ~ ~glve a sense of the issues not addressed by Requirements 1 through 3, suppose players 2 and 3 have 
observed the same events, and then both observe a deviation from the equilibrium by player 1. Should 
players 2 and 3 hold the same belief about earlier unobserved moves by player l?Fudenberg and Tirole 
(1991a) give a formal definition of perfect Bayesian equilibrium for a broad class of dynamic Bayesian 
games and provide conditions under which their perfect Bayesian equilibrium is equivalent to Kreps and 
Wilson's (1982) sequential equilibrium. 
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Figure 10 
The Beer and Quiche Signaling Game 
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2) The Sender observes t, and then chooses a message m, from a set of feasible 
messages M = {ml,. . . , m,}. 

3) The Receiver observes m, (but not t,) and then chooses an action ak from a 
set of feasible actions A = {al,. . . , aK}. 

4) Payoffs are given by &(ti, m,, ak) and UR(tz, m,, ak). 

In Cho and Kreps's (1987) "Beer and Quiche" signaling game, shown in Figure 
10, the type, message and action spaces (T, M and A, respectively) all have only two 
elements. While most game trees start at the top, a signaling game starts in the middle, 
with a move by Nature that determines the Sender's type: here tl = "wimpy" (with 
probability . l )  or t2 = "surly" (with probability .g).'%oth Sender types then have the 
same choice of messages-Quiche or Beer (as alternative breakfasts). The Receiver 
observes the message but not the type. (As above, the dashed line connecting two of 
the Receiver's two decision nodes indicates that the Receiver knows that one of the 
nodes in this "information set" was reached, but does not know which node-that is, 
the Receiver observes the Sender's breakfast but not his type.) Finally, following each 
message, the Receiver chooses between two actions-to duel or not to duel with the 
Sender. 

The qualitative features of the payoffs are that the wimpy type would prefer to 
have quiche for breakfast, the surly type would prefer to have beer, both types would 
prefer not to duel with the Receiver, and the Receiver would prefer to duel with 
the wimpy type but not to duel with the surly type. Specifically, the preferred break- 
fast is worth B > 0 for both sender types, avoiding a duel is worth D > 0 for both 
Sender types, and the payoff from a duel with the wimpy (respectively, surly) type 
is 1 (respectively, -1) for the Receiver; all other payoffs were zero. 

The point of a signaling game is that the Sender's message may convey 

"' Readers over the age of 35 may recognize that the labels in this game were inspired by Real ~ZlenDon't 
Eat Quiche, a highly visible book when this example was conceived. 
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information to the Receiver. We call the Sender's strategy separating if each type 
sends a different message. In Beer and Quiche, for example, the strategy [Quiche 
if wimpy, Beer if surly] is a separating strategy for the Sender. At the other extreme, 
the Sender's strategy is called pooling if each type sends the same message. In a 
model with more than two types there are also partially pooling (or semiseparating) 
strategies in which all the types in a given set of types send the same message, but 
different sets of types send different messages. Perfect Bayesian equilibria involving 
such strategies for the Sender are also called separating, pooling, and so on. 

If B > D, then the Sender's strategy [Quiche if wimpy, Beer if surly] and the 
Receiver's strategy [duel after Quiche, no duel after Beer], together with the beliefs 
p = 1 and q = 0 satisfy Requirements 1 through 3 and so are a perfect Bayesian 
equilibrium of the Beer and Quiche signaling game. Put more evocatively, when 
B > D, having the preferred breakfast is more important than avoiding a duel, so each 
Sender type chooses its preferred breakfast, thereby signaling its type; signaling this 
information works against the wimpy type (because it induces the Receiver to duel), 
but this consideration is outweighed by the importance of getting the preferred 
breakfast. 

We can also ask whether Beer and Quiche has other perfect Bayesian equilibria. 
The three other pure strategies the Sender could play are [Quiche ifwimpy, Quiche 
if surly], [Beer if wimpy, Quiche if surly] and [Beer if wimpy, Beer if surly]. When 
B > D, the lowest payoff the wimpy Sender-type could receive from playing Quiche 
(B) exceeds the highest available from playing Beer (D), so the wimpy type will not 
play Beer, leaving [Quiche if wimpy, Quiche if surly] as the only other strategy the 
Sender might play. Analogously, the lowest payoff the surly Sender-type could re- 
ceive from playing Beer (B) exceeds the highest available from playing Quiche (D), 
so the surly type will not play Quiche. Thus, the separating perfect Bayesian equi- 
librium derived above is the unique perfect Bayesian equilibrium of the Beer and 
Quiche signaling game when B > D. 

What about when B < D? Now there is no separating perfect Bayesian equilib 
rium." But there are two pooling perfect Bayesian equilibria. It is straightforward 
to show that when B < D, the Sender's strategy [Beer if wimpy, Beer if surly] and 
the Receiver's strategy [duel after Quiche, no duel after Beer], together with the 
beliefs p = 1and q = .1 satisfy Requirements 1 through 3. (In fact, any p 2 .5would 
work as well.) This pooling equilibrium makes sense (just as the separating equilib 
rium above made sense when B > D): the surly type gets its preferred breakfast and 
avoids a duel; because B < D, the wimpy type now prefers to hide behind the high 
prior probability of the surly type (.9, which dissuades the Receiver from dueling 
without further information) rather than have its preferred breakfast. 

There is also another pooling equilibrium: when B < D, the Sender's strategy 
[Quiche if wimpy, Quiche if surly] and the Receiver's strategy [no duel after 

''To see why, work out what the Receiver would do if, say, the wimpy Sender-type chose Quiche and the 
surly choose Beer, and then work out whether these Sender-types would in fact make these choices, 
given the response just calculated for the Receiver. 
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Quiche, duel after Beer], together with the beliefs p = .1 and q = 1 satisfy Require- 
ments 1 through 3. (In fact, any q r .5 would work as well.) Cho and Kreps argue 
that the Receiver's belief in this equilibrium is counterintuitive. Their "Intuitive 
Criterion" refines perfect Bayesian equilibrium by putting additional restrictions 
on beliefs (beyond Requirement 3) that rule out this pooling equilibrium (but not 
the previous pooling equilibrium, in which both types choose Beer). 

Further Reading 

I hope this paper has clearly defined the four major classes of games and their 
solution concepts, as well as sketched the motivation for and connections among 
these concepts. This may be enough to allow some applied economists to grapple 
with game-theoretic work in their own research areas, but I hope to have interested 
at least a few readers in more than this introduction. 

An economist seeking further reading on game theory has the luxury of a great 
deal of choice-at least eight new books, as well as at least two earlier texts, one now in 
its second edition. (I apologze for excluding several other books written either for or 
by noneconomists, as well as any books by and for economists that have escaped my 
attention.) These ten books are Binmore (1992), Dixit and Nalebuff (1991), Friedman 
(1990), Fudenberg and Tirole (1991b), Gibbons (1992), Kreps (1990b), McMillan 
(1992), Myerson (1991), Osbome and Rubinstein (1994) and Rasmussen (1989). These 
books are all excellent, but I think it fair to say that different readers will find different 
books appropriate, depending on the reader's background and goals. At the risk of 
offending my fellow authors, let me hazard some characterizations and suggestions. 

Roughly speaking, some books emphasize theory, others economic applica- 
tions, and still others "the real world." Given a book's emphasis, there is then a 
question regarding its level. I see Binmore, Friedman, Fudenberg-Tirole, Kreps, 
Myerson and Osborne-Rubinstein as books that emphasize theory. If I were trying 
to transform a bright undergraduate into a game theorist (as distinct from an ap- 
plied modeler), I would start with either or both of Binmore and Kreps, and then 
proceed to any or all of Friedman, Fudenberg-Tirole, Myerson and Osborne- 
Rubinstein. In contrast, I see Gibbons and Rasmussen (and, to some extent, Mc- 
Millan) as books that emphasize economic applications. Each is accessible to a 
bright undergraduate, but could also pro~lde the initial doctoral training for an 
applied modeler and perhaps the full doctoral training for an applied economist 
wishing to consume (rather than construct) applied models. The next step for those 
who wish to construct such models might be to sample from Fudenberg-Tirole, as the 
most applications oriented of the advanced theory books. Finally, I see Dixit-
Nalebuff and McMillan as books that emphasize the real world (McMillan being more 
closely tied to applications from the economics literature). These are the texts to use 
to teach an undergraduate (or an MBA) to think strategically, although for this purpose 
one should also read the collected works of Thomas Schelling. These books would also 
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be useful additions to the training of an applied modeler, in the hope that the student 
would learn to keep his or her eye on the empirical ball. 

All of this further reading is for economists seeking a deeper treatment of the 
theory. I wish I could offer analogous recommendations for those seeking further 
reading on the many ways game theory has been used to build new theoretical 
models, both inside and outside economics; this will have to await a future survey. 
More importantly, I eagerly await the first thorough assessment of how game-
theoretic models in economics have fared when confronted with field data of the kind 
commonly used to assess price-theoretic models. For an important step in a related 
direction, see Roth and Kagel's (1995) excellent Handbook of Experimental E c o n m i ~ ,  
which describes laboratory evidence pertaining to many game-theoreticmodels. 

I thank Carl Shapirofor shaping thisproject and Brad De Long, Alan Krueger and Timothy 
Taylorfor helpful comments. 
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