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Radiation Damping of Exciton States in Molecular Crystals

ROBERT SILBEY

Department of Chemistry, Massachuseits Institute of Technology, Cambridge, Massachusetts
(Received 1 December 1966)

Using the Heitler-Ma method, it is explicitly shown that there is no radiation damping of exciton states in
molecular crystals when periodic boundary conditions are employed.

I. INTRODUCTION

ECENTLY, Hutchinson and Hameka® have calcu-
lated the effect on the radiative lifetime of an
excited atom of the presence of an identical atom in
the ground state. The interaction between these atoms
is a dipole-dipole interaction if the excited state is
dipole allowed (which we assume throughout). One
may distinguish two regimes: one in which the atoms
are far apart with respect to the wavelength of the
photon (R>>M), and the other in which R<&KA. In the
former case, the effect on the lifetime is small, but in
the latter case the effect is large, and indeed the two
atoms share the excitation and two new excited states
arise, one of which is dipole forbidden (and hence has
infinite lifetime), the other having a lifetime one-half
of the natural radiative lifetime. This arises because
the correct zero-order states when R<&\ are the anti-
symmetric and symmetric linear combinations of the
“free”’-atom states. The question arises® as to the life-
time of an excited atom in a crystal of identical non-
overlapping atoms. In this case, the correct zero-order
states are the exciton states, and the question must be
rephrased to: what is the lifetime of an exciton stateina
crystal? The following is a partial answer to this. We
make the following (perhaps severe) approximations.

(a) Phonons are neglected, that is, we deal with a
rigid lattice of atoms.

(b) Each atom has only one excited state.

(c) We neglect states in which two atoms are excited
(double exciton states).

II. FORMALISM

Consider a crystal of V unit cells with one atom per
unit cell. As stated above, the atoms are to have only

Vnm = (an—3) Un* (] _3anan/an2) *Un

one excited state (which is dipole allowed). The atoms
do not overlap with one another, so we may write as
zero-order states of the crystal

(I)G = H‘Pn,
n
¥/ =0 [ | om,

mFn

(2.1)
(2.2)

in which the subscript labels the unit cell, ¢,, represents
a ground-state atom at site m, and ¢,/ represents an
excited-state atom at site m. The correct symmetry-
adapted states are given by &g and ¥(K):

V(K) =N"12Y" exp(iK-R,) ¢, (2.3)
in which K is a vector in reciprocal space in the first
Brillouin zone, and R, is a vector in real space from
the origin to unit cell #.

The Hamiltonian of this problem is taken to be

H=Hy+U+H,, (2.4)
with
Ho=Zhn+ZﬁC l k)\ ] a,)\¢+a)\.,, (25)
V=2 Vom, (2.6)
Hi=2_2 [(—e¢/mc) A(tn;) *piF-(e/mc) AX(1,) ],
(2.7)

where 7, is the Hamiltonian of the isolated atom, and
we assume ¢, and ¢,/ are eigenfunctions of %, with
eigenvalues ¢ and ¢/, respectively; V., is the static
interaction between Atoms # and m and is given in
the dipole approximation by

(2.8)

where R,,,=R,—R,,, and u, is the electric dipole operator corresponding to Atom #. Hj is the interaction between
the radiation field and the atom and A4, the vector potential is given in Coulomb gauge as usual by?

A(rn]-) = Z(ZﬁﬁC/V ] k)\ D I/Zé)\,[ax., exp(ik)\-r"j) +a.)\,,+ exp( —ik)\-r,.,-) :l,
Ao

(2.9)

1 D. Hutchinson and H. Hameka, J. Chem. Phys. 41, 2006 (1964).
2 H. Hameka, Advanced Quantum Chemistry (Addison-Wesley Publ. Co. Inc., Reading, Mass., (1966), Chap. 11; see also H. Hameka,

J. Chem. Phys. 38, 2090 (1963).
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4030 ROBERT SILBEY

where a), and aj* are the usual photon destruction and creation operators, and r,; is the vector from the origin
to the jth electron on the #th atom and p, is the momentum of the jth electron.
We wish to solve the time-dependent Schrédinger equation

Hy=ih(3y/0t). (2.10)

We attempt a solution using the Heitler-Ma!-® procedure. We write  as a linear combination of zeroth-order
functions y4, which satisfy (Ho— Ex)¥x=0:

Y= ar(t)yyr exp(—iExt/h). (2.11)
k
Substituting this into the Schrédinger equation, we find
() =~ (3/1) D axH i €xp(iwmit), (2.12)
k
where
Hypo= m | Hi+0 | Y1) (2.13)
and
wmk = (En—Eg) /h. (2.14)
In the usual way,* we replace the above by
() =80d (£) — (3/ 1) D_ a3 Ho X (icomit) (2.15)
k
so that at =0, @y=1, ar=o=0, with the subscript O representing the initial state of the system. Let
—1\ [t {(En—E)t
an(l) = (—) / G(E) exp (?(-Ei—)) dE. (2.16)
2rt) J o h
So, we may Fourier analyze Eq. (2.16) to get
(E—Eu)Gu(E) =8no+ 2 HuGr(E). (2.17)
E
Let
Gu(E) =Gy(EYW.(E) (2.18)
then,
Go(E) =[E—Ey—Hy— Y_HyWi(E) T (2.19)
k0
and
(E—En) Wl E) =Huot ) HuWi(E) (2.20)
e
or
where ¢ (x) is the zeta function,? and
Un(E) =Hpot+ > HuUn(E) ¢y (E—Ey). (2.22)
k<0
Let
3LAT(E) 1= ~[Ho+ 2 HuWi(E) ] (2.23)
k0
then,
-1 +c0
a(t) = (E) f [E— Ey+%ihT (E) It exp[i( Eo— E) /B ]dE. (2.24)
L —00

We have two types of states; (1) those, | Ao}, with photons present and no excited atoms, and (2) those with no
photons and one excited atom (exciton states), | n)=¢(XK,). We are neglecting all states with more than one

3W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1954).



EXCITON STATES IN MOLECULAR CRYSTALS 4031

excited atom.* Then we have (we now reserve the subscripts m, n, -+ -, for the exciton states, and the greek sub-
scripts for the photon states),

Un(E) =H,o+ goymnvn(E) C(E—E,) +AZH,,,,MUM(E) (E—FEy) (2.25)
and
Use(E) =HM,0+§HX,,,IU"(E)§<E—E“>. (2.26)

The only matrix element connecting photon states is the diagonal element, Hy, »,, which only contributes to the
energy of the photon state £, (and therefore has been neglected since it only leads to a redefinition of the energy
of that photon state). Substituting (2.26) into (2.25), we find

Un(E) = (Huo+FYn0) + 2 (Hun+Yun) Un(E) (E—E,), (2.27)
nyQ
where
'Ymn(E) = )‘ZHm,)\vH)\v,ng‘(E_E)\v) . (228)

Using (2.23) and (2.26) we find
LA (E) 1= (Hor o)+ 2, (Hont-y0n) W) (2.29)
For the states | n)= | K,), it is easy to show
Hm=5,,,,.};(R,,) =3 exp(iK-R,) wor (1 —3R,R,/R,?) * up, (2.30)
where u, 1s the transition dipole moment of the atom at the pth site. Also

Yo =N"12_2" exp[i(Ko R,—K,.*Ry) Wi | H1| epho)eha | Hy | ¢ Yo (E—Ey,)

Ao D,g
=N"12_ exp[i(KoR,—KnRy) ¥ (R,—Ry), (2.31)
where
'Y(RD_RQ) =)\Z<<pr I H, l <Pp)\0)<s0q>\0 l H, l <qu>§‘(E—E)\,). (2.32)

We show later that y(R,—R,) is only dependent on t=R,—R,. Thus, it is easy to see
Yom=00.m 2, exp(iKp-2)y(x). (2.33)
<

Thus,
—3iAT(E) = Ho Y. (2.34)

III. CALCULATION OF #yy

The matrix elements necessary for calculating (=) are well known:

(o | Hi|l opha)y=1 exp(iknRp)E (2nfic/V | ky |) 12, Uy, (3.1)
where £’ = (¢/ —¢) /#ic. Since all the u are parallel, we have
v(x) = ;?(E—Exa) (2xtic/V | T ) (B)? exp(ikye) {u-[1— (Inkn /) - w}, (3.2)

which shows that v(z) is only dependent on ~.
Since

2_ expli(Ko—ly) "]=sz:5(kx“Ko"b), (3.3)

4 The states which consist of one exciton and one photon will not contribute to the problem since the Hamiltonian has no
matrix elements between them and the states we are considering.
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where b is a lattice vector of the reciprocal lattice, then

Y= ;};(NZvrf’w/V | K [) (F)% (ka—Ko—b)§ (E—Ex,) {u-[1— (Il /ka2) ]+ u}. (34)
Notice that for longitudinal excitons (u || Ko), the first (and most important) term (b=0) is zero, as it should be.

IV. CALCULATION OF an(t)

We are now in a position to calculate a,(¢). Using (2.27), (2.30), and (2.33), we have

Un(E) =[Hpn+Yor(E) JUn(E)§ (E—Ey). (4.1)
Multiplying both sides by (E—E,,), we have
Thus
Un(E)=0 (4.3)
and
an(t) =0, m#=0. (44)
From (2.26), we have
UM<E) =H)ur,0 (45)
and
—_— +oo ; —_
(1) = (2—1>/ dEGy(E) Hys of (E—FEys) €xp <M> , (4.6)
e —w #
where Go{ E) is given above (2.19). We have then,
—1\ [t (Ey—E)t
aolt) = (2_1m> / Gu(E) exp (’(—"h—)—) dE. @.7)
If we neglect Umklapp processes, i.e., restrict b to be 0 in (3.4), we have
Y e AW s exp[i(Ey—E) /%]
a(t) = <21r'i> /—m E—FE\—Hy—at(E—Tic | Ky ) a8, (4.8)
where
a=[2rfic(k')*/| Ko| Vo] u- (1 —KKo/Ke?) - u], (4.9)
Ve=V/N. (4.10)
Using the representation of the zeta function?,
$(@) =(at+ie)™,  e=04, (4.11)
we find
_(~1\ [t=dE exp[i(Ey—E)t/H](E—#c | Ko | +ie)
() = (m) f_m (E—E,) (E—E.) ) (4.12)
where
E:b=[% (E0+Hoo+ﬁ6 [ Ko I —16) ]:I: {l:% (E0+H00'—h(3 l Ko I +1/€) ]2+a}1/2. (413)
Thus
(Ey—ne | Ko |) expli(Fo~Ey)t/A]— (E_—#c | Ko |) exp[i(Ee—E_)t/H]
a(t) = E.—E) ) . (4.14)
+— -

Since ¢ is taken to by 0+, we have no exponential decay for go(?). Similarly we find

0 B ) o ()] () ()] s
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where

H)‘,,'o= —126(1{)\—K0—b) (27rﬁ6/Vo l k)\ Dlmk’y'é)‘,.
b

4033

(4.16)

Neglecting Umklapp processes we have k=K, and Ey=7ic | Ko |, thus,

aro (1) =[8(In—Ko) (—ik') (2ric/ Vo | Ky |) P bro ]

X (Ey—E-) M expli(Brxe—Ey)t/R]— expli(Brn—E-)t/R1},

(4.17)

which again points out the absence of interaction of light with longitudinal excitons. Thus, each exciton state is
coupled to only one photon state (in which k,=Kj) and the energy is trapped between these two states. We
notice that for the state in which k¢ | Ko | =E;+Hy (that is, where the photon energy is equal to the exciton

energy) we have

and

(1) = —ik! (2fic/ Vo | Kn |) V2w by sin(ad/2t/7) 6 (kn—Ko),

Ey=he| Ky | ol (4.18)

an(t) = exp(—ilut/h) cos(a?t/R), (4.19)
(4.20)

(4.21)

| ao(t) 2+ | an(t) I2=1.

V. DISCUSSION

The present calculation explicitly shows that when
periodic boundary conditions are used, there can be
no meaning attached to the lifetime of an exciton
state. That is, the exciton field and the photon field
exchange energy between one another, and there is no
radiation damping, hence no natural radiative life-
time. The reason for this is clearly that the periodic
boundary conditions require that only one photon
tate interacts with each exciton state and so the
density of states for the transition probability becomes
a delta function. Since the periodic boundary conditions
also ensure that an exciton state does not interact with
any other exciton state, this result will be unchanged
if the initial state were a linear combination of exciton
states. Of course, this result has been known for some
time® and the resultant states (mixtures of exciton
and photon) are called polaritons. The use of non-
periodic boundary conditions may lead to a natural
lifetime for crystals of finite size. The fact that the
crystal is finite and the box (in which the radiation
field is quantized) infinite will lead to the interaction
of many photon states with one exciton state, and
therefore damping will result. A calculation of this
effect is underway at the present time. It should be

5J. J. Hopfield, Phys. Rev. 112, 1555 (1958).

pointed out that the result [Eq. (3.4)] can be obtained
by summation of the retarded dipole-dipole inter-
action over the infinite crystal.® [One must be careful
in this case not to make the approximation equivalent
to assuming yw(£) small compared to E—Fy—Hy in
Eq. (2.24).]

This result, as stated above, has been known for
some time; however, because the question of natural
radiative lifetimes of exciton states still appears in the
literature,® we have felt that it is worthwhile to perform
this calculation using the same techniques used for
previous calculations' to demonstrate the result
explicitly.

The absence of phonons in the above calculation
amounts to the neglect of the main mechanism for
absorption of energy. Phonons will act to couple many
photon states to one exciton state (and vice versa) and
thus lead to a large density of states in the transition
probability. Hopfield® has a clear presentation of these
ideas.

The use of one atom per unit cell and one excited
state per atom are not essential to the above arguments
and may be easily removed.

b See for example, S. A. Rice and J. Jortner, “Comments on the
Theory of the Exciton States of Molecular Crystals” in The
Physics and Chemistry of the Organic Solid State (Academic
Press Inc., New York), Vol. 3.



