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DISSOLVING A PARTNERSHIP EFFICIENTLY
By PETER CRAMTON, ROBERT GIBBONS, AND PAUL KLEMPERER'

Several partners jointly own an asset that may be traded among them. Each partner has
a valuation for the asset; the valuations are known privately and drawn independently
from a common probability distribution. We characterize the set of all incentive-compatible
and interim-individually-rational trading mechanisms, and give a simple necessary and
sufficient condition for such mechanisms to dissolve the partnership ex post efficiently. A
bidding game is constructed that achieves such dissolution whenever it is possible. Despite
incomplete information about the valuation of the asset, a partnership can be dissolved
ex post efficiently provided no single partner owns too large a share; this contrasts with
Myerson and Satterthwaite’s result that ex post efficiency cannot be achieved when the
asset is owned by a single party.

KEYWORDS: Mechanism design, efficient trading, fair division, auctions, public goods.

1. INTRODUCTION

WHEN A PARTNERSHIP IS TO BE DISSOLVED, Who should buy out his associates
and at what price? When municipalities jointly need a hazardous-waste dump,
which town should provide the site and how much should it be compensated by
the others? When husband and wife divorce, or children divide an estate, who
should keep the family house or farm, and how much should the others be paid?

We consider partnerships in which each player i is endowed with a share r;
of a good to be traded, and specific capital or other transaction costs make it
inefficient to sell the good on the market and split the proceeds.” We look for
procedures that allocate the good ex post efficiently while satisfying interim
individual rationality. Unlike Myerson and Satterthwaite (1983)—who show that
no procedure can yield both properties in two-player bargaining games with
uncertainty (r, =1 and r, = 0)—we show that the distributed ownership found in
a partnership often makes the two compatible. For the case of n players whose
valuations are independently drawn from an arbitrary distribution, we derive a
simple condition that is necessary and sufficient for efficient, individually-rational
dissolution, and we introduce a simple bidding game that will accomplish such
dissolution whenever it can be achieved as a Bayesian Nash equilibrium in some
extensive-form game.

The application that inspired our analysis was the Federal Communication
Commission’s allocation of licenses for cellular-telephone franchises. After clos-
ing the list of applicants, the FCC proposed to make the final allocation using

! This project was begun at Stanford University and financially supported by the Sloan Foundation,
the National Science Foundation, and the Center for Economic Policy Research. We are grateful to
David Gold for posing the problem and encouraging its analysis, and to Roger Guesnerie, Christopher
Harris, David Kreps, Robert Wilson, and two referees for helpful suggestions.

2See van Damme (1985) for a related study of fair division when each player has an equal
ownership share.
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a simple lottery. Prior to the lottery each applicant has an equal chance of winning,
and so can be thought of as owning a 1/n share in the license. Our analysis
suggests that the applicants would do better to form a cartel (that would win the
lottery with certainty) and then allocate the franchise to one of their number via
our bidding game; this is more efficient than the lottery, even if the winner is
permitted to resell. A similar example is the Federal Aviation Administration’s
proposal to allocate landing slots at busy airports by lottery. Again, a more
efficient approach is to assign the airlines shares in the slot equal to their weights
in the proposed lottery, and let them play the bidding game we propose.

As another application of the theory, consider the following buy-out provision
of many two-member partnerships: one side submits a ‘“buy-out” offer, and the
other side then has the choice of either buying or selling at these terms. Since
this scheme does not guarantee ex-post efficiency (the first player will not, in
general, submit his valuation, so the object will be inefficiently allocated if the
other’s valuation is between the first player’s bid and valuation), it too can be
improved upon by our bidding game.

The bidding game that achieves efficient, individually-rational dissolution
differs from a typical auction in that every player pays or receives a sum of money
that is a function of all the players’ bids. Moreover, the set of bidders who pay
a positive amount typically is not limited to the winning bidder, but includes the
second and other high bidders as well. Since such bidding arrangements are not
frequently observed, we determine the circumstances in which more common
auctions—such as first- and second-price—can achieve efficient, individually-
rational dissolution. This part of our analysis was inspired by Samuelson (1985),
who describes a similar problem and solves a two-player example in which types
are drawn from a uniform distribution on [0, 1]. He finds that split-the-difference
bidding (the average of first- and second-price) yields an efficient allocation, but
he ignores the individual rationality constraint that players should prefer partici-
pation in the game to retaining their current share. (He imposes instead the
weaker constraint that players prefer participation to being dispossessed of their
current share.) We consider n players and arbitrary distributions and show that
this and other similar auctions may accomplish efficient, individually-rational
dissolution, but only when partners’ shares are very close to equal.

Samuelson also provides an interesting interpretation of his work as an explor-
ation of the Coase Theorem under incomplete information: instead of the com-
plete-information conclusion that efficiency is always achieved and that property
rights are immaterial, he shows that efficiency may be lost and property rights
may matter. In these terms, our analysis shows exactly when efficiency can be
achieved and how property rights matter.

The rest of the paper is organized as follows. In Sections 2 and 3, we analyze
a revelation game to determine the set of partnerships that can be dissolved
efficiently. Section 4 introduces a bidding game, that accomplishes efficient
dissolution whenever it is possible, and Section 5 characterizes the set of partner-
ships for which efficient dissolution is possible. Section 6 shows that commonly
observed auctions are efficient in some circumstances.
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2. THE REVELATION GAME

Our model has n players indexed by ie N={1,..., n}. Player i owns a share
r; of the good to be traded (r;€[0, 1] and };_; r;=1) and has a valuation for the
entire good of v, Each player’s valuation is known privately, but it is common
knowledge that the valuations are drawn independently from a distribution F
with support [v, 5] and positive continuous density f.

We consider the direct revelation game in which players simultaneously
report their valuations v={v,,..., v,} and then receive an allocation s(v)=
{s:(v), ..., s,(v)} and t(v)={t;,(v),..., t,(v)}, where s; is the ownership share
and ¢; is the net money transfer to player i. (Since this allocation is trader-specific,
it may depend on the vector of initial ownership rights, r={ry,..., r,}.) We
require that these allocations balance: ¥, s;(v) =1and }.t,(v) =0 for all ve [, 7]".
The pair of outcome functions (s, t) is referred to as a trading mechanism.

A player with valuation v;, share r, and money m; has utility v;z; + m;, which
is linear in money and the asset. Also, we assume that each player is endowed
with enough money, say o, that any required transfer is feasible. Because of the
linear utility, only net transfers matter, so player i’s utility before participating
in the trading mechanism (s, ) can be taken to be vy, while afterwards it is
vs;+t. Let —i= N\i and let €_,{ - } be the expectation operator with respect to
v_;. Then we can define the expected share and money transfer for player i when
he announces v; by

Si(v))=¥&_i{si(v)} and T(v;)=%_{t:(v)},
so the player’s expected payoff is

Ui(v;) = vSi(v;) + Ti(vy).

The mechanism (s, t) is incentive compatible if all types of all players want to

report their private information truthfully:

Ui(v)=0Si(u)+ Ti(u) Vie N, v,uely, v].
By the Revelation Principle (Myerson (1979), among others), we lose no generality
by restricting attention to incentive-compatible mechanisms. The mechanism (s, )
is interim individually rational if all types of all players are better off participating
in the mechanism (in terms of their expected payoff) than holding their initial
endowments:

U((v)=ry;, VieN and v ey, 7]

The following lemmas develop a necessary and sufficient condition for a mechan-
ism to be incentive compatible and individually rational. Since the proofs are
either simple or standard, they are relegated to the Appendix.

LEMMA 1: The trading mechanism (s, t) is incentive compatible if and only if for
every i€ N, S; is increasing and
(IC)  T(v¥H)-T(v)= f uds,(u)

for all v, v¥e[v, 7).
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Lemma 1 follows from the fact that utility is linear in money and the asset.
Linearity implies that U; is convex and increasing in v;,, with derivative S; almost
everywhere. The continuity of U; implies that the net utility U;(v;)—rv; has a
minimum over v; € [, §]. Lemma 2 identifies this worst-off type, and this allows
us to restate individual rationality as a single condition in Lemma 3.

LEMMA 2: Given an incentive-compatible mechanism (s, t) trader i’s net utility
is minimized at v¥ =3 [inf (V¥)+sup (V¥)] v, 0], where

Vi={v|Si(u)<rnVu<uv;Si(w)>r,Vw>uv}

In the simplest case, S; is continuous and has r; in its range, so the valuation
of the worst-off type satisfies S;(v¥)=r;; that is, the worst-off type expects to
receive a share equal to his initial ownership right r,. Intuitively, the worst-off
type expects on average to be neither a buyer nor a seller of the asset, and
therefore he has no incentive to overstate or understate his valuation. Hence, he
does not need to be compensated in order to induce him to report his valuation
truthfully, which is why he is the worst-off type of trader.

This in an interesting generalization of a similar result in Myerson and Sat-
terthwaite (1983) for bilateral exchange (r = {0, 1}). In their paper, the lowest-type
buyer (v) and the highest-type seller () are worst off; here the worst-off type
typically is between v and 4, since it is no longer clear who is selling and who
is buying.

LEMMA 3: An incentive-compatible mechanism (s, t) is individually rational if
and only if for allie N
(IR) T,(v¥)=0,
where v¥ is defined in Lemma 2.

Lemmas 1-3 lead to a necessary and sufficient condition for a trading mechan-
ism to be incentive compatible and individually rational, stated in Lemma 4 below.

LEMMA 4: For any share function s such that S; is increasing for all i € N, there
exists a transfer function t such that (s, t) is incentive compatible and individually
rational if and only if

o 3 U - Fapas - [ Faudsw]=o
where v} is defined in Lemma 2.

The “only if” part of the lemma follows directly from the previous lemmas
and the budget balance conditions ¥, s;(v) =1and } ;,(v) =0, which every feasible
mechanism must satisfy. The ““if”” part of the lemma is proven by constructing a
transfer function ¢ that is incentive compatible and individually rational provided
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the inequality (I) holds. The proof makes the following intuition precise: there
exists a transfer rule ¢ that entices the worst-off type of each trader to participate
in the mechanism, because (I) guarantees that the expected gains from trade are
sufficient to bribe every trader to tell the truth.

3. EX POST EFFICIENCY

The trading mechanism (s, t) is ex post efficient if for each vector of valuations
v the outcome of the mechanism {s(v), t(v)} is Pareto-undominated by any
alternative allocation, ignoring incentive constraints.> Thus, ex post efficiency
requires that the asset go to the trader with the highest valuation. A partnership
(r, F) can be dissolved efficiently if there exists an ex post efficient trading
mechanism (s, t) that is incentive compatible and individually rational. Such a
mechanism will be said to dissolve the partnership. For economy of expression,
we will henceforth refer to ex post-efficient mechanisms that are incentive compat-
ible and individually rational as efficient trading mechanisms. A partnership that
can be dissolved efficiently will be referred to as a dissolvable partnership.

We are now prepared to answer the central question of this paper: What
partnerships can be dissolved efficiently? At first glance, one might think that
the set of dissolvable partnerships is empty; that is, the incomplete information
about valuations necessarily leads to some inefficiency in trade. This is not the
case. The following theorem gives a necessary and sufficient condition for the
existence of an efficient trading mechanism.

THEOREM 1: A partnership with ownership rights r and valuations independently
drawn from F can be dissolved efficiently if and only if

n v

(D) y [I_[I—F(u)]udG(u)—Ju'F(u)udG(u)]BO,

i=1 v*
where v¥=F'(r'/"™") and G(v;,) = F(v,)""".
Proor: Ex post efficiency requires that the good go to the trader who values
it the most:
0 if v, <maxuv,
s5i(v) = { . !
1 if v =maxu,
(In the event that two or more traders have the highest valuation, then the shares
can be split arbitrarily among them. Since ties occur with zero probability, they

will be ignored in what follows.) By independence, the expected share function
S; is given by

Si(v) =Pr{n;>max v} = F(v)" "' = G(v).
J#Ei

Thus, v¥ satisfies F(v¥)" '=r, so v¥=F'(r//"""). Substituting into (I) of
Lemma 4 yields (D). Q.E.D.

3 Our definition of ex post efficiency corresponds to classical ex post efficiency as defined in
Holmstrom and Myerson (1983), since incentive constraints are ignored.
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4. AN EFFICIENT BIDDING GAME

In this section, we introduce a bidding game that serves the same purpose as
an efficient trading mechanism. Using terminology analogous to that introduced
in Section 3, given a dissolvable partnership, one could use an efficient trading
mechanism or an efficient bidding game to dissolve it. This is a useful complement
to the revelation-game analysis of Section 2, because it uses strategy spaces
familiar in practice, namely bids rather than valuations. In a general bidding
game, the n players submit sealed bids, the good is transferred to the highest
bidder, and each bidder i pays a total price P;(b,,..., b,). In the efficient bidding
game analyzed below, the total price P, is the sum of a price

1
pi(by,...,b,)=b; n—ljZ‘; b;
and a side-payment ¢; that can precede the bidding. Note that in the efficient
bidding game the winning bidder pays a positive price p;, as usual, but so may
the second and other high bidders. As in a standard auction, a higher bid buys
the player a larger probability of winning. Here, however, making a higher bid
is like buying more lottery tickets in that the purchase price of losing tickets is
not refunded.

THEOREM 2: A bidding game with prices
1
(P) pi(by,....b)=bi——— Y b,
n—1 jEi

preceded by side-payments

v* 1 v’;
(C) c,-(r,,...,r,,)=J’ udG(u)-—; Y J udG(u),
v j=1Jyp
is an efficient bidding game: it dissolves any dissolvable partnership.

Proor: We solve for a strictly increasing symmetric Bayesian equilibrium. If
the n—1 others use the strategy b( - ), then i’s expected utility from bidding b,
with valuation v, is
b=!(b,)

' 1 -2
[u,.—b,.+ b(u)+—
n—1 n—1

Ui(v, b;) = J.

v

E(u)] dG(u)

+r [—b,-+ ! b(u)+n_25(u)] dG(u),
n—1 n—1

b~'(by)

where b(u)=[" b(v;) dF(v;|u) and F(v;|u)=F(v;))/F(u). (Since types are
independent, all but the highest of the n — 1 other bids generate the same expected
value, conditional on the value of the highest bid; this is b(u).) The best response
for i therefore solves
aU; db™!
ab; db;

vg[b™'(b)]=0.
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Since aU,/ab; is positive (negative) for b; less than (greater than) b(v;), the
second-order condition is satisfied. We are interested in the symmetric solution,
which satisfies

b(v;) = J udG(u)+ b(v).

u=p

Since b'>0, this equilibrium is ex post efficient: the trader with the highest
valuation receives the good. The constant b(v) is arbitrary (it equals the lowest
amount, presumably zero, that the rules of the game allow a player with valuation
v to bid), and disappears when p; and b are composed:

v

(T) plb(vy),. ... b(v,)]= —I ' udG(u)+—1—1 ¥ J udG(u).

v n—1 ;=i

v

Some simple algebra verifies that (T) and (C) define the transfer rule used in the
“if”” part of the proof of Lemma 4, so individual rationality is guaranteed.
Q.E.D.

Since the side-payments depend on r={ry, ..., r,} (through v*={v¥, ..., v}})
and F, but not on v ={v,, ..., v,}, they can precede the bidding procedure. Their
purpose is to compensate large shareholders, who are effectively dispossessed in
the bidding game that follows, since the prices p; are independent of r and so
treat all shareholders alike. Accordingly, the side-payments are zero for the
equal-shares partnership (1/n,...,1/n).

5. CHARACTERIZATION RESULTS

We now offer four propositions that characterize the set of partnerships which
can be dissolved efficiently. The proofs are not of interest in themselves, and so
are given in the Appendix. First, we formalize the idea that it is large shareholders
that make interim individual rationality difficult to achieve: for any distribution
F, the equal-share partnership is dissolvable but the partnership in which one
player owns the entire asset is not.

ProroOSITION 1: The set of partnerships that can be dissolved efficiently is a
nonempty, convex, symmetric subset of the n — 1 dimensional simplex and is centered
around the equal-shares partnership (1/n,...,1/n).

PROPOSITION 2: A one-owner partnership {r;=1,r,=0,...,r,=0} cannot be
dissolved efficiently.

Proposition 2 generalizes to many buyers Myerson and Satterthwaite’s (1983)
result that a buyer-seller relationship cannot simultaneously satisfy ex post
efficiency and interim individual rationality. This speaks to the time-honored
tradition of solving complex allocation problems by resorting to lotteries: even
if the winner is allowed to resell the object, such a scheme is inefficient because
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the one-owner partnership that results from the lottery cannot be dissolved
efficiently.

These propositions are derived by making the appropriate substitutions into
(D) of Theorem 1. Note that each partner’s ownership share r; enters the inequality
through v¥.

As an example, if the traders’ valuations are drawn from a uniform distribution
on [0, 1], then (D) simplifies to

n
n+1

(D) ¥ s
i=1

Thus, for a uniform distribution, a partnership r can be dissolved efficiently if
and only if (D’) is satisfied. By Proposition 1, (D’) determines a convex, symmetric
subset of the simplex, shown as the unshaded region in Figure 1 for the case
n =23. Only partnerships in the extremities of the simplex cannot be dissolved
efficiently. For the uniform case, as the number of partners (n) grows, the
percentage of partnerships that are dissolvable increases from 58% to 93% to
99% as n increases from 2 to 4 to 6. Also, the percentage share of the largest
possible owner in a dissolvable partnership increases from 79% to 82% to 88%
as n increases from 2 to 20 to 200.

By contrast with Proposition 2, however, partnerships with an arbitrarily small
amount of distributed ownership may be dissolvable. (Note that the proof employs
a very special distribution.)

(0,1,0)

(1,0,0)

0,0,1)

FIGURE 1—Dissolvable partnerships with n=3 and F(u)=u.
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PROPOSITION 3: Any partnership not owned by a single player can be dissolved
efficiently for some distributions F.

Finally, if any partnership is replicated a sufficient number of times then it

can be dissolved efficiently. Consider the partnership
R(nlm)={r,=1/m,i=1,...,m;r;=0,j=m+1,..., nm}.

This partnership results from replicating the n-player, one-owner partnership m
times—the m partners who own positive shares each own 1/m of the total
endowment of m goods, so partnerships continue to be represented by points in
a simplex. The m-fold replication of any other n-player partnership can be
represented in a similar way.

ProprosITION 4: Given F and an n-player partnership {r,,...,r,}, there exists
a finite M such that for all m > M the m-fold replication of the n-player partnership
can be dissolved efficiently.

We think of this result as complementing the core-convergence theorems for
exchange economies: replicating the economy sufficiently often reduces the effect
of the incomplete information to zero.

An interesting special case is R(2| m). For m =1, Myerson and Satterthwaite’s
result (and our Proposition 2 above) proves that the partnership cannot be
dissolved efficiently. For larger values of m, R is much like the double auction
studied by Wilson (1985) and Gresik and Satterthwaite (1985) although there
each bidder wants only one unit of the good, whereas here each bidder may
demand up to m units of the good. (Think of each 1/m share of the partnership
as one unit of the good.) When each bidder wants one unit, Gresik and Sat-
terthwaite show that ex post efficiency is approached in the limit; more specifically,
for the uniform case, they find that 99.31 per cent of the gains from trade are
realized if there are six traders on each side of the market. When each bidder
wants m units, on the other hand, ex post efficiency is achieved for the same
example when there are as few as two traders on each side of the market. (To
see this, check that (D’) holds for R(2|2) for this example.)

6. SIMPLE TRADING RULES

The efficient bidding game proposed in Theorem 2 dissolves any dissolvable
partnership. Although the efficient trading mechanism implicit in Lemma 4 and
Theorem 1 achieves the same effect, we prefer the bidding game for two (somewhat
imprecise) reasons. First, as mentioned above, it uses strategy spaces familiar in
practice. And second, and probably more important, in the bidding game a great
deal of the computational burden has been shifted from the mechanism designer
to the players: the designer makes a simple calculation of side-payments and
prices, using (C) and (P), while the players do most of the work in their calculation
of the optimal bidding strategy b(v;). In the trading mechanism, on the other
hand, the players simply report their valuations while the designer shoulders all
of the computational burden.
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In this spirit, we find it disappointing that the side-payments given by (C) in
Theorem 2 depend on the distribution F, for it seems plausible that the designer
will know F less well than do the players. Ideally we would like a bidding game
that can be described independently of F, so that the designer could always
recommend it without assessing the distribution of the partners’ private valuations.
Unfortunately, the Revelation Principle is no help here: it analyzes the composi-
tion of the players’ strategies and the designer’s game rules, but gives no guidance
as to how to decompose this map from types to outcomes into strategies for the
players that may depend on F and game rules for the designer that are independent
of F.

We have not addressed the issue of finding the optimal bidding game or trading
mechanism that is independent of F, in part because of the difficulty in formalizing
this notion. (Asking only for independence of F, for instance, is not enough,
because the designer can ask the players to report F, and then implement the
side-payments given by (C) if the reports agree, and forbid trade if the reports
do not agree.) Instead, we offer two speculative approaches to bidding games
that are independent of F, in the hope that these ideas will be expanded upon.

First, it may be possible for the designer to use the players’ bids to estimate
F, and then to use this estimate to construct side-payments that relax the individual
rationality constraints, like those in (C). This process seems both complex and
delicate.*

Second, some bidding games that are independent of F can dissolve a limited
subset of the set of dissolvable partnerships. In particular, the game we discuss
below dissolves the equal-shares partnership for any distribution F. In addition,
this bidding game has three other virtues when compared to the efficient bidding
game in Theorem 2. First, it is simple and familiar. Second, it is less vulnerable
to collusion. (In the efficient bidding game, a cartel saves the cost of all losing
bids by submitting only one nonzero bid.) And third, it relies less heavily on the
risk neutrality of the bidders, since only the winner is required to pay.

Specifically, we consider a “k+1-price auction” in which the players submit
sealed bids and the good is transferred to the highest bidder, who pays each of
the others

1
P(bl’ bZ, R bn) 2;1—[kbs+(1—_k)bf],

4 More precisely, estimating F seems complex and using the estimate seems delicate. As an example,
suppose that F is known to be approximately uniform on [0, 5] with #€[p, V]. Consider playing
the bidding game of Theorem 2 without the side-payments. Then for every pair of players {i, j}, use
the remaining n—2 players’ bids to estimate F, as follows. First, use the symmetric equilibrium
bidding strategy identified in the text to map an arbitrary distribution of valuations F into a distribution
of bids. And second, vary F over the set of distributions described above in order to maximize some
goodness-of-fit criterion imposed on the two distributions of bids, one observed, and the other
calculated. Now use this estimate to calculate the side-payment ¢;(ry, ..., r,) given in (C) and let i
pay j the amount ¢,/(n—1). In this construction, the payments received by any one player depend
only on the other players’ bids, so the equilibrium strategies are unaffected. Therefore, the size of
the subset of the set of dissolvable partnerships that can be dissolved in this way depends only on
how well these elaborately constructed side-payments mimic those defined by (C) when F is known.
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where b, and b, are the first- and second-highest bids from {b,, b,, ..., b,}, and
ke[0, 1]. For k =0 this is like a first-price auction, for k = 1 it is like a second-price
auction, and for k =3 it is the split-the-difference scheme described by Samuelson
(1985). .

Note that the revenue from bidding (namely, the highest bidder’s bid) is divided
equally among all the bidders. This is important. When the original ownership
shares are unequal, the individual rationality constraints could be more easily
met by paying losing bidders in proportion to their shares, but then partners
owning different shares would have different equilibrium bidding strategies so
the partner with the highest valuation might not win, violating ex post efficiency.’

We begin by calculating an equilibrium bidding strategy for this auction.
Calculating the interim expected utility associated with this equilibrium then
determines the set of partnerships that can be dissolved efficiently using the
k+1-price auction. (Again, the terminology is analogous to that introduced in
Section 3.)

PropoOSITION 5: A k+1-price auction has a symmetric equilibrium bidding
strategy given by
I:’=F"‘(k) [F(z)—k]"dz
[F(v)—k]"
PROPOSITION 6: The set of partnerships that can be dissolved efficiently using a

k+1 price auction is a nonempty, convex, symmetric subset of the simplex and is
centered around the equal-shares partnership (1/n,...,1/n).

b(v))=v,—

Thus, an equal-shares partnership can always be dissolved efficiently by any
k+1-price auction. Such a simple auction only works, however, when partners’
shares are approximately equal, since the auction ignores the ownership rights r
and this makes large shareholders unwilling to participate. For the uniform case,
the k+1-price auction dissolves a partnership if and only if (max r,)""'<
1/(n—1), which for n=2, n=20, and n =200 is satisfied if no partner’s share
exceeds 57.7%, 5.54% and 0.511%, respectively. (A special property of the
uniform distribution is that these results are independent of k. Contrast these
results, however, with the corresponding results for the efficient bidding game,
which are given after Proposition 2.) The intuition is that, because the auction
treats all players as if they owned share 1/n, large shareholders will participate
only if the expected gain from trade exceeds the cost of being, in effect, dis-
possessed. As n increases, the expected gain from trade of the worst-off type
decreases: a player with high share and high valuation becomes almost certain
to be just outbid by players with slightly higher valuations. Thus given a share
p €[0, 1] there will exist some N, such that a partner with share p will be willing
to participate only if n < N,, and in the limit, only shareholders with p<1/n are
willing to participate.

> We could for every partner j divide j’s bid among the other (n—1) players in proportion to the
other’s relative shares, since then incentives for the bidders are unaffected by their relative shares.

This is an example of the type of auction discussed in the previous footnote and would typically
perform better than the auction considered here, at some cost in terms of greater complexity.
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PROPOSITION 7: As n—> o0, the only partnership that can be dissolved efficiently
by a k+1-price auction is the equal-shares partnership (1/n,...,1/n). That is,
letting p, be the largest share in a n-player partnership that any partner can have
such that the partnership can be dissolved efficiently, p,/(1/n)—>1 as n- oo,

7. CONCLUSION

A simple extension of Myerson and Satterthwaite (1983) shows that with
incomplete information no mechanism can guarantee that an object to be traded
will be allocated to the person who values it most, if the object is initially owned
by a single party. In contrast, we show that if the ownership is distributed among
a partnership, ex-post efficient allocation is often possible. Further, when it is
possible, it can be achieved by a simple bidding game. In a more general model
of partnerships, our observation that the range of partnerships that can be
dissolved efficiently is centered around equal shares suggests that this might be
a factor influencing the way in which partnerships are formed.
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APPENDIX
This Appendix supplies the proofs of Lemmas 1-4 and Propositions 1-7.

LEMMA 1: The trading mechanism (s, t) is incentive compatible if and only if for every i€ N, S, is
increasing and

v,

(1c) T.(v:*)—r,(v.>=J " ds,(u)

vy

for all v, v¥e[p, v].

PROOF: Only If. If (s, t) is incentive compatible, then U,(v,)=10,S;(v,)+ T;(v,) = v,S,(u)+ T,(u),
or equivalently

Ui(v)= U, (u) + (v, — u)S,(u),

implying that U, has a supporting hyperplane at u with slope S;(u)=0. Thus, U, is convex and has
derivative dU;/dv; = S, almost everywhere. Also, S, must be increasing, and

v

Ul(v:)— U‘(v:k) =J , S,(ll) du.

vt
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(We use the Stieltjes integral throughout this paper, so that any discontinuities in the expected share
function are accounted for in the integral.) By integration by parts,

v

J'v' Si(u) du= sti(vx)_viksi(v?)_J’ ' uds,(u),

which together with the definition of U, yields (IC).
If. Adding the identity

v,

vi[si<vi>—si<v;*>]=vif " ds,(u)

to (IC) results in
l)'
u[S,(v,) = S, (v)]+ Ti(v,) - T,(v?‘)=J’ (v;—u) dS;(u)=0,
vl
where the inequality follows because the integrand is nonnegative for all v, u €[, 7], since S, is
increasing. Rearranging the terms on the left-hand side yields

,S;(v,)+ Ti(v;) = v;S;(v¥) + T,(vF),
which is incentive compatibility. Q.E.D.

LEMMA 2: Given an incentive-compatible mechanism (s, t), trader i’s net utility is minimized at
v¥ =1[inf (V¥*)+sup (V*)] e[, 5], where

V¥={v|S,(u)<r,Yu<uv;S;(w)y>r,Vw>0o}

PrROOF: The net utility to trader i with valuation v; is U;(v;) — r,v;, which is convex in v; by Lemma
1. Therefore, trader i’s net utility is minimized at the point where the left and right derivatives of U,
with respect to v, bound r;,. But dU;/dv, = S, almost everywhere, S, is increasing, and T; is decreasing
in v, Four cases need to be considered. First, suppose that S,(u)>r, or S;(u)<r, for all ue[y, 7];
then the minimum occurs at the boundaries v¥ = p or v¥ = 7, respectively. The next three cases deal
with the case where there exists ¥ and w such that S,(u)>r, and S;(w)<r. (1) Suppose S; is
continuous and strictly increasing; then there exists a unique v} such that S;(v¥) = r, which minimizes
trader i’s net utility. (2) If S; is not continuous and S, jumps past r;, then the v, at which S, jumps
minimizes net utility. (3) Finally, if S;(u) = r; over an interval, then each type in the interval is equally
worse off and we can arbitrarily select any valuation in the interval to be the worst-off type.
Q.E.D.

LEMMA 3: An incentive-compatible mechanism (s, t) is individually rational if and only if forallie N
(IR) T(v¥) =0,

where v¥ is defined in Lemma 2.

PROOF: We need only check individual rationality at the valuation v¥ defined in Lemma 2. Thus,
the individual-rationality constraint becomes v¥S;(v¥)+ T;(v¥)= ro*, or rv¥+ T, (v¥) = ro¥*.
Q.E.D.

LEMMA 4: For any share function s such that S, is increasing for all i€ N, there exists a transfer
function t such that (s, t) is incentive compatible and individually rational if and only if

()] ‘;:[JD[I—F(H)]udS.(u)—JD'F(u)udS;(u)]BO,

1=1 v% v

where v¥ is defined in Lemma 2.

PROOF: Only if. Suppose (s, t) is incentive compatible and individually rational. Then from
Lemma 1,

v

T,(v)= T.(UT)—J uds,(u).

vy
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Integrating over all types in [v, 7] yields

(T, ()} = Ti<v;'=)—J’" j u dS,(u) dF(s,)

v =P

=T.~(v;*)—r f dF(vi)uds,(u)+J"' J dF(v,)u dS,(u)
u=v% Juy=u u=p Joy,=p
=T.(v:*)—rn—mnuds,(uwj " F(u)udSi(u),

v

where the second line follows from changing the order of integration. Budget balance requires
Yi_y t;(v)=0 for all v, so we have

1 &{T(0)}= %’N{z r.(v>}=

Therefore, summing over all traders yields

n

T(v%)= % U"n —F(u)]udsxu)—jv' F(u)udS.-<u>].

=1 v

I =

i=1
From Lemma 3, T;(v*) must be nonnegative for all i, which implies ..., T;(v¥)=0.
If. The proof is by construction. Let

zA(v)=c.-J'u udS(u)+———— T r'udsj(u),

v Jaé'

where Y./, t;,(v) =0 implies Y/, ¢, =0. Then, after changing the order of integration,

U' 1
T.(v)=¢ —I udS(u)+—— % J' [1-F(u)ludS;(u),
v n—1;=i ),
so Lemma 1 guarantees that (s, t) is incentive compatible. Finally, by Lemma 3, we have individual
rationality if and only if T,(v¥)=0. A little algebra shows the hypothesis of Lemma 4 to be equivalent
to the condition ¥/, T;(v*)=0, so we can choose

o*

q=%i T.~<v;*>+j "udS,(u) ——— — 3 J”[l—F(u)]udS,(u),

v n-— _/;éx
which results in T;(v¥)=(1/n) Y7, T;(v¥)=0. Q.E.D.
PROPOSITION 1: The set of partnerships that can be dissolved efficiently is a nonempty, convex,

symmetric subset of the n—1-dimensional simplex and is centered around the equal shares partnership
@/n,...,1/n).
PROOF: Use (D) to define ¢: " > R by
n 1) o
¢(r)=% [J 0,f(0;)F(v,)"? dv.—‘[ 0:f(0,)F ()" dv.]-
i=1LJ vy v
Convexity follows from concavity of ¢, which we have because
r?(;b_—v*dF(v*)" U do¥ _ —v*
ar, n—1 dr, n-1
P’ ) 1 dv}
ar, ar, ar? n—1 dr,

>

<0.

Symmetry follows from relabeling the partners. Finally, ¢(1/n,...,1/n)>0 because at v¥(1/n)=
F~'(1/n'"~') we have

r v.f(0)F(v))" " do, —r v.f(v)F(v)" " dv,

v} v

Do AU [ nF(v.)""—(n—l)F(v.)"]
_n(n—1)+nJ'9 F(v,))" dy J‘*I: nn—1) dv, >0,

vy
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where the equality arises after integrating each term by parts, and the inequality holds since
nF" '—(n—1)F" <1 for all v, €[v¥, v], so the first term dominates the third. Q.E.D.

PROPOSITION 2: A one-owner partnership {r,=1,r,=0,...,r, =0} cannot be dissolved efficiently.

ProoF: For the n-player partnership {r,=1,r,=0,..., r, =0}, integrating by parts in (D) yields

—J F! dv+J F'dv=0,

v v

which fails for all finite n. Q.E.D.

PROPOSITION 3: Any partnership not owned by a single player can be dissolved efficiently for some
distributions F.

PrOOF: The proofis by construction, using the distribution F(u)={1—[u(v)]"*}/{1— T~ *} where
ae(0,})and u(v)=1+{(T-1)(v—2)/(#—)} (so u(v) =1 and u(d) = T). Take an arbitrary partner-
ship {r|r, <1V i} and let d =1— T~ Using a binomial expansion for F"~2and F"~! and performing
the integration indicated in (D) yields

"o [ulte u'?e ]
_ _ _2 + PR
o(r) {El = [1 —a (n )1—-2a u=u(v¥(r)

a [ul—a ( l)ul—2a+ ] T (6—1))
n— | ———=(n- R .

d"|1-«a 1-2a w=t\T—
It suffices to show that the above terms in T in the braces tend to +o0 with T, because the terms in
T ignored are of lower order, and so are insignificant, and all the terms in the lower limits are finite
because u(v¥(r;)) approaches a finite limit, ¥ r, < 1. (It is crucial that we have r; <1, since u(v¥(1)) =T,
which does not stay finite as T -> 0.) To show that the terms in T approach o, replace T by (1—d) ™"/«
and collect terms. This yields

_ — 3-1/a
%(“_d)z_l/a[l—lza_d(nl—a)]+(n ;)((11—:0‘))1 )

As T-> 0, d - 1. Therefore, the second term above can be ignored, since it has an extra factor of
(1—d). Since a €(0,3), 2—1/a <0, so the first term goes to o as d -1 provided

T

1 1
—_—— 0,
1-2a d(1-a)
which holds for d € ((1-2a)/(1—a), 1). So ¢(r)> 0 for sufficiently large T. Q.E.D.
PROPOSITION 4: Given F and an n-player partnership {r,, ..., r,}, there exists a finite M such that

Sor all m> M the m-fold replication of the n-player partnership can be dissolved efficiently.

PROOF: By the concavity of ¢ established in Proposition 1, it suffices to show that the result
holds for the n-player partnership {r,=1,r,=0,...,r, =0}, the m-fold replication of which is
{rn=1/m,i=1,...,m;r;=0,j=m+1,..., mn}. Let mn= N. Then m = N/n and the partnership of
interest is {r,=n/N, i=1,..., N/n; r,=0,j=(N/n)+1,..., N}. After integrating by parts in (D)
and collecting terms, we have

1 [oo-0r  [° NFN"—(N—I)FN> ]
N¢(R)‘[N(N—n) J( NN )

oY N-1 v" N-1_ _
+[1J' F du_J’ (NF (N l)FN> du],
nl), N-1 v N(N-1)

where v* = v¥(n/N)=F'[(n/N)"YN7']. Since NFN~'—(N —1)FN <1 over [v¥, 7], the first pair
of terms is strictly positive. The second pair is positive for sufficiently large N if
(N=-1)J2" FN du 1

lim —————>1——.
Nowo NUFN~'du n
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Consider two arbitrary values k, <k, from (y, 7), and let K, = F(k;) for i=1,2. As N>, v¥- p,
so for sufficiently large N we have k,<k,<v* Let I=[2F"du and J=[% FNdu Then
fle FN"'du<1I/K, and |3 FN"' du<J/K,<J/K;. So

12" FN du - Jia FN du+[3: FNdu
If FN"'du™ (ky—0)K Y '+ {2 FNVdu+[% FN'du
I1+J
> K,

(ky—v)KN+T1+J

Since I+J>J> (v*—k,)KY, we have

I1+J (v¥—k,)KY
K, ~ > K, < ” =
(ky—v)KY+T+J (k= 0)KY +(v¥—k,)K;
vf—k,

=K .
(kg = 0)(Ky/ K)N + (0% — k)

Fix £>0, and let K, =1-1¢, and K, =1—1e Then (K,/K,)™ -0 while v* — k,-> - k;, so the last
ratio above approaches 1 —4¢, and can therefore be made to exceed 1—(1/n) for fixed n, as required.
Q.E.D.

PROPOSITION 5: A k+ 1-price auction has a symmetric equilibrium bidding strategy given by

I:‘=F_'(k) [F(z)—k]"dz
[F(v,)—k]"

b(u)=1,~

PROOF: Let G(x)= F(x)"7'. If i conjectures that the n — 1 others will use the strategy b(v,), then
i’s expected utility from bidding b; with valuation v, is
b7(b,)

U,(v, bl)=j

v

(v, —f—;‘—-—l[kb(x)+(l —k)bi]) dG(x)

5 b7k, ¢

+J J —[kb; +(1—-k)b(x)] dH (y|x) dG(x)
x=b"'b) Jy=p M
1 x 1

+J j —[kb(y)+(1—k)b(x)] dH(y|x) dG(x),
x=b""b) Jy=b""b) I

where H(y|x)=[F(y)/F(x)]""? (for y<x) is the distribution of the second-largest of the n—1
other bids given that the largest is x. The best response for i therefore solves

aU; db™' n-1
—=(v,—b)glb™"(b;)]—————F[b7'(b)]"*(F[b~"(b)]- k) =0.
ab, db; n

The symmetric equilibrium b(v,) satisfies

F(v,)—k
fw) -

This linear differential equation can be solved using the integrating factor [ F(v;) — k]"; the solution
is a one-parameter family satisfying

b= b(0) = b'(0)

v,

[v.—b(v;)][F(v.)—k]"=J [ F(u)-k]" du.

¢

We choose ¢ to make the right-hand side equal to zero at v, = F~'(k); otherwise, bids tend to +co
as v, approaches F~!(k) from above or below. This choice of ¢ yields the symmetric equilibrium

‘[ F(2) —k]" dz
[F(v)-k]" °

and truth-telling occurs at v, = F~'(k). Finally, since b'> 0, this equilibrium is ex-post efficient: the
partner with the highest valuation receives the good with probability one.

b(vl)zvl—
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It remains, then, to verify interim individual rationality. That is, we want W(v,r)=
Ulwv, b(v,)]—rv; =0 for all v, € [v, 7], where U[v, b(v,)] is

ju' (v, b+ —k)b(v,-)]) dG(x)

v n

+Jv j %[kb(v,-)+(l-k)b(x)]dH(ny)dG(x)

X=0 =0

+J J %[kb(y)+(l ~k)b(x)] dH(y|x) dG(x).

xX=y Jy=v

Partially differentiating with respect to v; and applying the first-order condition shows that, for fixed
r, W is minimized at v*(r,) = G7'(r;). Let w(r,) = w[v}(r,), r.]; then

Lw(r.-)=(1—k){—‘— I b(x) dG(x)—r,b(v*;)}
n—1 n—1

*
vy

o*

+ k{F(v’?)"‘Z[l — F(v})]b(v?) —J "b(x) dG(x)

v

+ ! J‘v JX b(y)dH(y]x)dG(x)}. Q.E.D.

n—1 y=v%

PROPOSITION 6: The set of partnerships that can be dissolved efficiently using a k+ 1-price auction
is a nonempty, convex, symmetric subset of the simplex and is centered around the equal-shares partnership

/n,...,1/n).

PROOF: Convexity follows from the concavity of w(r,), which holds because w'(r,) = —v*(r,) and
w"(r,) = —d/dr,v¥ (r,) <0 since v¥ = F~'(r"/"D). Symmetry follows from relabeling the partners.
Finally consider the equal-shares partnership in two steps. First, consider the terms involving 1 —k.
We have

L J‘v b(x) dG(x)=rb(v*)
n-—1

*
vy

at v* = G7'(1/n) by substituting b(v*) for b(x) in the integral and simplifying. And second, consider
the terms involving k. We have

v

F(v:*)"-Z[l—F(umzz(u’.f)aj'b(x)dG(x)——‘—Ju J b(y) dH(y|x) dG(x)

v B=1Jsvy Jy—or

at v*= G7'(1/n), again by substituting b(v*) for b(x) and b(y) in the integrals and simplifying.
Q.E.D.

PROPOSITION 7: As n- o, the only partnership that can be dissolved efficiently by a k+1-price
auction is the equal-shares partnership (1/n, ..., 1/n). That is, letting p,, be the largest share in a n-player

partnership that any partner can have such that the partnership can be dissolved efficiently, p,,/(1/n)->1
as n-> 00,

PROOF: It suffices to show that given 6 > 0, there exists N such that for all n > N, interim individual
rationality fails for a player with share (1+68)/n. Let

d(8)=F|d <1
1+8
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Interim individual rationality for a player with share (1+ 8)/n and valuation 5((1+38)/(1+ &) implies

[1+16 1+6 . . .
[} Y W < (probability of losing)(value of losing)

+ (probability of winning)(value of winning)
< <1>(§) +(d")(D).

Thus,
(1+18)<1+nd" !,

which is necessarily false for all sufficiently large n. Q.E.D.
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