AIP The Journal of Chemical Physics

Perturbation Calculation of the Energy of the First Excited State ($2p\sigma$) of H2+

Robert Silbey

Citation: J. Chem. Phys. **46**, 4026 (1967); doi: 10.1063/1.1840480 View online: http://dx.doi.org/10.1063/1.1840480 View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v46/i10 Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/ Journal Information: http://jcp.aip.org/about/about_the_journal Top downloads: http://jcp.aip.org/features/most_downloaded Information for Authors: http://jcp.aip.org/authors

Perturbation Calculation of the Energy of the First Excited State $(2p\sigma)$ of H_2^+

ROBERT SILBEY*

Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

(Received 28 November 1966)

The electronic energy of the $2\rho\sigma$ state of H_2^+ is calculated by perturbation theory to third order using the Guillemin–Zener wavefunction as a zeroth-order function. The results agree quite well with the exact calculations except for small internuclear distances, as expected.

RECENTLY,¹ a perturbation calculation to third order in energy has been carried out on the ground state of H_2^+ starting with a simple zeroth-order function. In this note, we present a similar calculation on the $2p\sigma$ state of H_2^+ . In this calculation, the firstorder perturbation equation is solved, and the energy calculated to third-order.

The normalized zeroth-order wavefunction for the $2p\sigma$ state is taken to be the Heitler-London function,

$$\psi^{(0)} = N \exp\left(-\frac{1}{2}Ra\lambda\right) \sinh\left(\frac{1}{2}(Rb\mu)\right). \tag{1}$$

The parameters a and b are functions of R, as is the normalization constant N, and λ and μ are the usual spheroidal coordinates. At $R = \infty$, $\psi^{(0)}$ becomes the separated hydrogen atom and proton. But as $R \rightarrow 0$, from the definitions of λ and μ (with the origin of the spherical coordinates taken at the midpoint of the line joining the two nuclei),

$$R\lambda \equiv (r^{2} + rR\cos\theta + \frac{1}{4}R^{2})^{1/2} + (r^{2} - rR\cos\theta + \frac{1}{4}R^{2})^{1/2},$$

$$R\lambda \rightarrow 2r + O(R^{2}),$$

$$R\mu \equiv (r^{2} + rR\cos\theta + \frac{1}{4}R^{2})^{1/2} - (r^{2} - rR\cos\theta + \frac{1}{4}R^{2})^{1/2},$$

 $R\mu \rightarrow R \cos\theta + O(R^3)$.

Hence, we have upon expansion of $\sinh \frac{1}{2}(Rb\mu)$, and keeping terms of order R only,

$$\psi^{(0)} \rightarrow RbN(R \rightarrow 0) \exp(-ar) \cos\theta.$$

But,⁽²⁾ $N(R \rightarrow 0) \sim R^{-1}$; hence

$$\psi^{(0)}(R=0) \sim \exp(-ar) \cos\theta. \tag{2}$$

This wavefunction is *not* the correct limiting form for R=0, since the 2p state for the H atom has a node at r=0. Because of this, it is seen that the perturbation series begins to diverge for sufficiently small R.

The zeroth-order Hamiltonian corresponding to $\psi^{(0)}$ is

$$\mathfrak{K}^{(0)} = T - (T\psi^{(0)}/\psi^{(0)}) + E^{(0)}, \qquad (3)$$

or

$$3C^{(0)} = -\frac{1}{2}\Delta - (2a/R) \left[\lambda/(\lambda^2 - \mu^2) \right] -\frac{1}{2} (a^2 - b^2) \left[(1 - \mu^2) / (\lambda^2 - \mu^2) \right] - \left[2b\mu/R(\lambda^2 - \mu^2) \right] \coth^{\frac{1}{2}}(Rb\mu) \quad (4)$$

and

$$E^{(0)} = -\frac{1}{2}a^2. \tag{5}$$

Kim and Chang² have used a wavefunction of the type of (1) and have minimized the expectation value of 3C with respect to a and b. We start with their wavefunction as $\psi^{(0)}$. The values of a and b are given in Ref. 2. Equation (4) should be compared with the $3C^{(0)}$ corresponding to the ground-state wavefunction.¹ (They are not the same, of course).

The perturbation, V, is given by $\mathfrak{K} - \mathfrak{K}^{(0)}$ or

$$V = \frac{-4\lambda}{R(\lambda^{2} - \mu^{2})} + \frac{2a\lambda}{R(\lambda^{2} - \mu^{2})} + \frac{1}{2}(a^{2} - b^{2})\left(\frac{1 - \mu^{2}}{\lambda^{2} - \mu^{2}}\right) + \frac{2b\mu}{R(\lambda^{2} - \mu^{2})} \coth^{\frac{1}{2}}(Rb\mu).$$
(6)

Thus, we must solve the first-order perturbation equation for (1):

$$(\mathcal{F}^{(0)} - E^{(0)})\psi^{(1)} + (V - E^{(1)})\psi^{(0)} = 0$$
(7)

in which

$$E^{(1)} \!= \! \left<\!\!\! \left<\!\!\! \psi^{(0)} \mid V \mid \psi^{(0)} \right>\!\! \left<\!\!\! \left<\!\!\! \psi^{(0)} \mid \psi^{(0)} \right>\!\!\! \right>$$

The procedure used to find $\psi^{(1)}$ is to make the substitution:

$$\psi^{(1)} = [F_1(\lambda) + F_2(\mu)] \psi^{(0)}, \qquad (8)$$

where F_1 and F_2 depend only on the variable indicated. When (8) is substituted into (7), we find that (7) is

^{*} NAS-NRC-AFOSR Postdoctoral Fellow 1965-1966. Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass.

¹R. Matcha, W. Lyon, and J. O. Hirschfelder, Theoretical Chemistry Institute (University of Wisconsin) Rept. No. 57, July 1964; W. Lyon, R. Matcha, W. A. Sanders, W. Meath, and J. O. Hirschfelder, J. Chem. Phys. 43, 1095 (1965).

²S. Kim, T. Y. Chang, and J. O. Hirschfelder, Theoretical Chemistry Institute (University of Wisconsin) Rept. No. 40, March 1964; J. Chem. Phys. 43, 1092 (1965).

separable into two equations:

$$\begin{bmatrix} -2(\lambda^{2}-1) \left(F_{1}^{\prime\prime}+\{\left[2\lambda/(\lambda^{2}-1)\right]-Ra\}F_{1}^{\prime}\right)+2a\lambda R-4(\lambda R)-E^{(1)}R^{2}\lambda^{2}-\frac{1}{2}(a^{2}-b^{2})R^{2}\right]=C, \quad (9a)$$

$$\begin{bmatrix} -2(1-\mu^{2}) \left(F_{2}^{\prime\prime}+\{Rb \coth^{\frac{1}{2}}(Rb\mu)-\left[2\mu/(1-\mu^{2})\right]\}F_{2}^{\prime}\right) +2b\mu R \coth^{\frac{1}{2}}(Rb\mu)-\mu^{2\frac{1}{2}}R^{2}(a^{2}-b^{2})+E^{(1)}R^{2}\mu^{2}\right]=-C, \quad (9b)$$

in which the primes refer to differentiation with respect to the variable upon which F_1 or F_2 depends, and C is a separation constant at our disposal. C is chosen to ensure the proper behavior of F_1 and F_2 at the boundaries.

Equations (9a) and (9b) are integrable and we find after some rearrangement.

$$F_{1}(\lambda) = (RE^{(1)}/2a)\lambda + \{(E^{(1)}/a^{2}) + \lfloor (2-a)/a \rfloor\} \ln(\lambda+1) + F_{1}^{0}$$
(10a)

and

$$F_{2}(\mu) = A \ln\left[\sinh\frac{1}{2}(Rb\mu)/\mu\right] + \frac{1}{4}(ARb)\mu \coth\frac{1}{2}(Rb\mu) + \sum_{k=1}^{\infty} G(k) \ln\left[(4k^{2}\pi^{2} + R^{2}b^{2}\mu^{2})/(4k^{2}\pi^{2} + R^{2}b^{2})\right] \\ + B\left[(\mu \coth\frac{1}{2}Rb\mu) - (\coth Rb)\right](1-\mu^{2})^{-1}/(2Rb) + F_{2}^{0}, \quad (10b)$$

$$\begin{split} &A = (a^2 - b^2 - 2E^{(1)})/3b^2, \\ &B = -2E^{(1)}/a^2 - 4/a + 2Ra - 4R - (a^2 - b^2)/b^2 - 2RE^{(1)}/a - \frac{2}{3}R^2E^{(1)} + 2E^{(1)}/b^2 + \frac{1}{3}\left[R^2(a^2 - b^2)\right], \\ &G(k) = (R^2b^2 + 4k^2\pi^2)^{-1}\{B(4k^2\pi^2 - R^2b^2)/(4k^2\pi^2 + R^2b^2) + B + \frac{2}{3}R^2E^{(1)} - \frac{1}{3}\left[R^2(a^2 - b^2)\right]\}, \end{split}$$

in which F_1^0 and F_2^0 are constants of integration, which will be used to ensure that $\psi^{(1)}$ is orthogonal to $\psi^{(0)}$. We have

$$E^{(1)} =$$

$$\frac{4R^{-2}\{(\sinh Rb/Rb)[(aR/2)+\frac{1}{4}-R-a^{-1}-(a^{2}/4b^{2})]+[\frac{1}{4}+(a^{2}/4b^{2})]\cosh Rb+R+a^{-1}+\frac{1}{12}(b^{2}-a^{2})R^{2}-aR-\frac{1}{2}\}}{\{[(2/aR)+2-(2/b^{2}R^{2})](\sinh Rb/Rb)+(2/R^{2}b^{2})\cosh Rb-[\frac{2}{3}+(2/aR)+(2/a^{2}R^{2})]\}}.$$
(11)

The second- and third-order perturbation energies are given by

$$E^{(2)} = \langle \psi^{(0)} | V | \psi^{(1)} \rangle / \langle \psi^{(0)} | \psi^{(0)} \rangle,$$

$$E^{(3)} = \langle \psi^{(1)} | V | \psi^{(1)} \rangle / \langle \psi^{(0)} | \psi^{(0)} \rangle.$$
(12)

These were evaluated by first integrating analytically over λ then integrating numerically over μ using a 16-point Gaussian integration.

The expectation value of 5° with respect to a trial function of the form $\phi = \psi^{(0)} + c \psi^{(1)}$ may be written as a function of C, $\mathcal{E}_1(C)$, accurate through third-order in the perturbation

$$\mathcal{E}_{1}(C) = (E^{(0)} + E^{(1)}) + \left[2CE^{(2)} + C^{2}(E^{(3)} - E^{(2)})/(1 + C^{2}S)\right],$$
(13)

where

$$S = \langle \psi^{(1)} | \psi^{(1)} \rangle / \langle \psi^{(0)} | \psi^{(0)} \rangle.$$
(14)

Minimizing $\mathcal{E}_1(c)$ with respect to c gives

$$C_{\min} = (E^{(3)} - E^{(2)}) \pm \left[(E^{(3)} - E^{(2)})^2 + 4(E^{(2)})^2 S \right]^{1/2} / 2E^{(2)} S$$
(15)

and then

$$\mathcal{E}_1(C = C_{\min}) = E^{(0)} + E^{(1)} + C_{\min}E^{(2)}.$$
(16)

In Table I, the electronic energy is given for R=0.1to R=9.0 a.u. The agreement with the exact answers of Bates, Ledsham, and Stewart³ is very good.

above (that $\psi^{(0)}$ does not approach the correct limiting form for $R \rightarrow 0$) the perturbation series seems to be diverging for R < 1.0 a.u. For R = 0, we can solve the Small values of R: As expected from the comment perturbation equation, (7), and we find with

³ D. Bates, K. Ledsham, and A. Stewart, Phil. Trans. Roy. Soc. (London) A246, 215 (1953).

R	c(a.u.) — ($E^{(0)} + E^{(1)})^{b}$ –	$\mathcal{E}_1(C=1)^{\circ}$	$-\epsilon_1(C_{\min})^d$	E ^e (Exact energy)
(D.1 -	-0.41308 -	-0.27161 +	-0,48071(0,31979)	
(0.2	0.42671	0.38287	0.48943(0.39634) -	+0.50268
(0.4	0.45552	0.47095	0.50462(0.52225)	0.51079
(0.6	0.48602	0.51006	0.52142(0.62459)	0.52431
(0.8	0.51745	0.53747	0.54137(0.70546)	0.54274
1	1.0	0.54872	0.56278	0.56415(0.76733)	0.56481
1	1.2	0.57857	0.58778	0.58828(0.81325)	0.58861
1	1.4	0.60583	0.61173	0.61193 (0.84759)	0.61208
1	1.6	0.62966	0.63346	0.63354(0.87320)	0.63361
1	1.8	0.64966	0.65216	0.65219(0.89249)	0,65223
· · · · · · · · · · · · · · · · · · ·	2.0	0.66581	0.66750	0.66751(0.90732)	0.66754
4	2.2	0.67836	0.67954	0.67955(0.91890)	0.67956
2	2.4	0.68772	0.68856	0.68857(0.92815)	0.68858
2	2.6	0.69433	0.69495	0.69496(0.93530)	0.69496
2	2.8	0.69864	0.69911	0.69911(0.94137)	0.69911
3	3.0	0.70105	0.70142	0.70142(0.94644)	0.70143
3	3.2	0.70192	0.70221	0.70221(0.95049)	
3	3.4	0.70156	0.70179	0.70179(0.95401)	
3	3.5	0.70086	0.70121	0.70121(0.95352)	
3	3.6	0.70022	0.70041		
3	3.8	0.69811	0.69827		
4	1.0	0.69541	0.69555		0.69555
4	1.5	0.68695	0.68705		
5	5.0	0.67722	0.67729		0.67729
5	5.5	0.66714	0.66720		0.66719
6	5.0	0.65726	0.65731		0.65731
6	5.5	0.64786	0.64791		0.64791
7	7.0	0.63913	0.63913		0.63913
7	.5	0.63099	0.63103		0.63103
8	3.0	0.62357	0.62361		0.62361
8	3.5	0.61680	0.61683		0.61683
9	0.0	0.61063	0.61065		0.61066

TABLE I. Electronic energy of the $2p\sigma$ state of H_2^+ as a function of internuclear distance R.^a

^a All values in atomic units.

and

^b Minimized energy through first order in the perturbation. Taken from Ref. 2

^e Energy through third order in the perturbation (using a and b from Ref.

$$\psi^{(0)} = \exp(-ar) \cos\theta]$$

$$\psi^{(1)}(R=0) = \exp(-ar) \cos\theta [2 \ln r + (3a-2)r + c].$$

(17)

If we choose $\langle \psi^{(0)} | \psi^{(1)} \rangle = 0$, then

$$c = [3(2-3a)/2a] + 2(\gamma + \ln 2a - \frac{3}{2}),$$

where γ is Euler's constant ($\gamma = 0.577 \cdots$). Then, we have

$$E^{(0)}(R=0) + E^{(1)}(R=0) = \frac{5}{2}a^2 - 2a \qquad (18)$$

$$E^{(2)}(R=0) = -\frac{29}{2}a^2 + 10a - 2, \qquad (19)$$

$$E^{(3)}(R=0) = 78a^2 - 48a + 8, \tag{20}$$

$$S(R=0) = (3/a^2) - (13/a) + \frac{31}{4} + \frac{2}{3}\pi^2.$$
 (21)

Minimizing $E^{(0)} + E^{(1)}$ with respect to a gives $a = \frac{2}{5}$, and $E^{(0)} + E^{(1)} = -0.4$ a.u.; but this value of a gives

$$\sum_{i=0}^{8} E^{(i)}(a=0.4) = +0.56.$$
 (22)

Minimizing $\mathcal{E}_1(C=1)$ with respect to a, gives $a \approx 0.3$ and

2). See Eq. (13) of text, with c=1. ^d Energy through third order with minimization with respect to c. See Eq. (16) of text (values of cmin in parentheses).

e See Ref. 3.

 $\mathcal{E}_1(C=1) = -0.323$ a.u. and

$$\sum_{i=0}^{3} E^{(i)}(a=0.3) = -0.06.$$
 (23)

In either case (a=0.3 or a=0.4), $E^{(3)}$ is larger than $E^{(2)}$ in absolute magnitude. This indicates that the series seems to be diverging. The reason for this lies undoubtedly in the choice of the zeroth-order wavefunction. The first-order function (17) corrects the zeroth-order by putting in a term proportional to $r \exp(-ar) \cos\theta$ (the correct wavefunction at R=0), but still contains terms which cause difficulties at r=0.

From Table I, we can see that $\mathcal{E}_{I}(C=1)$ is greater than $E^{(0)} + E^{(1)} [= \varepsilon_1(C=0)]$ for R < 0.4 a.u., and less for $R \leq 0.4$ a.u. which indicates that the perturbation series is beginning to diverge at $R \sim 0.4$ a.u.

ACKNOWLEDGMENTS

I would like to thank Professor J. O. Hirschfelder for his encouragement and advice, and Professor W. Meath and Dr. W. D. Lyon for many discussions.