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On the Singlet-Exciton States of Crystalline Anthracene 
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(Received 6 July 1964) 

In this paper we present a detailed analysis of the lower excited states of crystalline anthracene. Starting 
with zero-order product wavefunctions, the treatment differs from standard formulations in that interactions 
between molecules are computed directly by the use of 7r-electron theory, by the inclusion of the effects 
of extensive configuration mixing, and by the inclusion of long-range interactions out to the converg­
ence limit. It is found that: 

(1) The computation of interaction energies cannot be reduced to dipole-dipole terms alone. By the 
use of 7r-electron theory it is shown that short-range high-order multipole (greater than dipole) interactions 
make important contributions to both the diagonal and off-diagonal elements of the energy matrix. 

(2) Long-range interactions of the dipole-dipole type are of importance for distances of the order of 
the wavelength of light. By application of momentum-conservation conditions, it is shown that the long­
range dipole-dipole interactions, including the effects of retardation of the potential, are absolutely con­
vergent. Major contributions to the Davydov splitting arise from molecular separations ranging from 50 A 
to the convergence limit. 

(3) For the case of allowed singlet-singlet transitions, electron-exchange interactions are small relative 
to other contributions to the interaction energy. 

(4) Under the experimental conditions used to date, the Davydov splitting should be independent 
of crystal thickness. 

(5) In anthracene, crystal-field mixing of the p and (3 molecular states has a large effect on the Davydov 
splitting. Inclusion of mixing with higher excited 7r states has little effect on the Davydov splitting, but is 
required in the calculation of the polarization ratios in the vibronic components of the P band. 

(6) Charge-transfer exciton states play only a minor role in altering the properties of singlet exciton states 
arising from allowed transitions. 

(7) The detailed calculations reported herein yield good agreement with the observed Davydov splitting 
(tJ.E) and polarization (P) ratios in anthracene, e.g., for the 'A ,g-->'B2" band: 

Vibronic tJ.l~(calc.) tJ.E(obs.) 
band (em-I) (em-I) 

0-0 207 230 
0-1 102 145 
0-2 54 80 

1. INTRODUCTION 

THE theory of light absorption by molecular crystals 
was first studied by Frenkel! and Peierls2 and has 

since been extended by many workers.3 The conven­
tional theory is based on the observation that molecular 
crystals are held together by weak dispersion forces 
so that, to a first approximation, the manifold of 
electronic states of each molecule can be considered 
to be unaltered by the crystal field. Because of the small 
but finite intermolecular forces, it is impossible to 
construct a stationary state for a perfect crystal in 
which some one selected molecule is excited. The 
correct zero-order states for the crystal with one quan­
tum of electronic excitation correspond to a delocaliza­
tion of the electronic energy over all molecules. It is 
convenient to describe the quantum of excitation as 

* National Science Foundation Cooperative Fellow. 
I J. Frenkel, Phys. Rev. 37, 17 (1931). 
2 R. Peierls, Ann. Physik 13, 905 (1932). 
3 (a) A. S. Davydov, Theory oj Molecular Excitons (McGraw­

Hill Book Company, Inc., New York 1962); (b) D. Fox and 
O. Schnepp, J. Chern. Phys. 23, 767 (1955); (c) D. S. McClure, 
Solid State Phys. 8, 1 (1959); (d) D. P. Craig and S. H. 
Walmsley, Physics and Chemistry of the Organic Solid State, 
edited by M. M. Labes, D. Fox, and A. Weissberger (John Wiley 
& Sons, Inc., New York, 1963), Vol. 1, p. 585. 

P(calc.) P(obs.) 

3.5 5 
2.5 4.5 
1.9 3 

an exciton wave of momentum hk which propagates 
through the crystal with a velocity determined by 
the intermolecular interaction. 

Now, aromatic compounds have a number of elec­
tronic transitions for which the spatial extent of the 
electron density is almost the same in both the ground 
state and the excited state. In this case, with overlap 
integrals between molecular orbitals on adjacent mol­
ecules of the order of 10-2 to 10-3, considerable simplifi­
cation of the analysis is feasible. For, in the case of 
small intermolecular overlap, the Heitler-London for­
malism may be used to construct proper zero-ordel 
wavefunctions. Following the pioneering work of 
Davydov,3a the Heitler-London scheme has often been 
used to construct both the ground-state and excited­
state wavefunctions, and much effort has gone into cal­
culations of energy shifts and splittings associated with 
the interaction of a molecule and the weak crystal 
field. 3 Advantage is also taken of the small intermolec­
ular overlap to represent the interaction between mol­
ecules in a multipole expansion. Usually only dipole 
terms in the expansion are retained, although some 
recent work has dealt with octopole contributions.3b ,4 

4 T. A. Claxton, D. P. Craig, and T. Thirunamachandran, J. 
Chern. Phys. 35, 1525 (1961). 
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1516 SILBEY, JORTNER, AND RICE 

The work presented in this paper draws heavily on 
previous research. There are, however, two notable 
differences between our analysis and the previous work. 
First, '/I"-electron theory has progressed to such an extent 
that we feel it may be profitably applied to the present 
problem, thereby bypassing use of the multipole expan­
sion. In the work reported here the intermolecular 
interactions are computed using the best available '/1"­

electron wavefunctions, and direct calculations are 
carried out to relatively large distances (,-.....,50 A). 
These calculations make possible the evaluation of 
short-range interactions. Second, in the region from 
50 A to the bounding surfaces, dipole sums are used. 
In previous work, Craig and Walsh5 made use of the 
Ewald-Kornfeld procedure for evaluating dipole sums 
(characterized by k = 0 and neglecting retardation of 
the interaction), comparing this result with a finite 
summation which counted all the dipole-dipole inter­
actions within a sphere of radius 20-30 A. This proce­
dure is open to serious criticism: It is well known that 
dipole sums are only conditionally convergent,6 since 
an interaction of the form (cos1Jij-3 cos1J; cos1Jj ) Rij-a 

decreases with increasing Rij only as fast as the volume 
of space (number of interacting molecules) increases. 
The dipole sums for k=O, in general, depend on the 
shape of the solid. In examining only the case k=O, 
the momentum of the photon (nq) is neglected. In 
addition, retardation of the interaction between mole­
cules is neglected. This approximation is equivalent 
to the assumption that all the transition dipoles in the 
crystal are in phase and that they interact instantane­
ously. Momentum conservation requires (when the 
interaction between the radiation field and the phonon 
field is neglected) that k= q. The ratio of k to the 
magnitude of the primitive translation vector of the 
reciprocal lattice of the crystal is of the order of 10-3, 

and the assumption k=O is justified only for short­
range interactions, i.e., octopole-octopole or electron­
exchange interactions. The dependence of the dipole 
sums on the direction of the propagation vector of the 
exciton has been discussed by Fox and Yatsiv.7 We 
shall demonstrate that introduction of the momentum 
conservation restriction and the effects of retardation 
of the interaction imply that the dipole sums become 
absolutely convergent for an infinite crystal and inde­
pendent of boundary conditions. 

II. FORMULATION OF THE THEORY 

The theory of molecular excitons has been treated 
in many articles.3 Nevertheless it is advantageous to 
sketch briefly the principles involved as used in the 
work reported here. 

The Hamiltonian for a crystal containing N unit 
cells and h molecules per unit cell may be written in 

5 D. P. Craig and J. R. Walsh, J. Chern. Soc. 1958, 1613. 
6 M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955). 
7 D. Fox and S. Yatsiv, Phys. Rev. 108,938 (1957). 

the form 
h N 

JC= L L Hkp.+ L Vkp.,lv, (1) 
p.~l k~l kp.<lv 

where the double indices kJ.L and tv label different mol­
ecules, Hkp. is the Hamiltonian for an isolated molecule, 
and Vkp.,lv is the intermolecular pair interaction. Since 
the coupling between molecules is small compared with 
intramolecular interactions, the Heitler-London formal­
ism may be used in this problem. The ground state of 
the crystal is, then, represented in the form 

( 2) 

where the I{Jkp.° are the ground-state (antisymmetrized) 
wavefunctions of the individual molecules and ct is the 
antisymmetrization operator permuting electrons be­
tween the molecules. 

The wavefunctions corresponding to the fth excitcd 
state of the crystal arc, in the same formalism, 

h 

'It/ = h-! L13"i<l>,/, (3) 
a=l 

(
h)! N 

<1>,/= :V ]; exp(ik·rm")<pm,,f, (4) 

<Pm"f = ctl{J",J II' I{JI}. (5) 
lv~ma 

The functions <I>"f are known as one-site excitons, 
r m " is the vector from the origin to the center of the 
molecule ma, and the coefficients E"i can be found by 
diagonalizing the hXh secular determinant or by using 
the symmetry properties of the group of the wave 
vector. 

For the case where there exists one state for each 
representation of the factor group the energies of the 
Davydov components of this excited state, relative to 
the ground state, are given by 

Efi=El+Df+Mji(k); i=l, ···,h, (6) 

In Eq. (6), El is the excitation energy of the free 
molecule and Df represents the energy shift of the 
center of gravity of the band: 

Df= LL( (fil{Jn/l{Jn/ I Vnv,m!' Il{Jml'°l{Jm!'O) 
m I' 

- (al{Jnv°l{Jnvo I Vnv,ml' Il{Jmp.°l{Jml'°». (7) 

Since Df leads to a uniform shift of all the energy levels, 
it may be thought of as an environmental effect. On 
the other hand, M/(k) is different for each representa­
tion of the factor group and thereby leads to the splitting 
of the crystal level into h components (Davydov 
splitting) : 

M/= L LI (E.i) *E"i exp[i(k. (rnv-rml') ] 
mr!n f.' 

x (al{Jn/I{J",,,o I Vn.,ml' Il{Jnv°l{Jm/)}. (8) 

In Eq. (8), nv is an arbitrarily chosen reference molecule. 
The coefficients E.i and El'i are obtained by diagonal-
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FIG. 1. Energies of states with 
respect to p state vs energy of 
charge-transfer state with respect 
to p state. Numbers are percentage 
of p character in state. 
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izing the tight-binding Hamiltonian (1) with the basis 
set (3). 

The compound to which we apply our analysis 
(anthracene) crystallizes in the monoclinic system with 
space group C2h5 and has two molecules per unit cell. 
Corresponding to every excited state, it is possible to 
form a one-site exciton for each site in the unit cell. 
We denote these one-site excitons by <l>lf(k) and 
<l>2f(k). An elementary argument leads to the linear 
com bina tions 

and 
'l1J(k) = (ljV2) [<I>/(k) -<I>2f(k) ] 

'l1+' (k) = (ljV2) [<1>/ (k) +<I>2f (k)]. 

The vectors defining the unit cell are a, b, and c (see 
Fig. 1). In this crystal lattice a Type 1 molecule may 
be transformed into a Type 2 molecule by reflection 
in the ac place followed by a glide of !a. At k=O the 
group of the wave vector is isomorphous with the group 
C2h whose character table is displayed in Table 1. For 
the case of dipole radiation, the allowed symmetry 
types are Au (polarized parallel to b) and Bu (polarized 
perpendicular to b). Now, 

O"a/Y<I>/ = <l>2f (10) 
and 

i<l>/= -<1>/, 

i<l>2f= -<I>l. ( 11) 

Equations (11) follow from the observation that all 
the excited states of interest to us are odd with respect 
to inversion since the molecular point group is D 2h , 

and the identity and inversion operations of D2h and 
C2h are identical. By comparison of Eqs. (9)-(11) and 
Table I, it is seen that'l1J(O) is of type Au and'l1+!(O) 
is of type Bu. The reader should note that this assign­
ment agrees with that of Craig,3d,6 but not that of 

EO(c.t.)- EO( p) 

Davydov.3
& Davydov makes the (unjustified) assump­

tion that Clo has a relationship to C2 in the molecular 
point group (D2h). When k~O, the symmetries of 
'l1J(k) and'l1+!(k) depend on the group of the wave 
vector. For example, when k is parallel to b this group 
is C2, and'l1J(k) for u states is of the B type while 
'l1+!(k) is of Type A. 

We have considered thus far only the formal outline 
of the analysis. Using a more detailed representation 
of the molecular wavefunctions, and when only one 
excited state is considered, the excited-state wave­
functions are 

mjr"nl mir"n2 

where 'e'=!(a+b). The exciton band structure is deter­
mined by 

Mr=E±!(k) 

= L (Jnl,m/+Knl,m/) exp[ik· (rml-rnl)] 
mlj~n 

m2 

where the excitation-transfer matrix element is 

Jnl,m/= (CPnliCPml'° I Vn1,ml' I CPnlocpm/), (14) 

while the electron and excitation-exchange matrix 

TABLE 1. Character table for the group C2h. 

E DIu (Ta/g 

Au 1 1 1 1 
Au 1 1 -1 -1 
Bo 1 -1 1 -1 
Bu 1 -1 -1 1 

Downloaded 20 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1518 SILBEY, JORTNER, AND RICE 

element is 

Knl,m/= ([L(-I)PP-l]lPn/lPm~o I Vnl,m~ I lPnlolPm/). 
p 

(15) 

Only terms involving excitation transfer and electron 
exchange between translationally nonequivalent mol­
ecules lead to a Davydov splitting, while interactions 
between translationally equivalent molecules contribute 
to the band shift. The Davydov splitting, in first order, 
is given by 

(16) 

and, bearing in mind the necessity for momentum con­
servation (k= q), we obtain 

llEI=2L(Jnl,m2/+Knl ,m2/ ) exp[iq·(rm 2- r nl)]. (17) 
m2 

The exciton theory just sketched must be extended 
by taking into account crystal-field-induced mixing of 
excited molecular states into the state f. The tight­
binding Hamiltonian (1) must be diagonalized in the 
basis set \jf/(k) , where the indices f refer to all the 
molecular excited states. The diagonal matrix elements 
are obtained from Eqs. (6) and (13). The off-diagonal 
elements assume the form: 

JClg±= L Tml,n/g cos[(rnl-rml) .k] 
mlT'nl 

±Lrm2,n/g cos[(rnl-rm2) ·k]+ L llmi,n/g, (19) 
m2 miT'nl 

where 

III. EVALUATION OF THE MATRIX ELEMENTS 

To reduce Eqs. (13) -(21) to numerical form, both 
the intermolecular potential and the molecular wave­
functions must be specified. The intermolecular pair 
potential has the form 

where I and J refer to nuclei in the different molecules 
k and t, i refers to the electrons on k, and j to the elec­
trons on t. 

In previous applications of exciton theory to the 
singlet excited states of aromatic crystals, the following 
procedure has usually been adopted: 

(a) A multiple expansion for the matrix elements of 
Vkl is introduced and the series truncated after only a 
few (usually the dipole) terms. 

(b) The polarization of the transition is chosen on 
the basis of experimental or theoretical arguments. 

(c) The dipole terms are evaluated using the experi­
mental oscillator strength (obtained from solution 
spectra) . 

(d) For allowed optical transitions, the higher 
multipoles are not calculated. Some calculations have 
been reported5,8 in which the octopole transition moment 
is used as a variable parameter to obtain agreement 
with experiment. It is not apparent without detailed 
calculation how many terms have to be included in the 
multipole expansion. Similar problems are encountered 
in the computation of dispersion forces between 
aromatic molecules.9 

(e) The dipole sum is often truncated at a relatively 
small distance. The inadequacy of this calculation has 
already been mentioned.7 

In the present work we attempt to evaluate th~ 
matrix elements of Vkl to distances of the order of SO A 
using the best available 7r-electron wavefunctions. For 
larger distances, the dipole summation will be used. 
\Ve now turn to the choice of molecular wavefunctions. 
The molecular wavefunctions used were antisym­
metrized products of Huckel molecular orbitals and 
semiempirical configuration-interaction wavefunctions 
in the 7r-electron approximation computed by Pariser. lO 

The relevant molecular states and the wavefunctions 
used are entered in Table II. 

The J and K integrals required for the calculation 
of the first-order Davydov splitting can now be repre­
sented in terms of the molecular wavefunctions. Using 
Huckel wavefunctions, these integrals for the IB2n (p) 
excited state assume the form: 

Km~p= - (um/(1)UnI7(1) I r12-1 I umI'8(2)unIS(2) ) 

== - (um/unll Um~8UnI8), 

(23) 

(24) 

where ua
i represents the molecular orbital i located 

on Molecule a. 
Somewhat more complex expressions are obtained 

using the configuration-interaction (Pariser) wave­
functions. For the I B 2u (p) and 1 Bau ((3) states, the 

8 D. P. Craig and S. H. Walmsley, Mol. Phys. 4,113 (1961). 
9 P. L. Davies and C. A. Coulson, Trans. Faraday Soc. 48, 777 

(1952). 
10 R. Pariser, J. Chern. Phys. 24, 250 (1956). 
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TABLE II. Molecular wavefunctions for anthracene. 

State W a vefunction· 

W. 
O. 99618H-' 0- (0.0080112) (W,- U - W,_g) 

- (0.07416/2) (W6-IO- W._ 9) - (0.0895/2) (W7_ H - WI-S) 
+ (0.03473/2) (W3- U - W'_12) - (0.02780/2) (W2-IO 
-W._I ,) 

W ,- 8 

IB2u (p) 0.98214W,_s+O.14921W6-9-0.03911W5-1o 
(-0.10772/v'2) (W,_I2+lv'3_S) 

! (WS_ S+W,_O) 

(0.97085/2) (WS-S+W,- 9) + (0. 21720/2) (WS_ ll +W'_lO) 
- (0.03045/2) (W3- 9W6-12) - (0.09668/2) (W,_U +W2_s) 

0.51 

0.386 

3.5 

3.23 

0.10 

0.10 

2.3 

2.3 

Energy 
(exptl.) c 
(em-I) 

o 

26 500 

39 000 

1519 

Source 

Hiickel 

Pariserd 

Hiickel 

Pariserb 

Hiickel 

Pariserb 

a The wavefunctions W represent antisymmetrized singlet states being eigenfunctions of S2~O. Wo is the grouud-state wavefunction, while W ii represents an ex-
cited configuration due to one-electron excitation from Orbital i to Orbitalj. The molecular orbitals are labeled 1 to 14 in the order of inreasing energy. 

b Calculated oscillator strengths from Ref. d. 
C Experimental transition energies and oscillator strengths taken from H. B. Klevens and J. R. Platt, J. Chern. Phys. 17, 4iO (1949). 
dR. Pariser, J. Chern. Phys. 24, 324 (1956). We are grateful to Pariser for providing us with the unpublished anthracene functions. 

excitation-transfer matrix elements can be represented in the form 

J 1'1,1nI'1' = 1.9292 (UmI'7um)<81 U"lUn18 )+0.29310( (Um/umI'81 Un16U1'19 )+ (1lm1'6Urn1'91 Un17Un18» 
-0.29920( (um/u»l)<81 Un13Un18)+ (UmI'8U"'1'

3 i U1'lUn18 ») -0.07682( (Um/umI'81 Unbtnl10 )+ (Ump."Uml'lO I Un17Un18» 

+0.08892 (Um1'6Um1'9 ! Un16Un19 )+0.04640 (Um1'8Um1'3 1 Un18Un13 ) (25) 

and 

J 1'1,,,,/= 3.7702 (1tmp.8Ump.61 Un16un18 )+ 0.84348 ( (Um/ump.61 U1'141In110)+ (Um/UmI'10 I U1'18Un16 » 
-0.37544( (U,np.6UmI'81 1("121(,,18 )+ (Ump,2UmI'8i U"16U"18») +0.18872 (UmI'4u",p.lO 1 U"14U1'110) 

-0.11824( (UmI'6Ump.8IUn13Un19)+ (UmI'3UmlIUn16Un18» -0.08400( (Ump.4Um1'10 IU,,12Un18)+ (Ump.2Ump.8 1 Un14Un110 ». (26) 

The molecular orbitals 1tm are now represented in terms of a linear combination of carbon-atom 2pz wavefunc-

tions vi: 
(27) 

where the Cin are HUckel coefficients without overlap. Using these functions, the matrix elements are reduced 
to Coulomb integrals: 

(Urn/Ump.8\Un17Unn= 2: ClClCk7C I8(wm/(1)wmp.8(l) 1 1/r12 I Wn1k(2)wnll(2». (28) 
i,j,k,l 

In the calculations reported herein, three- and four­
center integrals are neglected. Order-of-magnitude esti­
mates based on the Mulliken approximation indicate 
that the contribution of these high-order terms will 
not exceed 10%. The calculation of the Coulomb inte­
grals requires proper choice of the carbon-atom wave­
functions. Unlike the case of electron-exchangell and 
charge-transfer12 interactions, these Coulomb integrals 

II J. L. Katz, J. Jortner, S. 1. Choi, and S, A. Rice, J. Chem. 
Phys.39, 1897 (1963). 

12 S. I. Choi, J. Jortner, S. A. Rice, and R. Silbey, J. Chem. 
Phys. 41, 3294 (1964). 

are not sensitive to the behavior of the molecular wave­
functions at large distances. However, in order to 
obtain maximum accuracy, SCF 2p carbon-atom wave­
functions were used for the computation of the Coulomb 
integrals. The same wavefunctions were used for the 
computation of the exchange integrals Kn1,m/ previ­
ously described.ll 

The matrix elements necessary for the computation 
of the energy shifts and splittings were computed 
directly using an IBM 7094. The details of these 
computations are described in Appendix L The inter­
actions calculated for the inner <lone were extended to 

Downloaded 20 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE III. Single first-order exciton-interaction terms for anthracene crystal (all energies in em-I). 

Translationally inequivalent molecules Translationally equivalent molecules 

(a) Anthracene-p band 

1. Spherical convergence 

R IddP HU oHU PA oPA Id-dP HU OHU PA oPA 

20 35 -267 -442 -99 -235 -334 -1114 556 -1025 280 
25 36 -266 -446 -97 -237 -369 -1278 567 -1140 299 
30 26 -313 -443 -131 -242 -362 -1248 570 -1116 295 
35 30 -294 -444 -118 -235 -377 -1317 568 -1167 303 
40 57 -162 -447 -24 -246 -399 -1424 570 -1242 314 
45 81 -46 -451 +55 -259 -427 -1561 574 -1339 326 
50 90 44 -451 120 -266 -449 -1603 582 -1410 341 
55 100 89 -456 153 -273 -457 -1694 591 -1433 349 
60 110 95 -455 157 -272 -457 -1704 583 -1439 343 
65 110 91 -459 154 -275 -457 -1702 583 -1439 343 

2. Slab convergence 

No. of cells 

2 -169 -1257 -405 -796 -137 -287 -889 546 -861 258 
3 -134 -1080 -410 -674 -152 -300 -948 552 -905 265 
4 -71 -777 -422 -460 -190 -351 -1195 560 -1080 289 
5 -19 -527 -432 -282 -204 -336 -1120 560 -1027 283 
6 +27 -302 -437 -124 -229 -428 -1566 574 -1342 325 
7 +72 -85 -445 +30 -250 -426 -1556 574 -1340 321 
8 +110 88 -462 +152 -277 -457 -1702 583 -1438 343 

(b) Anthracene-J3 band 

1. Spherical con vergence 

R IddP HU PA 

20 7833 7990 8 293 
25 7245 7 278 7677 
30 7140 7 131 7 518 
35 7542 7 641 8 067 
40 8178 8 452 8 940 
45 8867 9 234 9 880 
50 9405 10 007 10 613 
55 9736 10 430 11 070 
60 9911 10 650 11 307 
65 9980 10 736 11 400 

2. Slab convergence 

No. of cells 

2 4765 4 104 4 259 
3 5682 5 281 5 526 
4 7134 7 122 7 508 
5 8279 8 578 9 075 
6 9111 9 633 10210 
7 9625 10 290 10 918 
8 9980 10 801 11 460 

about 60 A in all directions thereby including approxi­
mately 2000 molecules. The interactions summed over 
translationally equivalent and translationally non­
equivalent molecules are displayed in Table III. Here 
HU and PA represent the interactions calculated using 
the Huckel and Pariser wavefunctions. It is important 
to note at this point that both wavefunctions overesti­
mate the transition dipole moment to the lB2,,(p) 
state, and therefore a scaling procedure must be devised 
to correct the calculated matrix elements. In Table III 
we compare the total interaction matrix-element sums 
with the first term of the monopole expansion, I.e., 

Id-dP HU PA 

3853 2655 2767 
4542 3490 3665 
4473 3430 3607 
4470 3402 3581 
5083 4200 4030 
5708 4995 5286 
6100 5501 5871 
6323 5785 6135 
6429 5918 6353 
6482 5986 6280 

3000 1636 1675 
3762 2548 2653 
5024 4140 4366 
5459 4693 4963 
6233 5672 6016 
6254 5700 6045 
6487 6003 6370 

the static dipole-dipole sums over the same region: 

Idd= L exp[q· (rm!,-rnl) J 
ml' 

x { !'nl·!'",!' 3 3[!'nl· (r",!,-rnl) J[!',,:. (rm!'-rnl) J} . 
I rm!,-rnl I I Ymp-Ynl I 

(29) 

In Eq. (31), !' represents the transition dipole moment. 
For short-range interactions q. (rm!'· r nl) ~O, and the 
modulation and retardation of the dipole-dipole sums 
are irrelevant. 
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Recent work on rutilel3 has shown that dipole sums 
within a sphere tend to oscillate about a limit, while 
sums within a slab the shape of the unit cell tend to a 
limit more regularly. For this reason, we have carried 
out the dipole sums needed to estimate the multipole 
interaction in both geometries. 

The contribution 1m of higher-order multipoles 
(greater than dipoles) to the interaction energy may 
be computed by subtracting from the inner zone total 
interaction energy, the interaction energy due to just 
the transition dipoles. The latter must be scaled by a 
numerical factor C which is the ratio between the 
squares of the calculated and experimental transition 
moments of the free molecule. For the p state of 
anthracene, from Table II, we take CHw =5 for the 
Huckel and CA = 3.9 for the Pariser wavefunction. Thus, 
the contribution of the higher multipoles is given by 
oIIu=HU-5Idd and oPA=PA-3.9Idd for Huckel and 
Pariser wavefunctions, respectively. It is found that 
the higher-multipole interaction contribution in the 
anthracene p band is of short range, as expected. To 
obtain the correct energy, it is necessary to scale the 
magnitude of the higher multipoles. As seen from Table 
III the higher-multipole contributions computed on 
the Huckel basis and the Pariser basis show that the 
entire multipole expansion for the IB2u (p) state scales 
just as do the dipole-dipole sums, so that the contribu­
tions of the higher multi poles in the p band is just 
!m=PA/3.9-!dd, and Im= -92 em-I. 

In the IB3u(f3) intense band, the computed inter­
action energies were sensibly independent of the wave­
functions used for the computations. Since the dipole 
moment corresponding to this transition is very large, 
the dipole-dipole terms are dominant while the contri-

with y the dipole moment of the unit cell. Now the 
unit cell is small relative to the volume excluded from 
(30) (",125 A3 compared with ",125X103 A3), so 
that the sum may be replaced by an integral over a 
density of dipoles. Of course, the direct summation 
for the inner volume must be added to complete the 
evaluation of the total interaction energy. Indeed, as 
shown, within this volume we have included all inter­
actions. For the region outside Ro, Eq. (30) becomes 

Idd= (87r/3V) Iy 1
2P2(cosy·k) 

+(47r/3V) ly21 [P2 (cosy·k) +1] sin2kRj, (31) 

w here V is the volume of a unit cell, P2 is the second 
Legendre polynomial, and the second term on the 
right-hand side of (31) is a boundary term arising from 
retardation effects. It is shown in Appendix II, that this 
boundary term is small compared to the static dipole 

13 H. C. Bolton, W. Fawcett, and D. C. Gurney, Proc. Phys. 
Soc. (London) A80, 199 (1962). 

bution of higher multi poles is less than 10%. The IB;!u 
results were therefore left as computed. 

IV. EVALUATION OF LONG-RANGE 
INTERACTIONS 

We now consider the interactions at intermolecular 
pair separations greater than 50 A. As shown in the 
last section, these long-range interactions are due only 
to dipole-dipole terms. It has been demonstrated (by 
Heller and Marcusl4) that the contribution of dipole­
dipole interactions between distant neighbors cannot 
be neglected for small values of q. 

In our treatment of long-range interactions a con­
tinuum model introduced by Heller and Marcus was 
extended to the case of more than 1 molecule per 
unit. We shall consider again the + and - states of 
the crystal as linear combinations of unit-cell wave­
functions O/v2) [<Pml± exp(ik·~)<pm2] exp(ik·rml). An 
application of the multipole expansion to the interac­
tion matrix element on the basis of the unit-cell func­
tions leads to the interaction of unit-cell transition 
dipoles, .... It is seen that the - state dipole is oriented 
along the b axis, and the + state dipole is oriented in 
the plane perpendicular to the b axis. We shall consider 
only the dipole-dipole interaction in this scheme. Since 
the minimum distance between molecules is of the 
order of 50 A, it is assumed that the contribution of 
higher multipoles has converged within the inner ex­
cluded region. 

Because the wavefunctions belong to different irre­
ducible representations, the + and - states do not 
interact with light whose k vector is parallel to (b )-1 
or perpendicular to (b)-I. Therefore we need consider 
only the case of interaction between parallel dipoles, 

( 30) 

term (",20% or less) and may be neglected to the 
accuracy of the calculations reported herein. The 
reader can find in Appendix II, a derivation of Eq. (30), 
which is written for the case that the inner zone is a 
sphere, along with a discussion of retardation effects. 

Consider the two transition moments 

(32) 

14 W. Heller and A. Marcus, Phys. Rev. 84, 809 (1951). 
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TABLE IV. Long-range dipole-dipole contribution to the 
Davydov splitting and band shift in anthracene' (energies in 
cm-'). 

Polari- ~ Ju'/m' ~ J nl / m2 

zation ml m2 

Transition axis (equiv.) (inequiv.) 

IA 1Q->IB2u (p) short -250 +316 

1 A 10->1 B 3• (!3) long 6435 6600 

a These data were computed using the experimental values for the oscillator 
strengths. 

where (a, b, c) is the vector representing the direction 
cosines of the transition dipole of Molecule 1 in the unit 
cell, and I p I is the magnitude of the transition dipole. 
Then, in view of the discussion in Appendix II, 

and 

I UB" 12 (81T/3 V) P2( COSUB,,· k) [jo(kRo) +j2(kRo)]. 

(33) 

From the definitions, it readily follows that the con­
tributions of the long-range dipole-dipole sums over 
translation ally equivalent and nonequivalent molecules 
are given by 

L lnl,rnlP cos(k·rml) =HSA"P+SB"p) 
ml"'nl 

and 
Llnl,m2 cos(k· rm 2) = HSB"P~ SA"P) (34) 
m2 

for R> Ro. Here the superscript p refers to the con­
tribution to the diagonal matrix element for the IB2u (p) 
state. Since the excluded volume is characterized by a 
radius Ro~50 A, kRo~0.2 and jo(kRo) +j2(kRo)~1. 
We shall limit ourselves to the case wherein the k 
vector is perpendicular to the ab plane, so that k [[ (C')-I, 
This is the case of practical interest, as all experimental 
results have been obtained for k along the normal to 
the (ab) -I plane. It is found that 

and 

cos (UB" • k) = c/ (a2+c2) t; 

P2[COS(UB,,·k) J= (2c2-a2)/2(a2+c2) , (35) 

whereupon 

and 

Using the crystal data cited III Appendix IV, the 
long-range contributions to the Davydov splitting can 
be obtained. These results are displayed in Table IV. 

It should be noted that a substantial contribution 
to the factor-group splitting arises from the external 
region. 

v. CRYSTAL-FIELD MIXING 

The first-order theory described in Sec. II is not 
sufficient to account for the Davydov splittings and 
intensity ratios in aromatic crystals. The importance of 
configuration interaction between singlet exciton states 
arising from crystal-field perturbations was first pointed 
out by Craig.15 Moreover, as pointed out by Fox 
and Yatsiv/ the off-diagonal matrix elements of the 
Hamiltonian are extremely important when long-range 
interactiqns are included. 

In the analysis reported here, we have considered 
the configuration interaction between the anthracene 
p and (3 states, which requires the evaluation of the 
integrals r m1 ,nIPj3 , r m2 ,nIPj3 , and ~nl,miPj3 [Eqs. (18) and 
(19)]. Previous work has employed the multipole ex­
pansion for the pair-interaction term, keeping only the 
dipole-dipole interaction. In this approximation the 
~nl,mi(i= 1, 2) matrix elements vanish.15 Using the 
MO 1T-electron scheme, we write, in the Huckel approxi­
mation, 

7 

~nm= L( (UnSUng [ urnrUrnr )- (unfiu,? [un,'u",r). (37) 
r=l 

Neglecting the contribution of three- and four-center 
integrals and assuming the validity of the pairing 
property for the molecular orbitals of an alternant 
hydrocarbon, we get ~nm = O. 

The r nm
pj3 integrals were evaluated numerically for 

molecules within a sphere of 50 A. The matrix elements 
take the form 

r nm
pj3 

= (l/v'2) ( (U n
8
U n

6 I U m
7U m

8 )+ (Un
9U n

6 I U m
7unn 

+ (Un
7U n

8 [ um
6u,,,s)+ (U n

7U n
8 [ U m

6U m
9 ). (38) 

Only the two-center integrals were included in this 
calculation, using Huckel and Pariser wavefunctions. 
The results thus obtained are displayed in Table V. 
As in the case of the first-order theory, the contribution 
of the higher multipoles was estimated by evaluating 
the contribution of the dipole-dipole terms only, scaling 
this dipole term by the ratios between the calculated 
and experimental transition moment for the band 
(the transition moment for the (3 band is assumed to 
be correctly given by the theory), and subtracting the 
scaled dipole-dipole contribution from the total inter­
action energy. The contribution of the higher multipoles 
is of the order of 25% of the total interaction energy 
within the 50-A sphere. 

16 D. P. Craig, J. Chem. Soc. 1955, 2302. 
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TABLE V. Short-range configuration-interaction matrix elements for crystal-field P-(3 mixing in anthracene crystal 
(all energies in em-I). 

Translationally inequivalent molecules 

R Idd HU PA 

20 -1685 -1815 -1862 
25 -1667 -1774 -1825 
30 -1615 -1648 -1705 
35 -1612 -1638 -1697 
40 -1610 -1645 -1702 
45 -1620 -1665 -1722 
50 -1638 -1701 -1752 
55 -1650 -1725 -1779 
60 -1661 -1755 -1807 
65 -1670 -1775 -1826 

No. of cells 

2 -1835 -1760 -1805 
3 -1730 -1600 -1659 
4 -1627 -1667 -1717 
5 -1657 -1751 -1800 
6 -1669 -1781 -1828 
7 -1672 -1790 -1837 
8 -1675 -1790 -1837 

The corrected total interaction energy within this 
inner zone was obtained by multiplying the HU and 
P A terms in Table V by the scaling factors involving 
the squares of the calculated and experimental oscillator 
strengths for the p band, i.e., (0.5/0.1) ~ and (0.38/0.1) l, 
respectively. For the region outside the SO-A sphere, it 
was assumed that convergence of the higher-multipole 
interaction had been achieved, and only dipole-dipole 
terms remained to be summed from 50 A to infinity. 
This summation was carried out using the continuum 
model. 

We consider a cubic crystal with the same unit-cell 
volume as the aromatic monoclinic crystal and con­
taining one dipole per unit cell. The formulas derived 
for the case of the infinite spherical crystal are now 
applicable. The contribution of the long-range dipole­
dipole interactions to r nl,miPf3 involve the interaction 
between the transition dipole to the p state on one 
molecule and a IJ-state transition moment for another 
molecule and vice versa. For the calculation of the 
interaction between translationally equivalent mol­
ecules, we consider the fictitious dipole 

( 39) 

where pnlP and Pnlf3 are the transition dipole moments 
to the p and IJ states on Molecule n1. Then the inter­
action between the dipole th located at the origin and 
a set of parallel dipoles Vm each located in the mth 
unit cell is 

E(Vn, Vm) =t[E(PnlP
, PmlP)+E(Pnlf3, Pml) 

+ E(PnlP , Pml(3
) + E(Pmlf3

, PnlP)], (40) 

where E(PnlP , Pml) represents the interaction energy 
between a p-state transition moment of the reference 
molecule n1 and the IJ-state transition moments on all 

Translationally equivalent molecules 
------------------

Idd HU PA 

-386 -168.2 -197 
-425 -263.6 -288 
-461 -355 -371 
-441 -304 -324 
-467 -372 -387 
-506 -470 -479 
-536 -540 -545 
-553 -581 -585 
-561 -600 -600 
-570 -620 -621 

-832 -1095 -1064 
-775 -712 -705 
-624 -636 -636 
-594 -706 -712 
-577 -622 -622 
-571 -640 -639 
-575 -628 -625 

the translationally equivalent molecules. The calcula­
tion is straightforward, and, using the data in Table IV, 
we find 

t[E(Pnl", p",l) + E(Pnlf3 , Pml")]= -1145 cm-l. 

For the sum over translationally inequivalent molecules 
we take 

( 41) 

The interaction energy between Vn' at the origin and 
all the Vm' dipoles in the fictitious crystal gives 

E(Vn', Vm') = t[E(Pnlf3, Pml(3
) + E(Pn2P , Pm2P

) 

+E(Pnl, Pm2P)+E(PnlP
, Pnl(3

)], (42) 

leading to t[E(Pnlf3
, Pm2P) + E(PnlP, Pm2(3

)] = -847 cm-l
. 

In Table VI we compare the total contribution of the 
dipole-dipole terms obtained by direct summation up 
to 50 A and use of the continuum approximation for 
the outer region with the results of Fox and Yatsiv7 who 
employed the Ewald method for evaluating the dipole 
sums. The agreement is good, lending support to the 

TABLE VI. Contribution of dipole-dipole interaction terms to the 
matrix elements in the anthracene crystal. 

This work Fox and Yatsiv' 
(em-I) (em-I) 

Matrix --------- ----------
element Au Bu Au Bu 

PP -1120 -291 -920 -270 
(3(3 -3578 29094 -3500 25 000 
p(3 900 -4500 1140 4600 

a These values are approximate since Fox and Yatsiv (Ref. 7) did not ex­
plicitly report the quantities tabulated: the entries have been inferred from 
their tables. 
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TABLE VII. First- and second-order interaction matrix ele­
ments for the p and {j bands in anthracene (all quantities in cm~l). 

lnt. to 55-A sphere: 

pp ~ =-340 
eqlli v 

{j{j ~ = +5800 
equiv 

P{j ~ =-265 
equi v 

DD to 55-A sphere: 

PP ~ =-457 
equiv 

{j{j ~ = +6323 
eq ui v 

P{j ~ = -553 
equiv 

DD 55 A: 
PP ~ = -250 

eQuiv 

{j{j ~ =6435 
CQuiv 

p{j ~. = -1145 
equlv 

pp ~ =+16 
inequiv 

{j{j ~ = + 10430 
iDequiv 

{j{j ~ = -790 
inea ui v 

PP ~ =+100 
inequiv 

{j{j ~ = +9736 
ineQuiv 

P{j ~ = -1650 
inequiv 

PP ~ =316 
ineQui v 

{j{j ~ =6600 
ineQlliv 

p{j ~ = -840 
inequiv 

applicability of the continuum model to the calculation 
of long-range interactions in a monoclinic crystal con­
taining more than one molecule per unit cell. 

VI. NUMERICAL CALCULATIONS AND RESULTS 

In Table VII we present the interaction matrix 
elements required for the computation of first- and 
second-order Davydov splittings in the p and {3 bands 
in anthracene. These results differ considerably from 
the dipole-dipole terms given in Table VI, thus demon­
strating the importance of inclusion of the higher 
multi pole terms. In Table VIII we list the various 
contributions to the first-order Davydov splitting in 
anthracene, again demonstrating the importance of 
higher multipoles and of long-range dipole-dipole inter­
actions. On the other hand, the contribution of the 
electronic-exchange interaction Knm in the anthracene 
p band is relatively small, in contrast with a previ­
ous conjecture16 regarding the importance of electron­
exchange terms for singlet-state Davydov splittings. 
The effect of the crystal-field mixing between the p 
and {3 states is readily obtained by diagonalization of 
the matrices 

(

-922 
(Au) = 

251 

(

-258 
(Bu) = 

-3544 

251 ) 

.1w-4995 

-3544 ) 

.1w+29265 ' 

16 H. Sternlicht, G. C. Nieman, and G. W. Robinson, J. Chern. 
Phys. 38, 1326 (1963). 

where .1w= 14 000 cm-1 is the energy difference between 
the p and {3 states in the isolated molecule. The resulting 
energy levels corresponding to the p state are - 929 cm-1 

(for Au) and -560 cm-1 (for Bu ), while for the {3 
band we find 9341 cm-1 (for Au) and 43836 cm-1 

(for Bu). 
Throughout the previous discussion we have assumed 

that the Davydov splitting is large relative to the 
vibrational spacing. In this strong coupling limit, the 
wavefunction is represented by the product of the 
excited-state electronic wavefunction3 and the ground­
state vibrational wavefunction. In the weak coupling 
limit, the Davydov splitting is small compared to the 
vibrational spacing, and, instead of starting with the 
total electronic wavefunction, a different formalism 
must be used. (In the strong coupling limit, the vibra­
tional part of the Hamiltonian is diagonalized after 
the crystal-field part; in the weak coupling case, the 
reverse order is taken.) In the weak coupling limit the 
molecular wavefunctions are constructed from vibronic 
functions, i.e.p 

(43) 

where Xnf(i) is a vibrational wave function for the nth 
excited molecule in the ith vibrational state. When 
the functions defined by Eq. (43) are used as the basis 
for calculating the matrix elements of the intermolecular 
potential, the integrals are all modified as follows: 

(cpJ(i)CPrno I V nm I CPnocp,,/U) ) 

= J nm (XnO(O) I Xnf(i) ) (XmO(O) I XmfU) ). (44) 

Therefore, in the weak-coupling limit, the total elec­
tronic matrix element is modified by vibrational overlap 
factors. It should be noted that in this case off-diagonal 
matrix elements between vibronic states corresponding 

TABLE VIII. Davydov splittings in crystalline anthracene. 

P band 

Theory 
(cm~l) 

Dipole terms to 55 A +200 
Higher mUltipoles -180 
Long-range dipole terms (from +632 

55 A to infinity) 
Electron exchange +30 

First-order splitting 
Second-order splitting ({j state 

included) 

{j band 

First-order splitting 
Second-order splitting 

a Reference 20 . 
b Reference 4. 

622 
350 

33 800 
34 495 

Experiment 
(cm~l) 

450-,400h 

(15 000) 

17 (a) W. T. Simpson and D. L. Peterson, J. Chern. Phys. 26, 
588 (1957); (b) A. Witkowski and W. Moffitt, ibid. 33, 872 
(1960). 
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TABLE IX. Davydov spJittings in vibronic components of p state (assuming strong coupling in all other states). 

Calculated 

Only {3 state in configuration interaction All 7r states in configuration interaction Experimental 
----------------

Band Au(l!b) BuU.b) A PCb/a) AuOlb) Bu(J .. b) A PCb/a) A" P(b/a)b 

0.0 -404 -219 185 2.5 -437 -230 207 3.5 220(191) 5 
0--1 1143 1228 85 1.6 1119 1221 102 2.5 141 (150) 4.5 
0-2 2640 2690 50 0.5 2632 2686 54 1.9 58(80) 3 
0--3 4133 4153 20 4130 4152 22 
0-4 5563 5573 10 5560 5573 13 

a First set of data from Ref. 20; data in parentheses from Ref. 5. 
b Reference 20. 

to the same electronic transition must be included. If 
these off-diagonal terms are neglected, the vibrational 
sum rule Li I (XO(O) I X/(i) 1 implies that the total 
first-order electronic contribution to the Davydov 
splitting can be approximated by summation over all 
the experimental spliUings corresponding to the indi­
vidual vibronic components. 

Since the total calculated splitting in the P state of 
anthracene is of the order of 500 cm-1 compared with 
a (symmetric) vibrational spacing of the order of 
1400 cm-I , we shall examine the theoretical predictions 
in the weak coupling limit. On the other hand, for the 
(3 band, an application of the strong coupling scheme 
seems more appropriate. For the computation of the 
Davydov spliUings in the vibronic components of the 
band, we have considered four vibrational states with 
the diagonal and off-diagonal matrix elements given 
by (33). The configuration-interaction crystal-field­
mixing matrix elements between the vibronic compo­
nents of the P band and the (3 band are given by 
I'nnlP (XO(O) I xp(i». 

The vibrational overlap integrals (XO(O) I Xp(i» can 
be obtained from the squares of the relative intensities 
(normalized to unity) of the vibronic components in 
the solution spectra. Alternatively, the Ross-McCoyl8 
procedure for the evaluation of these overlap integrals 
may be employed. Using the procedure described in a 
previous paper,12 we get, from the calculated bond-order 
changes, 

(XO(O) I xp(l) ) = 0.515 (exptl. = 0.570) , 

(XO(O) I Xp (2) ) = 0.S90( exptl. 0.562) , 

(XO(O) I xp(S) }=0.483(exptl. 0.466). 

The 5XS matrices were diagonalized, leading to the 
results displayed in Table VIII. 

It is well known that a small amount of configuration 
mixing can lead to profound changes in the spectrum: 
our calculations for anthracene can therefore be further 
tested by examining the polarization ratios of the com­
ponents of the IB2u vibronic states. Let M- and M+ 
be the transition moments parallel and perpendicular 

18 E. F. McCoy and I. G. Ross, Australian J. Chern. 4, 573 
(1962). 

to the b axis. Then 

In Eq. (34), X±(p;If3) are the mixing coefficients between 
the vibronic component Pi and the (3 state, the super­
scripts Pi and (3 also referring to the same states. The 
polarization ratios 

P(b/a) = [(M-·b)/(M+·a)]2=[I M 1/(M+·a)]2 (46) 

are displayed in Table IX. 
A crystal-field-mixing scheme involving only the P 

and (3 states is not complete; higher excited states 
must also be included. In order to take into account the 
effect of higher lI'-excited states in anthracene, the fol­
lowing procedure was employed. Pariser'slO values of 
the energy levels of the 11' states having nonzero oscilla­
tor strength (i.e., a IB2u state at 5.251 eV with oscillator 
strength of 0.091, a IB2u state at 6.586 eV with oscil­
lator strength of 0.644, and a IBsu state at 7.221 eV 
with oscillator strength 0.091) were used. Since there 
is no lB2u state at 5.2S1 eV in the solution spectrum/9 

but there is one at 5.65 eV, we arbitrarily added 0.4 
eV to Pariser's energy values. Then, dipole sums for 
these levels were calculated using Pariser's oscillator 
strengths; the results were scaled by a factor arrived 
at in the following way: the dipole sums of the short­
axis polarized (1 B2u ) states were scaled by the ratio of 
the experimental oscillator strength of the p band (also 
short-axis polarized) to the oscillator strength calcu­
lated by Pariser for the p band. The long-axis state 
(IB3u ) sums were scaled by a similar ratio for the (3 
state. The resulting 9X9 matrices (flve vibronic com­
ponents of the p and the (3 states, two IB2u , IB3u states 
in the strong coupling limit, i.e., all intensity in the 
(}-() band) are in Table X. The results for the splitting 
and the polarization ratio for the p band found by diag­
onalization of the above matrices are listed in Table IX 
(along with those results found by excluding the higher 
states). There is little difference in splittings, but the 
polarization ratios are considerably affected by including 
higher excited states. 

19 L. E. Lyons amI J. Morris, J. Chern. Soc. 1959, 1551. 
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TABLE X. Configuration-interaction matrix elements for anthracene including five 7r--+"* excited states. 

IB2u (p) %u ((3) IB2u IB2u' IB,,, 

(a) Au(llb) 

-300 -295 -246 -160 -118 142 -254 -680 -24 
1109 -242 -158 -116 141 -250 -669 -24 

2598 -132 -97 117 -208 -557 -20 
4114 -63 76 -136 -363 -13 

5554 56 -100 -267 -9 
9 365 122 325 -780 

19 800 -575 20 
28 500 50 

35 870 

(b) BuU.b) 

-84 -83 -69 -45 -33 
1319 -68 -44 -32 

2743 -36 -27 
4176 -18 

5587 

VII. COMPARISON WITH EXPERIMENT 

The experimental value of the Davydov splitting in 
the anthracene IAI!l~IB2U band has only recently been 
established. Due to the width of the absorption bands, 
the positions of the bands and the Davydov splittings 
were found to depend on the thickness of the crystal 
unless very pure polarized light was used. The splitting 
in the 0--0 band has been reported to be 220 cm--I by 
Brodin and Marisova,2o 200 cm--I by WoIf,2! 190 cm--I 

by Claxton et al.,4 and 336 cm--I by Lacey and Lyons.22 

Brodin and Marisova20 report a total splitting (sum of 
all the vibronic components) in the p band of 450 cm-I 

and Claxton et al.4 have reported other measurements 
of this splitting in the vicinity of 400 cm--I . An exami­
nation of Table VIII shows satisfactory agreement 
between our calculations and experiment. 

In the anthracene (3 band, CraigI5 reports the com­
ponent perpendicular to b to lie 10 000 cm--I above the 
vapor transition and the component parallel to b to 
lie 5300 cm-I below the vapor transition. The shift 
of the perpendicular component is so large that the 
transition lies in the vacuum-ultraviolet region and 
the exact position of the maximum is uncertain. (The 
bandwidth is very large.) Examination of Table VIII 
shows that the observed shift of the parallel component 
agrees with our calculation; the sign and magnitude 
of the shift of the perpendicular component also agrees, 
but the experimental data do not permit of quantitative 
comparison. 

In Table IX we also compare the calculated and 
experimental splittings of the vibronic components of 
the p band with the available experimental data. The 

20 M. S. Brodin and S. V. Marisova, Opt. Spectry. 10, 242 
(1961) [Opt. i Spektroskopiya 10, 473 (1961)]. 

21 H. C. Wolf, Solid State Phys. 9, 1 (1959). 
22 A. R. Lacey and L. E. Lyons, Proc. Chern. Soc. 1960,414. 

-2077 -72 -191 -348 
-2 048 -71 -188 -343 
-1 705 -59 -157 -285 
-1 111 -38 -102 -186 

-816 -28 -75 -137 
43 535 -1 760 -4700 4 950 

19 940 -170 -300 
29 570 -790 

36 825 

agreement regarding the sign and magnitude of the 
Davydov splitting is as good as can be expected. 

The experimental intensity ratios of these individual 
vibronic components reveal a marked deviation from 
the oriented gas value [PCb/a) = 7.7J and show a 
definite trend, which is reproduced by our calculations 
when crystal-field mixing is taken into account. When 
only the effect of the (3 band is considered, the quantita­
tive agreement is poor. Mixing higher excited states 
shows that there is a little difference in the splittings, 
but the polarization ratios are altered to be far closer 
to experiment. 

VIII. EFFECT OF CRYSTAL SIZE ON THE 
DAVYDOV SPLITTING 

The calculations described in the preceding sections 
were performed for a crystal of infinite size. In order 
to make a meaningful comparison between theory and 
experiment, the effect of the finite size of the crystal on 
the Davydov splitting must be considered. That the 
finite size of the crystal may be of considerable impor­
tance is suggested by the substantial contribution of 
long-range dipole--dipole interactions to the first- and 
second-order splittings. Experimental measurements 
usually refer to the splitting in crystals which are 0.1 p. 

thick and about 1 em in diameter, with the wave 
vector of light in the crystal c' direction (i.e., k perpen­
dicular to the ab crystal cleavage plane). 

It is quite simple to consider the effect of the crystal 
on the Davydov splitting for a spherical crystal of 
radius R in the same approximation as defined by 
Eq. (31) . Using the results described in Sec. IV and 
Appendix II, the dipole sum for the finite spherical 
crystal is related to the infinite crystal dipole sum by 

lad( finite) = ldd(infinite) {1- [3jl(kR) /kRJ}, (47) 
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where jl(X) is the spherical Bessel function of first order. 
It is worthwhile to notice that the finite lattice sum 
goes to zero for k~O and shows a rapid variation in 
the region 0<kR~5, converging for kR'"'-'lO to the 
infinite sphere result. Since for our case k'"'-'2X 10+5 

cm-1 (which is of the order of the reciprocal of the 
crystal thickness used in the actual experiments), the 
contribution of the long-range dipole-dipole terms 
should depend on the crystal thickness. However, the 
spherical crystal is not a good representation of the 
actual physical case, and we shall demonstrate that, 
under the experimental conditions actually employed, 
the Davydov splitting is expected to be independent 
of the crystal thickness. 

We turn our attention to a cylindrical crystal. This 
is, in fact, a faithful representation of the actual case. 
Since k~O the dipole sum converges to a value inde­
pendent of the crystal shape, so that the dipole sum 
for the infinite cylinder is equal to that for the infinite 
sphere. 

As in the case previously considered, we assume that 
the interactions within a region of exclusion are to 
be directly summed. This exclusion region now consists 
of a cylindrical volume of radius po and height a around 
the origin. For the outer region we again consider a 
lattice of parallel dipoles with one dipole per unit 
volume and replace the lattice sum by an integral 

. [1-3COS2(y.Ri)] 
Idd= t= exp(tk·R i ) Ri3 . 

( 48) 

where the integral is taken outside the excluded volume. 
This integral may be broken into three parts: 

(1) The annulus of inner radius Po, outer radius L, 
and height a, leading to a contribution h 

(2) The cylinder of radius L and height M - (a/2). 
This cylinder, above the annulus, leads to a contribu­
tion of 12• 

(3) The cylinder below the annular region of the 
same dimension as (2). By direct summation Idd= 

h+2I2 • 

At this point it should be mentioned that in the 
experiments reported, L'"'-'l cm, while a'"'-'1O-5 cm. As 
shown in Appendix III, 

411" ja/2 
I1=-P£cos(y·k)] dzexp(i I k I z) 

Vo 0 

( 49) 

Then, as L~oo (i.e., L/a~105), we get 

411" ja/2 P02 exp(i I k I z) 
I1=-P2(cosy·k) dz (2+ 2)~ . 

Vo 0 Po z 
(50) 

Consider now the second contribution: 

411" 1M exp (i I k I z) 
12= - VoLPz(cosy.k) a/2 dz (1+Z2/ Y)! . (51) 

For a finite value of k, when L~oo, I2~0.23 Thus we 
have shown24 that the entire contribution to the dipole 
sum for a cylindrical crystal with k perpendicular to 
the plane face of the cylinder arises from the annular 
region and the excluded inner zone. This result may be 
justified by the following intuitive argument: Consider 
an infinitely wide and infinitely thin plate of dipoles 
above the test dipole, which is not in the plate. Let us 
consider two cases: (a) All the dipoles are perpendicular 
to the plate; the plate then acts as a condenser, and 
since the field is zero outside a condenser, there is no in­
teraction between the dipoles in the plate and the test 
dipole; (b) all the dipoles are parallel to the plate; then 
the field due to the dipoles in the plate has a discon­
tinuity at infinity, and there is no interaction between 
the dipoles within the plate and the test dipole. Hence, 
for any orientation of dipoles, an infinitely thin and 
infinitely wide plate does not interact with a dipole 
outside. Of course, for a finite thickness, the modulation 
of the dipoles by the exp(ik·R) terms has to be in­
cluded. However, we have shown that for k perpen­
dicular to the plane there is no contribution outside 
the annular region. 

For the case of a real aromatic crystal, the thickness 
of the annular region is determined by the distance 
where the continuum approximation involving the 
construction of effective unit-cell dipoles is applicable. 
As shown in Sec. IV, a value of a~50 A is suitable. 
Hence we conclude that, under any experimental con­
ditions when k II (c')-I, the entire long-range contribu­
tion to the Davydov splitting will arise from the annular 
region, and the experimental splitting should be inde­
pendent of the crystal thickness. It is worth mentioning 
that Brodin and Marisova20 found no systematic change 
in the factor-group splitting in the p state of anthracene 
varying the crystal width in the region 0.05-0.1 }J.. 

The results just obtained imply that, under the 
conditions discussed above, the region of coherent exci­
tation in the crystal is not limited by the crystal 
thickness, as long as the crystal width (i.e., area) is 
infinite. Under the experimental conditions usually 
employed, the size of the exciton packet is determined 
by the reciprocal of the absorption coefficient and by 
the infinite width of the crystal. Although the change 
of phase across the exciton packet in the k direction 
is relatively small (i.e., kR'"'-'l, the absorption coeffi-

23 It is worthwhile noting at this point that for k=O, Idd de­
pends on the ratio M / L, i.e., the shape of the cylinder. 

24 The same result can be obtained by maximizing the integral 
h, so that 

12 (max.) = exp (i I k I z)dz. 411" L' laM 
No (L'+a2/4)! a/2 

As the integral on the right is finite for all values of M, then for 
large L, 12 (max.)->O. 
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cients are of the order of lOL 106 cm-1 in aromatic 
crystals), size effects are not expected because of the 
infinite crystal width. Moreover, as long as k is in 
the c' direction, the energy of the two Davydov com­
ponents will be independent of the crystal shape. 
Finally, no size effects are expected to contribute to 
the absorption bands. 

Before closing this discussion, it is worth mentioning 
that, if k is not perpendicular to the ab plane of the 
cylindrical crystal, size effects on the splitting would 
be expected to show up, depending on the angle between 
k and (C')-l. 

IX. EFFECT OF CHARGE-TRANSFER STATES 

Up to this point we have followed the formulation 
of exciton theory within the framework of the tight 
binding approximation, constructing zero-order crystal 
wavefunctions based on the free-molecule wavefunc­
tions. Recently, the simple exciton theory was extended 
to include charge-transfer (ion-pair) exciton states 
constructed by removing an electron from one molecule 
and locating it on another molecule in the crystaP2 
Ion-pair exciton states are expected to make a consider­
able contribution to neutral exciton states characterized 
by a relatively small bandwidth, i.e., neutral-triplet 
exciton states and neutral-singlet exciton states corre­
sponding to very weak molecular transitions. In the 
analysis cited, the crystal wavefunctions and the energy 
levels for charge-transfer exciton states were derived, 
and configuration interaction between charge-transfer 

and neutral-triplet exciton states was examined. It is 
also interesting to examine the configuration interaction 
between charge-transfer states and neutral-singlet 
exciton states arising from a relatively weak molecular 
transition, e.g., the anthracene p band. Since the 
interaction is short range, we need only consider ion­
pair functions where the positive and negative ions 
are near neighbors. As before, the matrix elements 
connecting the neutral and charge-transfer exciton 
states can be expressed in the form: 

B(i,j) = (R, I H I R i , Rj )- (R; I RiR;)(R; I H I R;) 

and 

C(i,j) = (R; IH I Rj, R;)- (Ri I RjR i ) (Ri ! H ! R i ), 

(52) 

where! R i ) refers to a localized excitation on Molecule 
i, while! R i , R j ) is the ion-pair wavefunction where 
the positive and negative charges are located on 
Molecules i and j, respectively. 

Considering only matrix elements where the molecu­
lar excitation and the negative (or positive) ion are 
located on the same molecule, it was previously shown 
that only the following eight ion-pair exciton wave­
functions, E1T= ! 0, -c; F), E2T= ! -c, 0; =t=), E.T= 
! 0, c+-c; =t=), and E4T= ! c+-c, 0; =t=), have different 
mixing coefficients for the states of Au and B" symmetry, 
and only these states will contribute to the Davydov 
splitting. The configuration-interaction matrix elements 
take the form: 

K 1T= (E1'" I H I EIT)- (E1T ! 'ft'ff) ('ft'ff ! H ! 'ft'ff) =V2[B(O, -c) + B( -c, 0) =t=C(O, -c) =t= C( -c, 0)], 

K2T=V2[C(0, -c)+C(-c, O)=t=B(O, -c)=t=B(-c, 0)], 

KaT=V2[B(O, c+-c) + B( c+-c, 0) =t=C(O, c+-c) =t=C( c+-c, 0)], 

K4"'=V2[C(0, c+-c)+C(c+-c, O)=t=B(O, c+-c)=t=B(c+-c, 0)]. (53) 

The matrix elements were evaluated by the methods described previously,12 leading to the general results 

7 

B(A, B) = (UA8! VBGMS ! UB8)- (UA8! UB8) (UA8! VBGMS+2KA7- h71 UA8)+ (UA8! KA7- L:KBsl UB8) 
8=1 

6 

- (UA71 UB7) (UA7UA8! UB7UB8)-L:( (UAi! UB8) (UAi! VBGMS ! UA8)+ (UAi I UB8) (UAi I KAL J.,,/I UA8) 
i=l 

+ (UA81 UBi) (UBi I VAGMS_]A7+KB7! UBK)- (UA7! UBi) (UA8UA7 I UB8UBi )- (UA8 ! UB8) (UA8UBi ! UBiUBK». (54) 

C(A, B) = - (UB7! VBGMS ! UA7)+ ± (UB71 K B8 I UA7)- (UB7UA7! UA8UA8)+ (UA71 UB7) (UB71 V BmIs ! UB7) 
i=l 

6 

+ L:( (UA7 ! UBi)(UB7! VAGMS+h8-h7 1 UBi)- (UB7! UA7)(UA7 I KBi)+ (UB71 UAi) (UAi ! K A8! UA7», (55) 
i=1 
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where VAGMS is the Goeppert-Mayer-Sklar potential 
of Molecule A, and J Ai and KAi are the Coulomb and 
exchange operators of the orbitals UAi. 

The configuration-interaction matrix elements are 
displayed in Table XI. 

The energies of the charge-transfer states in anthra­
cene were estimated from classical considerations.12 

The energies of the Et''' and E2~ states were found to 
be 3.4±0.S eV, while the energies of the E.~ and E4~ 
states are 4.4±0.S eV above the ground state. The 
difference between these energies arises from different 
Coulomb interactions in the states where the charges 
are located on 0 and 't" or on 0 and c+'t", respectively. 
Since the energies of the charge-transfer states are 
expected to lie close to the p band (3.1 e V), perturba­
tion theory is not applicable, and the 6X6 energy 
matrices (for the Au and Bu states, separately) involving 
the p, (3, and four charge-transfer states were diago­
nalized.25 Moreover, since the location of the charge­
transfer states is uncertain, we have used the energy 
difference between the p and the El (or E2) states 
as an adjustable parameter, while the energy differ­
ence between the EI and E3 states is taken to be 1 eV. 
The results thus obtained are displayed in Fig. 1, 
where we have plotted the relative energies and the 
percentage of p in each of the components. 

For a p- EI~ separation of -600 to +400 em-I, 
four bands in the absorption spectrum are expected, 
two b polarized and two polarized in the ac plane. It 
should be noted that the intrinsic intensity of the 
transition to the charge-transfer states is expected to 
be small (characterized by an oscillator strength of 
the order of f = lO-L 10-6), and such transitions may 
only be amenable to experimental observation in pure 
crystals when appreciable mixing with neutral-exciton 
states occurs. The available experimental data are not 
consistent with the above picture, as only one Au and 
one Bu component are observed for each vibronic state. 
It is then necessary that the separation between the 
charge transfer and the p bands in crystal anthracene 
be larger than 500 em-I. Under these conditions, the 
effect of charge-transfer states on the p-band splitting 

25 The off-diagonal matrix element between neutral and charge­
transfer states may be derived by considering a set of wavefunc­
tions <1>; characterized by extremely small overlap. In this case, 
the symmetric orthogonalization procedure [P.-O. L6wdin, J. 
Chern. Phys. 18, 365 (1950) ] is applicable: 

.p( =<I>i-!~<I>iSi;+i~<I>kSkISli-"" 
d h,1 

where 

Thus 
JIik' =JIik-!~ (SiiJIik+JIijSjk) +"', 

d 

amI since the overlaps are so small, we may neglect higher-order 
ten';s in S. Then, if our Hamiltonian has off-diagonal matrix 
elements much smaller than the diagonal elements, 

JIik' = JIik - SiklIkk+! Sik (1hk-}{iJ , 

and we may neglect the last term for the cases we consider here. 
Thus the off-diagonal matrix elements are given by K;~. 

TABLE XI. Band C coefficients for IB2• (p) anthracene 
(all energies in units of 10--2 electron volts). 

j B(i,j) C(i,j) 

0 .. 1. 96 0.547 
0 c+ .. -0.508 2.65 
.. 0 1.90 0.435 
c+ .. 0 -0.478 2.65 

is small (Fig. 1). The experimental observations/,2o 
therefore, do not yield evidence regarding the location 
of the first charge-transfer states EI and E2 in this 
system. In addition, recent experimental observations 
on thick (1 em) anthracene crystals26 also fail to 
yield any evidence for the location of the charge-transfer 
state on the low-energy tail of the band in anthracene. 
It is conceivable that these states are located somewhere 
between the p and (3 neutral-exciton states of the 
crystal. 

X. DISCUSSION 

In the work presented herein, a detailed study is 
made of the lower excited states of a typical aromatic 
crystal. It is shown that calculations of the magnitudes 
and signs of the Davydov splittings and the intensity 
and polarization ratios of the vibronic components of 
the transition to the lowest excited state of anthracene 
are in satisfactory agreement with experiment. It is 
somewhat disappointing that, despite considerable 
progress in the understanding of the excited states of 
7r-electron systems, the available wavefunctions are not 
of sufficient accuracy to permit a priori calculations 
of the properties of singlet-exciton states. The criterion 
for the accuracy of the molecular wavefunction em­
ployed herein is the set of magnitudes of the oscillator 
strengths predicted for the free-molecule transitions. 
In view of the serious overestimates of oscillator 
strengths, even when configuration-interaction molecu­
lar wavefunctions are employed, some scaling of the 
intermolecular Coulomb interaction integrals is neces­
sary. It is interesting to note at this point that the 
electron-exchange intermolecular integrals, which con­
tribute only a small correction term in the case of 
singlet-exciton states, are not markedly affected by 
the molecular functions employed. For the naphthalene 
triplet state, it was found that the Pariser wavefunction 
leads to a triplet-state Davydov splitting which is only 
10% lower than that obtained by using the Huckel 
function. 

It is pertinent to consider again the importance of 
the various contributions to the energies of singlet 
exciton states in aromatic molecular crystals: 

(a) The problem of calculating energies in molecular 
crystals cannot be reduced to the summation of dipole-

26 R. S. Berry, J. Jortner, J. C. Mackie, E. Pysh, and S, A. Rice, 
J. Chern. Phys. 42, 1535 (1965), 
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dipole interactions. From 7r-electron theory, it has been 
demonstrated that short-range higher-multipole inter­
actions yield important contributions to the diagonal 
and off-diagonal matrix elements. The most striking 
case is that of the diagonal terms for the p state, 
where the higher multipoles reduce the contribution 
within the sphere of 50 A from 100 cm-I for dipole­
dipole terms to 16 cm-I . The importance of higher 
multipole interactions has been pointed out by Craig 
et al. 4 However, in their calculations the transition 
octopole moment (for g--}u transitions) was used as 
an adjustable variable to obtain agreement with 
experiment. 

(b) Electron -exchange interactions in the allowed 
singlet state (IB21l in anthracene) were found to be 
small. 

(c) The long-range dipole-dipole interactions are of 
great importance, and any meaningful theory of singlet­
exciton states arising from allowed transitions must 
take the long range of the interaction into accountY 
The computation of this contribution is greatly facili­
tated by applying the continuum approximation used 
in this paper. Long-range interactions involving modu­
lated dipole sums are absolutely convergent, and, under 
the experimental conditions employed to date, the 
Davydov splitting is predicted to be independent of 
the crystal thickness. The contribution of long-range 
retarded dipole terms has recently been studied by 
Simpson28 using quantum electrodynamics. Simpson's 
analysis leads to the same formula as is obtained in 
Appendix II of this paper. Ha1l29 and Amos30 have 
shown that, when only dipole-dipole interactions are 
included in the lowest excited states of molecular 
crystals, the classical theory of long waves developed 
by Born and Huang3I for vibrations of ionic crystals 
is applicable. These authors examined the coupling 
between electromagnetic waves and transverse-exciton 
waves and the set of dispersion relations obtained 
therefrom. The effect of higher excited states was 
included in terms of a frequency-independent polariza­
bility term. 

(d) In the analysis presented here, the effects of 
configuration interaction between singlet-exciton states 
have been carefully examined. It was found that the 
mixing between p and f3 singlet states has a large effect 
on the Davydov splitting, while inclusion of higher 
excited 7r states has only a minor effect on the splittings. 
However, to account for the polarization ratios in the 
vibronic components of the p band, higher excited 
states must be included. 

27 It should be noted that the conditional convergence of the 
dipole sum is characteristic of the three-dimensional crystal. For 
one-dimensional crystal models of physical interest, i.e., polymers, 
the dipole sum converges within a relatively small distance 
(,,-,SO .tt). 

28 W. T. Simpson, Radiation Res. 20, R7 (1963). 
29 G. G. Hall, Proc. Roy. Soc. (London) A270, 285 (1962). 
30 A. T. Amos, Mol. Phys. 6, 393 (1963). 
31 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 

(Oxford University Press, New York, 1954). 

(e) Charge-transfer exciton states were found to 
have only a small effect on the anthracene p-band 
Davydov splitting. It appears that the charge-transfer 
state will only slightly influence singlet-exciton states 
arising from allowed transitions (i.e., characterized by 
an oscillator strength higher than 0.01). On the other 
hand, these charge-transfer exciton states may appre­
ciably affect singlet-exciton states arising from sym­
metry-forbidden vibronically induced transitions (i.e., 
the IB21l state of benzene) or symmetry-allowed but 
mainly vibronically induced transitions [i.e., the 
IB3u(0') state of naphthalene]. 

For the case of naphthalene, the splitting in the 0-0 
band of the 0' state is reported to be about 160 cm-I 

with the component perpendicular to b lying lower than 
does the component parallel to b. From the analysis 
presented here, the contribution of two-center integrals 
will vanish, and the Davydov splitting is expected to 
be smaller than 10 cm-I . This result is a consequence 
of the pairing property of Huckel or SCF 7r-electronic 
wavefunctions. Inclusion of intramolecular overlap in 
the Huckel wavefunctions destroys the pairing proper­
ties of the 7r orbitals, but the resultant splitting is small, 
and the components are inverted from what is found 
experimentally. Now, the pairing property of 7r-electron 
orbitals has been extensively tested by examination of 
the electron paramagnetic resonance spectra and optical 
spectra of positive and negative hydrocarbon ions. In 
all cases, it is found that the pairing of orbitals provides 
an accurate description of the observations. We there­
fore conclude that some other explanation than "poor 
wavefunctions" must be invoked to explain the obser­
vations. Recent work in this laboratory indicates that 
crystal-field mixing of ion-pair (charge-transfer) exciton 
states with the 0' state explains the observations. This 
work will be reported in a separate publication. 

Aside from questions related to quantitative details, 
perhaps the most important deduction to be drawn 
from the work reported herein is that the observed 
spectra of aromatic crystals represent only the end 
effects of very subtle balances and interactions between 
all the states within the molecular electronic manifold. 
In this sense, then, the simplest version of exciton 
theory is an inadequate description of real systems. 
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APPENDIX I: CALCULATION OF INTEGRALS 

The Coulomb integrals are of the form 

where un
i is the ith molecular orbital on the nth 

molecule. We may break this up into atomic integrals 
(w n ,,) to get 

1 = L c"ic~jC/C81(Wn"'Wn{J/WmYWm8), 
",{J,y,8 

(A2) 

where a, (3 are atoms on Molecule nand /" 0 are atoms 
on Molecule m, and the c's are HUckel or SCF coeffi­
cients, If we consider only two-center terms, we find 

1 = Lc",ic",jc/C,/(Wn"'Wn"/WmYWmY). (A3) 
",p 

The SCF carbon-atom wavefunctions used in the 
computation of the integrals are a linear combination 
of four Slater orbitals characterized by the parameters32 : 

al = 0.00842, 

al = 6.827, 

a3=0.45191, 

as= 1.625, 

a2=0.17442, 

a2=2.779, 

a4 = 0.43645, 

a4= 1.154. 

These atomic Coulomb integrals involve the interaction 
between 2P7r orbitals at orientations determined by the 
crystal structure. The coordinate system used in this 
calculation is the same as that used by Kotani et al.33 

The line joining Atoms a and/, defines the z axis, and 
we may choose the y axis to be perpendicular to one 
orbital, defining 

A=nox"" 

D=mox"{, 

B=noY",=O, 

E=moyy, 

C=noz"" 

F=mozy, 

where nand m are unit vectors in the direction of the 
2P7r orbitals located on Centers a and /" respectivelyo 
We find that the atomic Coulomb integrals may be 
expressed as 

(Wn"Wn" I Wrr?WmY) = A2(D2+E2) (p+p+ I p-p- )+ (A2/2) (D2_E2) (p+p- I p-p+ )+ [A2p2+ C2(D2+E2) ] 

X (pzpz! p-p- )+4ACDF(p+pz I p_pZ)+C2p2(pZpZ I pzpz). (A4) 

The exchange integrals may be written 

(AS) 

These may be broken up into sums over atomic integrals and, if we only keep two-center terms, we get 

1'= LC",iC"iClC{J1 (Wn"Wm{J I Wn"wm{J). (A6) 
",{J 

The atomic integrals may be again broken up into a sum of basic integrals, Using the same definitions as above 
for A, B, C, D, E, F we get 

(Wn"'Wm~ I Wn"Wm~)=A2D2(p+p+ I p-p- )+A2(D2+E) (p+p- I p-p+ )+[A2p2+C2(D2+E2)] 

X (p+pz I p-pz)+2ACDF(p+pz I pzp+ )+2ACDF(p+p-1 pzpz)+C2F2(pZpZ I pzpz). (A7) 

These atomic Coulomb and exchange integrals were 
calculated on an IBM 7094 computer using an integral 
program written by A. C. Wahl and P. E. Cade of the 
Laboratory of Molecular Structure and Spectra, the 
University of Chicago, The basic integrals are presented 
in Table XII. 

APPENDIX II: DIPOLE-DIPOLE INTERACTIONS 
IN THE OUTER ZONE 

In this appendix we evaluate the interaction between 
a dipole and the dipole field of all the matter in a 
spherical crystal, excluding a spherical inner zone. Since 

the convergence length is of the order of magnitude of 
k-I, it is necessary to include the effects of retardation 
of the interaction potential. Following Anex and 
Simpson34 or Born and WOlf,a5 we take for the field of 

32 P. Bagus, T, Gilbert, C. C. J. Roothaan, and H, D, Cohen, 
"Analytic SCF Functions for First Row-Atoms," (to be pub­
lished). 

aa M, Kotani, E. Ishiguro, and K. Hijikata, J, Phys. Soc, Japan 
9,553 (1954). 

3' A, I. Kitaigorodskii, Organic Chemical Crystallography (Con­
sultants Bureau, New York, 1961). 

35 M. Born and H, C. Wolf, Principles oj Optics (Pergamon 
Press, Ltd" London, 1959). 
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Table XII. Atomic Coulomb integrals (I I I J J). All quantities are in atomic units. 

R I P+P-/P-P+ I IP+P+/P+P+I IPZP+/P+PZI I PZPZlP+P+) I PIPz/PZPII 

3.5 0.4031558E-02 0.2560267E-00 0.4996384E-02 0.2761665E-00 0.3246734E-00 

4.0 0.2466467E-02 0.2294808£-00 0.3548337E-02 0.2456420E-00 0.2849084E-00 

4.5 0.1532203E-02 0.2074731E-00 0.2452050E-02 0.2203102E-00 0.2512529E-00 

6.0 0.4178764E-03 0.1584460E-00 0.7856429E-03 0.1649458E-00 0.1794615E-00 

6.5 0.2844025E-03 0.1410952E-00 0.5474444E-03 0.1523696E-00 0.1638101E-00 

7.0 0.1980794E-03 0.1372151E-00 0.3871139E-03 0.1415395E-00 0.1506517E-00 

1.5 0.1409818E-03 0.1285457E-00 0.2781563E-03 0.1321270E-00 0.1394831E-00 

8.0 0.1023739E-03 0.1£08825E-00 0.2031538E-03 0.1238770E-00 0.1298843E-00 

20.0 0.1051449E-05 0.4929018E-Ol 0.2102898E-05 0.4949906E-Ol 0.4985280E-Ol 

26.0 0.2831875E-06 0.3797350E-Ol 0.5664237E-06 0.3806889E-Ol 0.3823154E-Ol 

40.0 0.3286341E-07 0.2470228E-Ol 0.6606430E-07 0.2412860E-Ol 0.2482830E-OI 

45.0 0.1823925E-07 0.2194988E-Ol 0.3688721E-07 0.2196837E-01 O. 2209210E-0 1 

50 •. 0 0.1077114E-07 O. 1974204E-0 1 0.2196950E-07 0.1915552E-Ol 0.1991092E-Ol 

60.0 0.432650'+E-08 0.1642159E-Ol 0.8942082E-08 0.1642939E-Ol 0.1662360E-Ol 

a small oscillating dipole Yi: 

E,=y,' (k21+vv) [exp(ikRi )/ R;] 

Let the z axis lie along k, and set y·y=O. These two 
conditions define the vector y to be 

= exp(ikR;) r(Yi'R~~i-R,2Y'(l_ikRi) 

_ k2[ (Yi' R;) Ri - R,2YiJ}. 
Ri3 

(A8) 

The energy of interaction between two such dipoles is 
-Yi' E;, and we must sum over all dipoles in the crystal. 
As noted in the main part of this paper, it is valid to 
replace the summation by an integration and represent 
the bulk of the crystal by a continuous dipole density. 
Now, (A8) has a real part and an imaginary part, 
which we take to be the energy and the damping, 
respectively. Converting to the integral representation, 

1f {J.t2R2_3(y,R)2 =v exp(ikoR) R" (coskR+kR sinkR) 

Now 
cos2zJ= j[P2( coszJ) +tPo( coszJ)], 

sin2zJ= j[po( coszJ) - P2( coszJ)], 

(A9) 

y=kXy/1 k II y I, 

and the third orthogonal vector X is 

whereupon 

y·R/1 y II R i=y'x COSip sim?+y·z cos(} 

= A COSip sin(}+ B cos(}, 

where ip and () are the usual azimuthal and polar angles 
in a polar coordinate system with k along the polar 
axis. We consider, as an example, the integration of 
the term 

fR! ('k R)[1-3 COS
2
(yoR)] exp ~ , d3R 

Ro R:l' 

which may be rewritten in the form 

(AlO) 

whereupon 

f
Il! 

1=-411'" LiuCkR)(A2+B2_l) 
Ro 

+j2(kR) (.IP-2B2) ]dR/ R (A13) 

after using the fact thatjoex) (sinx)/x. To complete 
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the integration we note that 

j Jm+l(Z) dz= _jm(Z) . 
1 zm ' 

j1 (z) . ( ') + . ( ) --=)2 Z )0 Z . 
Z 

Proceeding similarly with the other terms, we find, 
letting x = kR, 

47r,u2fT/~kRI {j (x) 
E = -,- x2dx _2 -2- ( cosx+ x sin x ) P 2 

1 xo~kRo X 

After integration over x, 

E= (47r,u2/V) { -!P2[jo(2x) +j2(2x)] 

+2P{i sin2x+ (sin2x/2x) ]+i sin2x}xo=kRox/~kRI. 

(A1S) 

In our case, xo~O, and taking Xf to be very large, 

E= (87r,u2/3V) P2+ (471",u2/3V) (P2+ 1) sin2xf. (A16) 

The first term of Eq. (A16) is the interaction energy 
in the static dipole approximation (no retardation), 
and the second term is the correction due to retardation. 
Note that sin2kRf oscillates rapidly for small changes in 
Rf · 

It is now necessary to examine more carefully the 
nature of our analysis. In effect, the system under 
investigation consists of a crystal and an incident 
light wave. This system is replaced by the equivalent 
system of a crystal containing an excitation wave. Now 
to compute the absorption function of the crystal, we 
use a Hamiltonian formalism. In that formalism, 
more particularly in Eq. (14) and similar matrix 
elements, it is valid to use the retarded dipole-dipole 
interaction provided that the dipoles are well localized 
and do not overlap. Within the tight binding formalism, 
such as is applicable to the molecular crystals considered 
here, this condition is fulfilled. 

When a light wave is incident on a crystal, there are 
induced fields within the crystal which exactly cancel 
the incident wave and replace it with a different wave 
propagating with velocity (/n, where n is the refractive 
index of the crystal. Thus, in our calculation of the 
dipole field we have included not only that part of the 

field which leads to the direct interaction, but also 
that part of the field corresponding to radiation from 
the sphere. It is this radiation which leads to the 
oscillating term sin2xf. For, the extent of reflection or 
transmission of the wave at the surface depends on 
the phase relations between the source and the surface. 
Thus, the term sin2xf corresponds to expected interfer­
ence effects. 

Now, for a macroscopic sample, the interaction 
energy cannot depend on the exact position of the 
surface, and it is therefore legitimate to replace sin2xf 
by its average value!. Under these conditions, the 
maximum contribution of the retardation term to the 
interaction energy is 20%. Moreover, the wave vector 
corresponding to propagation of the interaction should 
differ from the incident wave vector (which defines 
the modulation of the wavefunction) because of the 
presence of matter and, for any reasonable value of 
the effective refractive index, the corrections arising 
from retardation become smaller. 

It is clear that complete resolution of the effects of 
retardation of the interaction requires further investiga­
tion, but we believe that we have shown that, to suffi· 
cient accuracy (i.e., accuracy much higher than corre­
sponding to other approximations in the analysis), the 
retardation effects may be neglected. The dipole inter­
action energy then becomes, simply, 

1dd= (871"/V) \ tl2
\ P2(cOStl·k)[jo(kRo)+j2(kRo)] 

= (87r/V) \ tl2
\ P2(COStl·k) (A17) 

since kRo is very small. 

Let 

APPENDIX III: DIPOLE SUMS FOR A 
CYLINDRICAL CRYSTAL 

1 f rr [1-3 COS
2
(tl. R )] 

/ 1= Vo JjPdpdzdcp exp(ik·R) R3 . 

(A18) 

(A19) 

Take the k vector to be in the z direction (as it is in 
the experiments), and take the direction cosines of tl 
in the xyz coordinate system to be P1, P2, and P3, 
respectively. Then 

71" fLfa /2 . [(2Z2- p2 ) (1-3pa2)] 
=-V pdpdz exp(~ \ k \ z) ( 2+ 2)! 

o po 0 P z 

471" f a/2 [ p2 ] I p~L = --P2(COStl· k ) dz exp(i \ k \ z) (2 2)! . 
Vo 0 p +z p~po 

(A20) 
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As L-too, 

471" ( k)fa/2 P02 exp(i I k I z) 
I 1=-P2 cosyo dz . , . 

Vo 0 (po2+Z2), 
(A21) 

Now if we consider the second part of the integral, 

1 fL j Mf 21r (. I k I ) [1-3(PPl cOSO+PP2 sinO+p3z)2/ (p2+Z2) J 
I 1=-V pdpdzdcp exp z z )' 

o 0 a/2 0 (p2+Z2 • 

__ 471" 0 fM exp (i I k I z) U 
- V P2 (cosy k) (2)' dz. 

o a/2 L +Z2 , (A22) 

APPENDIX IV: GEOMETRY OF CRYSTALS 

Anthracene crystallizes in the monoclinic space group C2h
5 (P21/a) with two molecules per unit cell.34 If we 

denote the long axis by L, the short axis by M, and the axis by M and the axis perpendicular to the plane by 
iV, then the axes of one set of molecules have the following direction cosines in the systems a, b, c. The vector 
c' is along the axis perpendicular to the a, b plane. (c is inclined at an angle of 124 °42' to the a axis in anthracene.) 

Anthracene first set 
(

-0,496) 

L 1= -0.125 , 

+0.859 
(

-0,323) 

M1= -0.892 , 

-0.316 
(

-0,806) 

lVI = +0.435 . 

0.402 

The axes of Molecule 2 are found from the above by reflection in a plane perpendicular to the b axis. 

Anthracene second set 
(

-0.496) 

L 2= +0.125 , 

+0.859 
(

-0,323) 

M 2 = +0.892 , 

-0.316 
(

+0.806) 

iY2 = +0.435 . 

+0.402 
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