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Radiation Damping of Exciton States in Molecular Crystals 

ROBERT SILBEY 

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Received 1 December 1966) 

Using the Heitler-Ma method, it is explicitly shown that there is no radiation damping of exciton states in 
molecular crystals when periodic boundary conditions are employed. 

1. INTRODUCTION 

RECENTLY, Hutchinson and Hameka1 have calcu­
lated the effect on the radiative lifetime of an 

excited atom of the presence of an identical atom in 
the ground state. The interaction between these atoms 
is a dipole-dipole interaction if the excited state is 
dipole allowed (which we assume throughout). One 
may distinguish two regimes: one in which the atoms 
are far apart with respect to the wavelength of the 
photon (R»-X), and the other in which R«-X. In the 
former case, the effect on the lifetime is small, but in 
the latter case the effect is large, and indeed the two 
atoms share the excitation and two new excited states 
arise, one of which is dipole forbidden (and hence has 
infinite lifetime), the other having a lifetime one-half 
of the natural radiative lifetime. This arises because 
the correct zero-order states when R<<'A are the anti­
symmetric and symmetric linear combinations of the 
"free" -atom states. The question arises2 as to the life­
time of an excited atom in a crystal of identical non­
overlapping atoms. In this case, the correct zero-order 
states are the exciton states, and the question must be 
rephrased to: what is the lifetime of an exciton state in a 
crystal? The following is a partial answer to this. We 
make the following (perhaps severe) approximations. 

(a) Phonons are neglected, that is, we deal with a 
rigid lattice of atoms. 

(b) Each atom has only one excited state. 
(c) We neglect states in which two atoms are excited 

(double exciton states). 

II. FORMALISM 

Consider a crystal of N unit cells with one atom per 
unit cell. As stated above, the atoms are to have only 

one excited state (which is dipole allowed). The atoms 
do not overlap with one another, so we may write as 
zero-order states of the crystal 

(2.1) 
n 

(2.2) 

in which the subscript labels the unit cell, ({)m represents 
a ground-state atom at site m, and ({)mf represents an 
excited-state atom at site m. The correct symmetry­
adapted states are given by <f>G and 'l1(K) : 

'l1(K) =N-I/2L: exp(iK·Rn),pnf , (2.3) 
n 

in which K is a vector in reciprocal space in the first 
Brillouin zone, and Rn is a vector in real space from 
the origin to unit cell n. 

The Hamiltonian of this problem is taken to be 

(2.4) 
with 

Ho= L:hn+ L:hc I kA I aAu+aAu, (2.5) 

tJ=L:vnm, (2.6) 
n>m 

H1 = L:L:[( -e/mc) A (rnj) 'Pj+ (e2/mc2)A2(rn j) J, 
n j 

(2.7) 

where hn is the Hamiltonian of the isolated atom, and 
we assume ({)n and ({)i are eigenfunctions of hn with 
eigenvalues ~ and ~, respectively; V nm is the static 
interaction between Atoms nand m and is given in 
the dipole approximation by 

(2.8) 

where Rnm = Rn - Rm, and !In is the electric dipole operator corresponding to Atom n. HI is the interaction between 
the radiation field and the atom and A, the vector potential is given in Coulomb gauge as usual bya 

A(rnj) = L: (2nhc/V I kx I) 1/2eAu[axu exp(ikx' rnj) +aAu+ exp( -ikx' rnj) J, (2.9) 
hU 

1 D. Hutchinson and H. Hameka, J. Chern. Phys. 41, 2006 (1964). 
2 H. Hameka, Advanced Quantum Chemistry (Addison-Wesley Pub!. Co. Inc., Reading, Mass., (1966), Chap. 11; see also H. Hameka, 

J. Chern. Phys. 38, 2090 (1963). 
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4030 ROBERT SILBEY 

where a},u and a},u+ are the usual photon destruction and creation operators, and rni is the vector from the origin 
to the jth electron on the nth atom and Pi is the momentum of the jth electron. 

We wish to solve the time-dependent Schrodinger equation 

HI/; =ih(al/;/at) . (2.10) 

We attempt a solution using the Heitler-Ma1,3 procedure. We write I/; as a linear combination of zeroth-order 
functions I/;k, which satisfy (Ho-Ek)l/;k=O: 

1/;= L.ak(t)l/;k exp( -iEktjh). 
k 

Substituting this into the SchrOdinger equation, we find 

am(t) = - (i/h) L.akHmk exp(iwmkt) , 
k 

where 

and 

In the usual waY,3 we replace the above by 

am(t) = omoO(t) - (i/h) L.akHmk exp(iwmkt) 
k 

so that at [=0, ao=l, akr'O=O, with the subscript 0 representing the initial state of the system, Let 

am(t) = (;1r~) L:ooGm(E) exp (i(Em;E)t) dE. 

So, we may Fourier analyze Eq. (2.16) to get 

(E-Em)Gm(E) =OmO+ L.Hm~k(E). 
k 

Let 
Gm(E) =Go(E)Wm(E) 

then, 
Go(E) = [E-Eo-Hoo- L.HOkWk(E)jl 

kr'O 

and 
(E- Em) W m(E) = Hmo + L.HmkWk(E) 

kr'O 

or 

where rex) is the zeta function,3 and 

Um(E) = Hmo+ L.HmkUk(E)r(E-Ek ). 
k;o'O 

Let 
~{ihr(E) J= -[Hoo+ L.HokWk(E) ] 

kr'O 

then, 

(-1)1+00 

ao(t) = -. [E-Eo+!ihr(E)]-l exp[i(Eo-E)I/hJdE. 
21r~ -00 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

We have two types of states; (1) those, I AU), with photons present and no excited atoms, and (2) those with no 
photons and one excited atom (exciton states), I n)=I/;(Kn). We are neglecting all states with more than one 

3W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954). 
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excited atom.4 Then we have (we now reserve the subscripts m, n, "', for the exciton states, and the greek sub­
scripts for the photon states), 

UmCE) = Hmo+ LHmnUn(E)r(E-En ) + LHm,MU/-.u(E)rCE-E/-.u) C2.25) 
n;o!O AU 

and 
UAu(E) =HM,o+ LH"u,nUn(E)rCE-En). (2.26) 

n;o!O 

The only matrix element connecting photon states is the diagonal element, H"U,AU, which only contributes to the 
energy of the photon state EAU (and therefore has been neglected since it only leads to a redefinition of the energy 
of that photon state). Substituting (2.26) into (2.25), we find 

Um(E) = CHmo+Ymo) + L(Hmn+'Ymn) Un(E)r(E-En) , 
nr'O 

where 

Au 

Using (2.23) and (2.26) we find 

-![ihr(E)] = (Hoo+'Yoo) + L(HOn+'YOn) Wn(E). 

For the states I n)= \ K n ), it is easy to show 

Hmn =OmnL(Rp)-3 exp(iK·Rp) Vo' (1-3RpRp/Rp2). VP, 
p 

where VP is the transition dipole moment of the atom at the pth site. Also 

'YOm=N-ILL exp[i(Ko·Rp-Km·Rq)](cp/ \ HI \ cppAU)(cpqAU I HI I cp/)S(E-EAu) 
AU p,q 

=N-IL exp[i(Ko·Rp-Km·Rq)]'Y(Rp-Rq), 
P.q 

where 
'Y(Rp-Rq) = L(cp/ 1 HII cppAU)(cpqAU I HI! cp/)r(E-EAU)' 

AU 

We show later that 'Y(Rp-Rq) is only dependent on 'I:=Rp-Rq. Thus, it is easy to see 

'YOm=Oo.mL exp(iKm''l:h( '1:). 
1: 

Thus, 

III. CALCULATION OF 'Yoo 

The matrix elements necessary for calculating 'Y ('I:) are well known: 

(cp/ I HI 1 CppAU )=i exp(ik).· Rp) k' (27rnc/V I k). 1) 1/2eAu , VP, 

where k' = (ef -e) Inc. Since all the V are parallel, we have 

'Y( '1:) = Ll(E-E).u)(27rnclV I k). I) (k')2 exp(ik). ''1:) ( V' [1 - (k).k,,/k).2)]- vI, 
). 

which shows that 'Y( '1:) is only dependent on '1:. 
Since 

L exp[i(Ko-kA) ''I:]=NLo(kA-KO-b), 
1: b 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(3.1) 

(3.2) 

(3.3) 

4 The states which consist of one exciton and one photon will not contribute to the problem since the Hamiltonian has no 
matrix elements between them and the states we are considering. 
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4032 ROBERT SILBEY 

where b is a lattice vector of the reciprocal lattice, then 

'Yoo= LL(N27rlicjV I kx I) (k')20(kx -Ko-b)S(E-Ex.) {V· [1 - (kxkx/kx2)]- vI. (3.4) 
x b 

Notice thatfor longitudinal excitons (V II Ko), the first (and most important) term (b =0) is zero, as it should be. 

IV. CALCULATION OF am(t) 

We are now in a position to calculate am(t). Using (2.27), (2.30), and (2.33), we have 

Multiplying both sides by (E-Em), we have 

{(E-Em) -[Hmm+'Ymm(E)]1 Um(E) =0. 
Thus 

Um(E) =0 

and 
m~O. 

From (2.26), we have 

and 

where Go(E) is given above (2.19). We have then, 

(-1) 1+00 (i(Eo-E)t) ao(t) = -. Go(E) exp dE. 
27r1 -00 Ii 

If we neglect Umklapp processes, i.e., restrict b to be 0 in (3.4), we have 

where 

(-1) 1+00 exp[i(Eo-E)t/li] 
ao(t) = - dE, 

27ri -00 E-Eo-Hoo-aS(E-lic I Ko I) 

a=[27rlic(k')2/1 Ko I Vo][V· (1-KoKo/Ko2). V], 

Vo=V/N. 

Using the representation of the zeta function3, 

we find 

(
-1) 1+00 dE exp[i(Eo-E) t/Ii] (E-lic I Ko I +ie) 

ao(t) = -. , 
211"1 -00 (E-E+) (E-E_) 

where 

Thus 

Since E is taken to by 0+, we have no exponential decay for ao(t). Similarly we find 

( 4.1) 

( 4.2) 

( 4.3) 

(4.4) 

(4.5) 

(4.6) 

( 4.7) 

( 4.8) 

(4.9) 

(4.10) 

( 4.11) 

( 4.12) 

( 4.13) 
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where 
H"M.o= -iL:o(kx-Ko-b) (27rhe/Vo I kx l)l/2k'y·cXu. 

b 

(4.16) 

Neglecting Urnklapp processes we have kx=Ko, and E"M=he I Ko I, thus, 

aXu(t) = [o(kx-Ko) (-ik') (27rhe/Vo I kx j)l/2y·cxu] 

X (E+-E_)-l{exp[i(E"M-E+)t/h]- exp[i(Exu-E_)t/h]J, (4.17) 

which again points out the absence of interaction of light with longitudinal excitons. Thus, each exciton state is 
coupled to only one photon state (in which kx =Ko) and the energy is trapped between these two states. We 
notice that for the state in which he 1 Ko I =Eo+Hoo (that is, where the photon energy is equal to the exciton 
energy) we have 

and 
ao(t) = exp( -iHoof/h) cos (al/2t/h) , 

(4.18) 

( 4.19) 

(4.20) 

( 4.21) 

aXu(t) = -ik'(27rhe/Vo I kx j)l/2y · cxu sin(al/2t/h)o(kx- Ko), 

1 ao(t) 12+ L: 1 axu(t) 1
2 =1. 

u 

V. DISCUSSION 

The present calculation explicitly shows that when 
periodic boundary conditions are used, there can be 
no meaning attached to the lifetime of an exciton 
state. That is, the exciton field and the photon field 
exchange energy between one another, and there is no 
radiation damping, hence no natural radiative life­
time. The reason for this is clearly that the periodic 
boundary conditions require that only one photon 
tate interacts with each exciton state and so the 
density of states for the transition probability becomes 
a delta function. Since the periodic boundary conditions 
also ensure that an exciton state does not interact with 
any other exciton state, this result will be unchanged 
if the initial state were a linear combination of exciton 
states. Of course, this result has been known for some 
time,· and the resultant states (mixtures of exciton 
and photon) are called polaritons. The use of non­
periodic boundary conditions may lead to a natural 
lifetime for crystals of finite size. The fact that the 
crystal is finite and the box (in which the radiation 
field is quantized) infinite will lead to the interaction 
of many photon states with one exciton state, and 
therefore damping will result. A calculation of this 
effect is underway at the present time. It should be 

5 J. J. Hopfield, Phys. Rev. 112, 1555 (1958). 

pointed out that the result [Eq. (3.4)] can be obtained 
by summation of the retarded dipole-dipole inter­
action over the infinite crysta1.6 [One must be careful 
in this case not to make the approximation equivalent 
to assuming 'Yoo(E) small compared to E-Eo-Hoo in 
Eq. (2.24).] 

This result, as stated above, has been known for 
some time; however, because the question of natural 
radiative lifetimes of exciton states still appears in the 
literature,2 we have felt that it is worthwhile to perform 
this calculation using the same techniques used for 
previous calculationsl to demonstrate the result 
explicitly. 

The absence of phonons in the above calculation 
amounts to the neglect of the main mechanism for 
absorption of energy. Phonons will act to couple many 
photon states to one exciton state (and vice versa) and 
thus lead to a large density of states in the transition 
probability. Hopfield5 has a clear presentation of these 
ideas. 

The use of one atom per unit cell and one excited 
state per atom are not essential to the above arguments 
and may be easily removed. 

6 See for example, S. A. Rice and J. Jortner, "Comments on the 
Theory of the Exciton States of Molecular Crystals" in The 
Physics and Chemistry of the Organic Solid State (Academic 
Press Inc., New York), Vol. 3. 
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