AIP
 The Journal of
 Chemical Physics

Perturbation Calculation of the Energy of the First Excited State (2po) of H2+

Robert Silbey

Citation: J. Chem. Phys. 46, 4026 (1967); doi: 10.1063/1.1840480
View online: http://dx.doi.org/10.1063/1.1840480
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v46/i10
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Perturbation Calculation of the Energy of the First Excited State (2pб) of $\mathrm{H}_{2}{ }^{+}$
 Robert Silbey*
 Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

(Received 28 November 1966)

Abstract

The electronic energy of the $2 p \sigma$ state of $\mathrm{H}_{2}{ }^{+}$is calculated by perturbation theory to third order using the Guillemin-Zener wavefunction as a zeroth-order function. The results agree quite well with the exact calculations except for small internuclear distances, as expected.

RECENTLY, ${ }^{1}$ a perturbation calculation to third order in energy has been carried out on the ground state of $\mathrm{H}_{2}{ }^{+}$starting with a simple zeroth-order function. In this note, we present a similar calculation on the $2 p \sigma$ state of $\mathrm{H}_{2}{ }^{+}$. In this calculation, the firstorder perturbation equation is solved, and the energy calculated to third-order.

The normalized zeroth-order wavefunction for the $2 p \sigma$ state is taken to be the Heitler-London function,

$$
\begin{equation*}
\psi^{(0)}=N \exp \left(-\frac{1}{2} R a \lambda\right) \sinh \frac{1}{2}(R b \mu) \tag{1}
\end{equation*}
$$

The parameters a and b are functions of R, as is the normalization constant N, and λ and μ are the usual spheroidal coordinates. At $R=\infty, \psi^{(0)}$ becomes the separated hydrogen atom and proton. But as $R \rightarrow 0$, from the definitions of λ and μ (with the origin of the spherical coordinates taken at the midpoint of the line joining the two nuclei),
$R \lambda \equiv\left(r^{2}+r R \cos \theta+\frac{1}{4} R^{2}\right)^{1 / 2}+\left(r^{2}-r R \cos \theta+\frac{1}{4} R^{2}\right)^{1 / 2}$,
$R \lambda \rightarrow 2 r+O\left(R^{2}\right)$,
$R \mu \equiv\left(r^{2}+r R \cos \theta+\frac{1}{4} R^{2}\right)^{1 / 2}-\left(r^{2}-r R \cos \theta+\frac{1}{4} R^{2}\right)^{1 / 2}$,
$R \mu \rightarrow R \cos \theta+O\left(R^{3}\right)$.
Hence, we have upon expansion of $\sinh \frac{1}{2}(R b \mu)$, and keeping terms of order R only,

$$
\psi^{(0)} \rightarrow R b N(R \rightarrow 0) \exp (-a r) \cos \theta .
$$

But, ${ }^{(2)} N(R \rightarrow 0) \sim R^{-1}$; hence

$$
\begin{equation*}
\psi^{(0)}(R=0) \sim \exp (-a r) \cos \theta \tag{2}
\end{equation*}
$$

This wavefunction is not the correct limiting form for $R=0$, since the $2 p$ state for the H atom has a node at $r=0$. Because of this, it is seen that the perturbation series begins to diverge for sufficiently small R.

[^0]The zeroth-order Hamiltonian corresponding to $\psi^{(0)}$ is

$$
\begin{equation*}
\mathfrak{X}^{(0)}=T-\left(T \psi^{(0)} / \psi^{(0)}\right)+E^{(0)} \tag{3}
\end{equation*}
$$

or

$$
\begin{align*}
\mathcal{H}^{(0)}=-\frac{1}{2} \Delta- & (2 a / R)\left[\lambda /\left(\lambda^{2}-\mu^{2}\right)\right] \\
& -\frac{1}{2}\left(a^{2}-b^{2}\right)\left[\left(1-\mu^{2}\right) /\left(\lambda^{2}-\mu^{2}\right)\right] \\
& -\left[2 b \mu / R\left(\lambda^{2}-\mu^{2}\right)\right] \operatorname{coth} \frac{1}{2}(R b \mu) \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
E^{(0)}=-\frac{1}{2} a^{2} \tag{5}
\end{equation*}
$$

Kim and Chang ${ }^{2}$ have used a wavefunction of the type of (1) and have minimized the expectation value of $\mathfrak{H C}$ with respect to a and b. We start with their wavefunction as $\psi^{(0)}$. The values of a and b are given in Ref. 2. Equation (4) should be compared with the $\mathbb{H}^{(0)}$ corresponding to the ground-state wavefunction. ${ }^{1}$ (They are not the same, of course).
The perturbation, V, is given by $\mathfrak{H}-\mathfrak{H}^{(0)}$ or

$$
\begin{array}{r}
V=\frac{-4 \lambda}{R\left(\lambda^{2}-\mu^{2}\right)}+\frac{2 a \lambda}{R\left(\lambda^{2}-\mu^{2}\right)}+\frac{1}{2}\left(a^{2}-b^{2}\right)\left(\frac{1-\mu^{2}}{\lambda^{2}-\mu^{2}}\right) \\
+\frac{2 b \mu}{R\left(\lambda^{2}-\mu^{2}\right)} \operatorname{coth} \frac{1}{2}(R b \mu) \tag{6}
\end{array}
$$

Thus, we must solve the first-order perturbation equation for (1):

$$
\begin{equation*}
\left(\mathcal{H}^{(0)}-E^{(0)}\right) \psi^{(1)}+\left(V-E^{(1)}\right) \psi^{(0)}=0 \tag{7}
\end{equation*}
$$

in which

$$
E^{(1)}=\left\langle\psi^{(0)}\right| V\left|\psi^{(0)}\right\rangle /\left\langle\psi^{(0)} \mid \psi^{(0)}\right\rangle
$$

The procedure used to find $\psi^{(1)}$ is to make the substitution:

$$
\begin{equation*}
\psi^{(1)}=\left[F_{1}(\lambda)+F_{2}(\mu)\right] \psi^{(0)} \tag{8}
\end{equation*}
$$

where F_{1} and F_{2} depend only on the variable indicated. When (8) is substituted into (7), we find that (7) is

[^1]separable into two equations:
\[

$$
\begin{align*}
& {\left[-2\left(\lambda^{2}-1\right)\left(F_{1}^{\prime \prime}+\left\{\left[2 \lambda /\left(\lambda^{2}-1\right)\right]-R a\right\}\right.\right.}\left.\left.F_{1}{ }^{\prime}\right)+2 a \lambda R-4(\lambda R)-E^{(1)} R^{2} \lambda^{2}-\frac{1}{2}\left(a^{2}-b^{2}\right) R^{2}\right]=C, \tag{9a}\\
& {\left[-2\left(1-\mu^{2}\right)\left(F_{2}{ }^{\prime \prime}+\left\{R b \operatorname{coth} \frac{1}{2}(R b \mu)-\left[2 \mu /\left(1-\mu^{2}\right)\right]\right\} F_{2}{ }^{\prime}\right)\right.} \\
&\left.+2 b \mu R \operatorname{coth} \frac{1}{2}(R b \mu)-\mu^{21} R^{2}\left(a^{2}-b^{2}\right)+E^{(1)} R^{2} \mu^{2}\right]=-C, \tag{9b}
\end{align*}
$$
\]

in which the primes refer to differentiation with respect to the variable upon which F_{1} or F_{2} depends, and C is a separation constant at our disposal. C is chosen to ensure the proper behavior of F_{1} and F_{2} at the boundaries.
Equations (9a) and (9b) are integrable and we find after some rearrangement.

$$
\begin{equation*}
F_{1}(\lambda)=\left(R E^{(1)} / 2 a\right) \lambda+\left\{\left(E^{(1)} / a^{2}\right)+[(2-a) / a]\right\} \ln (\lambda+1)+F_{1} 0 \tag{10a}
\end{equation*}
$$

and

$$
\begin{align*}
F_{2}(\mu)=A \ln \left[\sinh \frac{1}{2}(R b \mu) / \mu\right]+\frac{1}{4}(A R b) \mu \operatorname{coth}_{2}^{1}(R b \mu) & +\sum_{k=1}^{\infty} G(k) \ln \left[\left(4 k^{2} \pi^{2}+R^{2} b^{2} \mu^{2}\right) /\left(4 k^{2} \pi^{2}+R^{2} b^{2}\right)\right] \\
& +B\left[\left(\mu \operatorname{coth} \frac{1}{2} R b \mu\right)-(\operatorname{coth} R b)\right]\left(1-\mu^{2}\right)^{-1} /(2 R b)+F_{2}, \tag{10b}\\
A & =\left(a^{2}-b^{2}-2 E^{(1)}\right) / 3 b^{2}, \\
B & =-2 E^{(1)} / a^{2}-4 / a+2 R a-4 R-\left(a^{2}-b^{2}\right) / b^{2}-2 R E^{(1)} / a-\frac{2}{3} R^{2} E^{(1)}+2 E^{(1)} / b^{2}+\frac{1}{3}\left[R^{2}\left(a^{2}-b^{2}\right)\right], \\
G(k) & =\left(R^{2} b^{2}+4 k^{2} \pi^{2}\right)^{-1}\left\{B\left(4 k^{2} \pi^{2}-R^{2} b^{2}\right) /\left(4 k^{2} \pi^{2}+R^{2} b^{2}\right)+B+\frac{2}{3} R^{2} E^{(1)}-\frac{1}{3}\left[R^{2}\left(a^{2}-b^{2}\right)\right]\right\},
\end{align*}
$$

in which $F_{1}{ }^{0}$ and $F_{2}{ }^{0}$ are constants of integration, which will be used to ensure that $\psi^{(1)}$ is orthogonal to $\psi^{(0)}$. We have

$$
\begin{align*}
& E^{(1)}= \tag{11}\\
& \frac{4 R^{-2}\left\{(\sinh R b / R b)\left[(a R / 2)+\frac{1}{4}-R-a^{-1}-\left(a^{2} / 4 b^{2}\right)\right]+\left[\frac{1}{4}+\left(a^{2} / 4 b^{2}\right)\right] \cosh R b+R+a^{-1}+\frac{1}{12}\left(b^{2}-a^{2}\right) R^{2}-a R-\frac{1}{2}\right\}}{\left\{\left[(2 / a R)+2-\left(2 / b^{2} R^{2}\right)\right](\sinh R b / R b)+\left(2 / R^{2} b^{2}\right) \cosh R b-\left[\frac{2}{3}+(2 / a R)+\left(2 / a^{2} R^{2}\right)\right]\right\}}
\end{align*}
$$

have

The second- and third-order perturbation energies are given by

$$
\begin{align*}
& E^{(2)}=\left\langle\psi^{(0)}\right| V\left|\psi^{(1)}\right\rangle /\left\langle\psi^{(0)} \mid \psi^{(0)}\right\rangle, \\
& E^{(3)}=\left\langle\psi^{(1)}\right| V\left|\psi^{(1)}\right\rangle /\left\langle\psi^{(0)} \mid \psi^{(0)}\right\rangle . \tag{12}
\end{align*}
$$

These were evaluated by first integrating analytically over λ then integrating numerically over μ using a 16 -point Gaussian integration.

The expectation value of \mathfrak{H} with respect to a trial function of the form $\phi=\psi^{(0)}+c \psi^{(1)}$ may be written as a function of $C, \varepsilon_{1}(C)$, accurate through third-order in the perturbation

$$
\begin{equation*}
\varepsilon_{1}(C)=\left(E^{(0)}+E^{(1)}\right)+\left[2 C E^{(2)}+C^{2}\left(E^{(3)}-E^{(2)}\right) /\left(1+C^{2} S\right)\right], \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\left\langle\psi^{(1)} \mid \psi^{(1)}\right\rangle /\left\langle\psi^{(0)} \mid \psi^{(0)}\right\rangle \tag{14}
\end{equation*}
$$

Minimizing $\varepsilon_{1}(c)$ with respect to c gives

$$
\begin{equation*}
C_{\min }=\left(E^{(3)}-E^{(2)}\right) \pm\left[\left(E^{(3)}-E^{(2)}\right)^{2}+4\left(E^{(2)}\right)^{2} S\right]^{1 / 2} / 2 E^{(2)} S \tag{15}
\end{equation*}
$$

and then

$$
\begin{equation*}
\varepsilon_{1}\left(C=C_{\min }\right)=E^{(0)}+E^{(1)}+C_{\text {min }} E^{(2)} . \tag{16}
\end{equation*}
$$

In Table I, the electronic energy is given for $R=0.1$ to $R=9.0$ a.u. The agreement with the exact answers of Bates, Ledsham, and Stewart ${ }^{3}$ is very good.

Small values of R : As expected from the comment
above (that $\psi^{(0)}$ does not approach the correct limiting form for $R \rightarrow 0$) the perturbation series seems to be diverging for $R<1.0$ a.u. For $R=0$, we can solve the perturbation equation, (7), and we find [with

[^2]Table I. Electronic energy of the $2 p \sigma$ state of $\mathrm{H}_{2}{ }^{+}$as a function of internuclear distance $R .^{a}$

R (a.u.)	$-\left(E^{(0)}+E^{(1)}\right)^{\text {b }}$	$-\varepsilon_{1}(C=1)^{\circ}$	$-\mathcal{E}_{1}\left(C_{\text {min }}\right)^{\mathrm{d}}$	$\begin{gathered} -E^{e} \text { (Exact } \\ \text { energy) } \end{gathered}$
0.1	+0.41308	+0.27161	+0.48071 (0.31979)	
0.2	0.42671	0.38287	0.48943 (0.39634)	$+0.50268$
0.4	0.45552	0.47095	$0.50462(0.52225)$	0.51079
0.6	0.48602	0.51006	0.52142 (0.62459)	0.52431
0.8	0.51745	0.53747	$0.54137(0.70546)$	0.54274
1.0	0.54872	0.56278	$0.56415(0.76733)$	0.56481
1.2	0.57857	0.58778	$0.58828(0.81325)$	0.58861
1.4	0.60583	0.61173	$0.61193(0.84759)$	0.61208
1.6	0.62966	0.63346	$0.63354(0.87320)$	0.63361
1.8	0.64966	0.65216	$0.65219(0.89249)$	0.65223
2.0	0.66581	0.66750	$0.66751(0.90732)$	0.66754
2.2	0.67836	0.67954	$0.67955(0.91890)$	0.67956
2.4	0.68772	0.68856	$0.68857(0.92815)$	0.68858
2.6	0.69433	0.69495	$0.69496(0.93530)$	0.69496
2.8	0.69864	0.69911	0.69911 (0.94137)	0.69911
3.0	0.70105	0.70142	0.70142 (0.94644)	0.70143
3.2	0.70192	0.70221	$0.70221(0.95049)$	
3.4	0.70156	0.70179	$0.70179(0.95401)$	
3.5	0.70086	0.70121	$0.70121(0.95352)$	
3.6	0.70022	0.70041		
3.8	0.69811	0.69827		
4.0	0.69541	0.69555		0.69555
4.5	0.68695	0.68705		
5.0	0.67722	0.67729		0.67729
5.5	0.66714	0.66720		0.66719
6.0	0.65726	0.65731		0.65731
6.5	0.64786	0.64791		0.64791
7.0	0.63913	0.63913		0.63913
7.5	0.63099	0.63103		0.63103
8.0	0.62357	0.62361		0.62361
8.5	0.61680	0.61683		0.61683
9.0	0.61063	0.61065		0.61066

${ }^{\text {a }}$ All values in atomic units.
${ }^{b}$ Minimized energy through first order in the perturbation. Taken from Ref. 2.
${ }^{c}$ Energy through third order in the perturbation (using a and b from Ref.

$$
\begin{align*}
& \left.\psi^{(0)}=\exp (-a r) \cos \theta\right] \\
& \qquad \psi^{(1)}(R=0)=\exp (-a r) \cos \theta[2 \ln r+(3 a-2) r+c] . \tag{17}
\end{align*}
$$

If we choose $\left\langle\psi^{(0)} \mid \psi^{(1)}\right\rangle=0$, then

$$
c=[3(2-3 a) / 2 a]+2\left(\gamma+\ln 2 a-\frac{3}{2}\right),
$$

where γ is Euler's constant $(\gamma=0.577 \cdots)$. Then, we have

$$
\begin{equation*}
E^{(0)}(R=0)+E^{(1)}(R=0)=\frac{5}{2} a^{2}-2 a \tag{18}
\end{equation*}
$$

and

$$
\begin{gather*}
E^{(2)}(R=0)=-\frac{29}{2} a^{2}+10 a-2, \tag{19}\\
E^{(3)}(R=0)=78 a^{2}-48 a+8, \tag{20}\\
S(R=0)=\left(3 / a^{2}\right)-(13 / a)+\frac{31}{4}+\frac{2}{3} \pi^{2} . \tag{21}
\end{gather*}
$$

Minimizing $E^{(0)}+E^{(1)}$ with respect to a gives $a=\frac{2}{5}$, and $E^{(0)}+E^{(1)}=-0.4$ a.u.; but this value of a gives

$$
\begin{equation*}
\sum_{i=0}^{3} E^{(i)}(a=0.4)=+0.56 \tag{22}
\end{equation*}
$$

Minimizing $\varepsilon_{1}(C=1)$ with respect to a, gives $a \approx 0.3$ and
2). See Eq. (13) of text, with $c=1$,
d Energy through third order with minimization with respect to c. See Eq.
(16) of text (values of $c_{\text {min }}$ in parentheses).
e See Ref. 3 .

- See Ref. 3.
$\varepsilon_{1}(C=1)=-0.323$ a.u. and

$$
\begin{equation*}
\sum_{i=0}^{3} E^{(i)}(a=0.3)=-0.06 \tag{23}
\end{equation*}
$$

In either case ($a=0.3$ or $a=0.4$), $E^{(3)}$ is larger than $E^{(2)}$ in absolute magnitude. This indicates that the series seems to be diverging. The reason for this lies undoubtedly in the choice of the zeroth-order wavefunction. The first-order function (17) corrects the zeroth-order by putting in a term proportional to $r \exp (-a r) \cos \theta$ (the correct wavefunction at $R=0$), but still contains terms which cause difficulties at $r=0$.

From Table I, we can see that $\mathcal{E}_{1}(C=1)$ is greater than $E^{(0)}+E^{(1)}\left[=\mathcal{E}_{1}(C=0)\right]$ for $R<0.4$ a.u., and less for $R \leq 0.4$ a.u. which indicates that the perturbation series is beginning to diverge at $R \sim 0.4$ a.u.

ACKNOWLEDGMENTS

I would like to thank Professor J. O. Hirschfelder for his encouragement and advice, and Professor W. Meath and Dr. W. D. Lyon for many discussions.

[^0]: * NAS-NRC-AFOSR Postdoctoral Fellow 1965-1966. Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass.
 ${ }^{1}$ R. Matcha, W. Lyon, and J. O. Hirschfelder, Theoretical Chemistry Institute (University of Wisconsin) Rept. No. 57, July 1964; W. Lyon, R. Matcha, W. A. Sanders, W. Meath, and J. O. Hirschfelder, J. Chem. Phys. 43, 1095 (1965).

[^1]: ${ }^{2}$ S. Kim, T. Y. Chang, and J. O. Hirschfelder, Theoretical Chemistry Institute (University of Wisconsin) Rept. No. 40, March 1964; J. Chem. Phys. 43, 1092 (1965).

[^2]: ${ }^{3}$ D. Bates, K. Ledsham, and A. Stewart, Phil. Trans. Roy. Soc. (London) A246, 215 (1953).

