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In this work we show an alternative way to analyze physical data. Most typically, data is represented using graphs and tables. However, by understanding how to capture the dynamic components that make up musical melody, harmony, rhythm,
and tensions as a scalar field or graph we can use music to represent physical phenomena. We have developed a code that can convert sheet music into a mathematical array which is then plotted as three-dimensional surface or line graph. Each
musical note is given a frequency on the visible color spectrum which is then displayed against other frequencies to create an image. Here we show a unique approach on how music can be expressed through a visual medium. This interpretation
can easily be adapted to convert visual data into an audio format which to the trained ear may allow for a deeper interpretation.
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Figure 7: (a) Here are a few examples of triads, all in root position. Each note is assigned a color, but in
this case the colors are predetermined. (b) There are two variations for chord representations which
are illustrated by third order polygons. As stated before, each vertex is a musical note, assigned a color,
with 𝑑! and 𝑑" being the intertonal distance. 𝑑# is a fraction of the intertonal distance to allow for a
polygonal representation, this fraction can be controlled. The color blending is done using
interpolation allowing the central region color to be a representation of the ‘color’ assigned to that
chord.

Doing these three different procedures bring about different aspects of our research
that will eventually come together accordingly. Having the notes portrayed as line
functions helps display their intervals from each other, and using colors to differentiate
how far apart they are from each other will be able to show tension that is utilized in
various pieces of music. Bringing these two together creates the polygons that were
formed. The hope is to eventually come to a point where these images can be generated
right away and as music is being played, where different shapes and colors are formed
and displayed as a song or piece is performed.

Figure	1:	(a)	𝑦 = 𝑥 graph.	Since	each	point	on	the	
grid	is	only	one	unit	apart,	it	mimics	how	each	note	
of	a	chromatic	scale	is	one	semitone	apart	from	
each	other.	(b)	Chromatic	scale.

Figure	2: (a)	𝑦 = 2𝑥 graph.	(b)	A	scale	whose	
notes	are	two	semitones,	or	one	whole	tone,	apart	
from	each	other,	also	known	as	a	whole	tone	
scale.

Figure 3: Above are the graphs created. The chart on the right of each shows the data
points plotted manually. Each 𝑦 value is the number of semitones away from tonic each
note, or symbol. (a) and (c) major scale, (b) and (d) minor scale.

Figure 4: Now, we work backwards, meaning we took a function and tried converting it into
notes. For this case, we used (a) a parabola. (b) Here is the sheet music created, where each note
is the same number of semitones apart as the points on the parabola. (c) The chart showing
each point, or note, used to create the graph. Like the charts in Figure 1a and 1b, each y value is
how many semitones each note is from the origin.
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This section is our analysis of chords. A chord is a group of two or more notes played at
once to create a fuller sound. Typically they are used to amplify a particular note by
grouping it with others that will make it sound brighter or darker, depending on which
notes are used and in what key signature. Chords with two notes are referred to as
double-stops and chords with three notes are triads.

Here, we used our code generated in MATLAB to convert chords into two-dimensional
shapes. Each note is a vertex, the lengths of the sides are determined by how far each
note is from one another, and, like the previous section with the plotted graph, the notes
are given their own colors. Since we are creating shapes here, we only worked with triads
and four note chords given the fact that double stops would not give us enough vertices
to make a shape.

We start the project by taking a look at one of the simpler aspects of music, scales.
A scale is an organized pattern of notes that starts on one note, which is referred
to as the tonic, and continues up. For the most part scales go from the tonic up to
wither an octave or two above it. Here, we look at several different types of scales.

In order to create line graphs made from scales, the tonic was treated as the
origin, or zero. Each space on the 𝑦 − axis of the grid was treated as a semitone
apart, and the spaces on the x axis were not given a true unit, since music does not
have a definite time function. Instead, the 𝑥 − axis was simply used to separate
one note from the previous.

Figure 8: Above are several four-note C major chords with slight variations to them. The little
differences shown are reflective in the polygons created from them as well. From left to right, the left-
most vertex gets longer and becomes a more prominent shade of red. This is because that vertex
represents the highest note of the chord, which is a semitone higher than the chord to the left of it.
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We translate each note to a number in an array which then coincides with a color.
Currently these colors are predetermined by the software, MATLAB. We hope to
have more control over color choice but will require predefining 88 colors, one for
each note on the piano. Each color block represents an eighth note beat. We would
like to combine these into rectangles to distinguish between two sequential eight
notes.

Figure 5: (a) Here is the sheet music of the primary melody from Bach’s Minuet I in G. (b) This is
the melody as a color plot. We can change the size of the plot as we see fit, currently it is 16
eighth notes across. This plot shows discrete color blocks one for each eighth note beat. (c) This
is how (b) looks when rotated, showing the different elevations of each note. (d) This plot shows
the interpolation between the nearest neighbor array elements.
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Figure 6: (a) Now here is the complete sheet music of the Bach Minuet used. (b) Here is how its
plot comes out to be, where every other row after the first is the melody, and every other row
after the second is the bass. Because of the larger range of notes, a different note was placed as
the origin, so that the colors on both lines would coordinate properly. Unfortunately, a small
portion in the lower right section was not able to be plotted for some unknown reason. (c) This
is the interpolation of that plot
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Piano	with	its	notes	labeled	along	with	sheet	music	showing	where	they	fall	on	the	staff.

As stated before, the goal of our project is to add a new layer of insight to organized and analyzed data. (1) This idea has been done
before; a similar study was conducted in 2019 by the ACS (American Chemical Society) who used artificial intelligence to convert amino
acid sequences into sheet music. We hope to accomplish a similar feat, where instead we take images or data and convert them into sheet
music.

(a) Here is the protein lysozyme converted into sheet music by the
ACS. Each bar is created by analyzing the vibration patterns of the
protein’s building blocks, showing an audible representation. Notice
how the music doesn’t follow any conventional patterns or scales
typically used in commonmusic. It is simplyused tovisualize certain
patterns andarrangements createdby theprotein. (b) Somepictures
taken by the Hubble telescope. With our program, we hope to
convert these images into sheet music as well. Given the variety of
colors displayed in these images, they could be used to analyze the
properties of certain celestial bodies, such as what they could be
madeof or the sizeanddistancesof them.
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