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TWO variational calculations of the energy and correlation functions for a simple esciton-phonon coupled system are 
presented and contrasted to the adiabatic solution and the esact solution. The simpler variational solution leads to two 
minima and abrupt changes in the properties of the system; an asymmetric variational wavefunction, motivated by the 
form of perturbation theory for this problem, leads to smooth behavior in agreement with the esact result. 

1. Introduction 

A recent variational calculation of the free energy 
of an exciton interacting with Einstein [I] phonons 
produced a free energy surface with two minima as 
a function of the variational parameter. This result 
held for a one-dimensional system as well as higher 
dimensionality. It is possible, however, to show that 
in the adiabatic approximation, there will be only 
one minimum in the energy surface in one dimension 
[2] . Although the calculation of ref. [I] is not 

adiabatic, this argument [2] has led us to reexamine 
the variational calculation in an attempt to under- 
stand at a more fundamental level the origin of the 
two minima. 

The importance of this matter is quickly enough 
discerned. There have been several theoretical calcu- 
lations concerned with abrupt conductivity transi- 
tions in insulators due to the large changes in the 
small polaron mobility resulting from changes in the 
state of the small polaron [Z] . The small polaron 
states were found from a variational wavefunction. 
The possibility of producing spurious minima in the 
energy surface (each minimum corresponds to a state 
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of the small polaron) may seriously complicate such 
theories. This happens because the resultant temper- 
ature dependent appearance or disappearance of these 
states could lead to the prediction of spurious transi- 
tions. 

Although it would be ideal to be able to assess be- 
forehand the number of minima the energy surface 
should have for a given hamiltonian, this is not fea- 
sible. Thus, for a variational calculation, one cannot 
be certain that sufficient flexibility has been allowed 
for in order that the different kinds of states are ade- 
quately differentiated or even to guard against the 
introduction of spurious states. The matter is further 
complicated by the use of the Born-Oppenheimer 

and adiabatic approximations. This occurs because 
we want to be able to dinstinguish between short- 
comings that are the result of a mathematical tech- 
nique and those that are the result of approximations 
to the physics. 

In lieu of a general theory of these shortcomings, 
our approach is to examine a model in all of the vari- 
ous methods and approximations, but one which is 
amenale to unambiguous solution (i.e. the exact re- 
sult is known). The exciton dirner in the limit of lin- 
ear exciton-phonon coupling has been selected for 
this purpose. This model is discussed in detail in sec- 
tion 2 where the known facts about the model are 
collected and where some variational results are pre- 
sented. In effect, the problem we are addressing in 
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this paper is posed in the context of the dimer mod- 
4. 

The results are discussed in section 3. Briefly stated, 
it is found that while the adiabatic energy does not 
exhibit two minima and the exact energy does not 
show any discontinuous behavior (which might arise 
from two minima), the simple variational result has 
two minima and discontinuous behavior. In addition, 
a slightly more flexible variational form has no dis- 
continuous behavior indicating that it is the simple 
form of the variational wavefunction that is at fault. 

2. The exciton dimer 

2.1. 77~ harniItortian and exacr eigenfiincfion 

The hamiltonian for the exciton dimer with linear 
exciton phonon coupling is given by 

H=Jo(A;A,+A;A,) 

2 
tnqr {EA;A,+;P;i+_:w’Q; 

- 2112g,312Q n A*A } n II ) (2.1) 

where &(A,) creates (destroys) an excitation with 
energy Eon site n, P, and Q,, are the local vibration- 
al momentum and coordinate at site jr (weighted so 
that the mass does not appear), J is the matrix ele- 
ment of H between states with the excitation on dif- 
ferent sites (i.e. the hopping or transfer integral) and 
g is a dimensionless coupling constant giving the 
strength of the excitation phonon coupling. If pho- 
non creation and annihilation operators, f?,* and B,, , 
are defined in the usual way, then 

H=Jw(q42 +A&) 

2 
+ c {E.~,*A, -?- w(B,*B,~ + i) 

tr=l 

-wA,*A,,(Bn +$)I. (2.2) 

Since we will only be concerned with one exciton 
states, we can choose to reckon energy from the val- 
ue E + w (the zero point energy plus the exciton ener- 
gy). Dividing H by w, so that all energies are measured 
in units of the phonon frequency w, we find 

hl =H/w=J(A;A2+A;A1) 

2 

+ ,gl {B;B,, - .!&A#, + B,*)}. (2.3) 

Note that this differs slightly from the treatment of 
Suna [3] , who divides H by the “polaron” binding 
energy E, = $g2u. In the k-representation, which in 
this case reduces to defining new operators R from 
the original R,, by 

R, = $(R, _+ R2), 

we find 

hl =J(A,*A+-ATA_)+(B,*B++BrB_) 

-k/21’2) {(B ‘+B*)(A*A tA* A + + ++ -- ) 

+(B_+Bz)(AfA_+ArA,)j. (2.4) 

This representation shows clearly that in one-exciton 
space, where Af A+ + A: A_ = 1, the exciton-phonon 
coupling to the + vibrations can be removed by a sim- 
ple change in definition of B, and R,*: 

B; = B, - g/2112, B;* = B,* - g/2’12. (2.5) 

Then, 

h2=J(A,*A+-AlA_)+B;BI,tB*B -g2/2 - - 

-(g/21’2)(A*A +A* A )(B +B*) +- -+ - -* (2.6) 

Since BTB: is a constant of motion, and g2/2 is just 
an additive constant, we can neglect them in the fol- 
Iqwing. The hamiltonian we have to deal with is then 

h=J(A,*A,-A*A_)+BrB_ 

-(g/21’2)(A*A +A*A )(B +B*) +_ _+ _. -I (2.7) 

which describes two closely spaced electronic states 
coupled by a single vibration. This is isomorphic to a 
pseudo-Jahn-Teller effect hamiltonian [4] . If eti is 
an eigenvalue of It [eq. (2.7)] then the eigenvalue of 
H is given by 

E, = w(% - g2/2) •t E f w + n,w, 

where n, is the eigenvalue of BTB;. 

(2.8) 

Many authors have solved eq. (2.7) numerically to 
find the low lying eigenvalucs and eigenfunctions. In 
the present section we will be concerned with the 
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lowest state in one exciton space only, and in partic- 
ular, with various approximations to the energy and 
the ivavefunction which will be compared to the ex- 
act result. The exact lowest eigenfunction (in.one- 
exciton space) can be written 

Q = E. {c& A;(B*_)‘“/[(2rz)!] 1’2 

+ C2n+l 
A~(BT)7”+l / [(2n + l)!] 1’2}10), (2.9) 

Nhere we have assumed J < 0 for convenience. In the 
limit g = 0, C,, = 6,0; in the limit J = 0, 

C n = {(-~/21”)‘*/(n!)*‘2) exp (-$g2). 

We have found @ numerically by diagonalizing the 
matrix representing It using up to 30 functions. Thus, 
in our case, the sum in (2.9) is cut off at n = 15. The 
coefficients can be assumed real. 

In order to assess the character of this state, we 
will use two measures of exciton-phonon correlation. 
The first is the number of quanta of vibration relative 
to that number when J = 0, and is given by 

ov,) q  (2/g2)(91LI:B_IQ) = X0 C$*(2/&. (3.10) 

The second was introduced by Suna and given by 6, 
where 

= (mg) ,$ C&+1 (n t 1p2 . (2.11) 

The factor 2l/‘g is the value of the matrix element 
in the limit J = 0, thus S = 1 when the exciton and 
the phonon are completely correlated (J = 0). 

2.2. Simple vari&ionaI calc&ion 

In treating exciton-phonon coupling and electron- 
phonon coupling (e.g. polarons) in insulating crystals, 
a simple variational procedure is frequently employed 
[ 1,511 . In the case of a dimer this procedure would re- 
duce to 

~=exp{-~/21’2)(ATA_+ATA+)(B_-B*)~AT[O), 

(2.12) 

where the parameter g is varied to fi@ a minimum 
in the expectation value of h in state 9. The motiva- 
tion for the form ofF is that in the limit J = 0 setting 
F = g gives the exact state. In addition, for g = 0 
(J# 0), setting3 =g, 0 gives the exact eigenstate 
again. Thus the state Q has the correct form in the 
limits g/J = 0 and g/J + =J. With this form, we find 

7 = J exp’(-g’) t +gl - gg, (1.13) 

so that setting a?/az = 0 gives 

r=g[l t21J1exp(-g2)]-1. (2.14) 

This equation may have multiple solutions depending 
on the values of J and g. In appendix A, we derive the 
conditions for two minima in the P versus g curve. In 
the polaron and exciton cases, this has been taken to 
imply the existence of two states with similar ener- 
gies and very different properties. For example, one 
of these states has small exciton phonon correlation 
(6 or (N$) while the other has large correlation. In 
addition, variational calculations of the free energy 
[ 1,2] have shown that, within this approximation, 
which of these two states is lower in free energy 
changes with temperature, so a rather abrupt change 
in the properties of the lowest state is predicted. This 
can also be inferred from the change in 7 with in- 
creasingg (which is often taken to be proportional to 
temperature); as g increases from zero at constant 
J, the nature of the lower state changes abruptly from 
delocalized (small e-p correlation) to localized (large 
e-p correlation). This appearance of these two types 
of states coexisting for a single value ofg for the 
dimer and for the one-dinzetzsiotzaZ exciton is unex- 
pected since rather general arguments [2] seem to 
preclude this behavior in these low dimensional sys- 
tems, while not ruling it out for three dimensions. 

In order to compare these results with the exact 
results, we derive formulas for-the exciton-phonon 
correlation functions, 8- and WP): 

6% = &I”B_I$(2/g*) = (-#, (2.15) 

X = I(&I,*A_ +A: A+)(B_+B,*)1~)1(21’~~)-1 

= E/g). (2.16) 

These formulas are derived using the standard proce- 
dures in appendix B. We will compare these to the 
exact results below. We note parenthetically that the 
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overlap ofT with the exact wavefunction never falls 
below = 0.9, so that it seems that 5 is quite close to 
@ exact* 

2.3. Asymmetric variational calculation 

In order to examine the variational results more 
closely, we will introduce an asymmetric variational 
function below. To motivate the discussion, consider 
the eigenstate nearg = 0. The lowest order approxi- 
mation is 

era: = A*[O). + (2.17) 

Using this as a zeroth order function in a perturba- 
tion calculation with the perturbation, V, given by 
the term proportional tog in h [eq. (2.7)], we find 
tJ < 0) 

~=A~IO)+ g 
2”*(21 JI + 1) 

A*B+ 10) 

g* 
+ 4(21J/ t 1) 

A=(B;)*IO, + . . . , (2.18) 

whereas? [eq. (2.12)] when expanded gives 

$= (A:101 + @/21’2)A:B:10, 

+ $~2dT(B,*)210) + . ..I exp (-$g*)_ (2.19) 

Comparing (2.18) and (2.19) we see that F fails to 
give the correct ratio of the first three coefficients tie 
matter how g is chosen. In order for these’coefficients 
to be given correctly, a more flexible variational func- 
tion must be used. The simplest one is 

~=exp{~1A~A_i~2A~A;)~(B_-B*))A,*IO). 

(2.20) 
This function is unnormahzed since the transforma- 
tion in (2.20) is not unitary; hozzeer, it can easily 
be normalized by dividing by ($l$)r/*. This form will 
be flexible enough to reproduce eq. (2.18) at smallg, 
and in addition will reproduce the correct form of $ 
at large g, which the variational function 4 can do al- 
so since, iu this limit, F = g in eq. (2.12) or zl = & = 
gin eq. (2.20). 

The introduction of two variational parameters 
makes the calculation much more difficult and time 
consuming; we investigated instead the one-param- 
eter formgcl = -(g/21/2),j52 = --(g/2l/*) (Y so that 

z 
$I = exp {-(g/21’2)(A:A_+~A~A+)(B_-B~)}A:10). 

(2.21) 

This (unnormabzed) function has the flexibility to 
be correct to 6(g2) at smallg [where cr = (2151+1)-1] 
and to be correct at very large g (where (Y = 1). 

Using this form, we compute in appendix C the. 
energy and two-correlation functions. The results are 

F=_lJ,r(l --a)+(1 +cr)eeg2’l 

L(1 ta)t(l-a)e-gzal 

t g%(cr - 1) 82, 

(1 +a)+(1 -a)e-g*Q 
--I 

2 
(2.22) 

Z=a[(l +@-(I -@ee-g2a] 

X [(l t@It(l -@e-g2s]-1 (2.23) 

Z=2o/[(l tol)t(l -o1)e-g2”]. (2.24) 

Even with one variational parameter, the energy,?, 
is complicated enough that finding the minimum is 
a complex matter. We resorted to a hand calculator 
to compute 2 versus ti for each value of J and g and 
found the minimum by inspection. There is only one 
minimum for all values ofJ and ginvestigatei. We 
will discuss the values Of Fmin, (iVp),ia and s,ra 
below. 

2.4. Adiabatic calculation 

The eigenvalues of 11 can be found approximately 
by using the adiabatic approximation [3]. To do this, 
we must neglect the vibrational kinetic energy; trans- 
forming the phonon variables (B_ and B*_) back to 
momentum and coordinate (P_ and Q_) we find: 

It =J(AfA+-ATA_) +&I-‘?_ f;uQ~ -1 

- gw”*Q_(d;A_ +A+ A+)_ (2.25) 

Neglecting the term (l/2)$_ we can solve for the elec. 
tronic wavefunction and energy (which are both func- 
tions of Q_), in the usual way. The lowest energy 
state is written 

$A = C&O) + C_AfIO), (2.26) 

and the eigenvahre (i.e. the adiabatic potential) is 

eA = -(J* tg*~Q~)“* •t $JQ:, (2.27) 
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where we have added l/2, the zero point energy in 
these units, in order to compare with the earlier re- 
sults. The minimum of eA is at Q_ = 0 for J2 > 8 
and at Q_ = + [[g4 - J*)/g* w] l/2 for J* <g4. The 
different signs in the latter case refer to two possible 
(and degenerate) electronic states which are semi- 
localized. Ry this is meant that the probability densi- 
ty on site 1 is different from the probability density 
on site 2 for these configurations. This is summarized 
below 

‘A,min = -I JI, 

(‘+)min = 1, (C_)mi,, =O, (2.28) 

(Q__)min = 0; 

‘A,min 
= _f2 _ f J*jg”, 

(C~)min = [~(’ ’ lJl/g*)] “*, J2 ‘g4- (2.29) 

(Q_)iin = (g4 - J2)g2w* 

The amplitudes of excitation at sites 1 and 2 are given 

by 

Cl = +‘+C+ f C_), C2 = 2-‘/‘(C+ - C_), (2.30) 

thus 

J2>g4 IC,I’ = IC*l’ = l/2, 

Table 1 
Comparison of energies and correlation functions 

J’ <g4 Q” = 1. 
2+2 

‘( 1 _ J’/g4)‘/2 
, (2.3 1) 

IC212 =; _ 1(1 _ J2/g4)‘l’_ 
2 (2.32) 

The latter values are for one of the two degenerate 
minima (i.e. that at (Q_)“,in = +(g4-J2/g20)1/2). 
Note that these two degenerate minima are dictated 
by the symmetry of the system. 

The effect of the nuclear kinetic energy operator 
will be to “mix” these two possible configurations 
(i.e. two values Of (Q_)min), since the adiabatic po- 
tential is a double well. We will neglect this in what 
fellows and use the lowest order adiabatic states as 
approximations to the eigenstate. The exciton-pho- 
non correlation functions 6 can be calculated for these 
states also and we find 

6, = ~C+C(Q_),/(Q_),=,, 
so 
6, =(I -x2), x2,J2/g4<l, 

8, =o, x2> 1. 

2.5. Cmlparisorl of approximate theories 

Using the results of sections 2.2-2.4, we can com- 
pute the values of the energy and correlation functions 

g2 E (N) 6 -___ 

exact 

J= -2 

1 -2.109 -2.101 -2.109 -2.000 0.074 0.041 0.071 0.240 0.202 0.238 0 
2 -2.244 -2.206 -2.239 -2.000 0.136 0.046 0.108 0.303 0.214 0.281 0 
3 -2.419 -2.317 -2.400 -2.167 0.252 0.05 1 0.212 0.409 0.225 0.312 0.555 
4 -2.662 -2.433 -2.605 -2.500 0.446 0.057 0.380 0.567 0.238 0.394 0.750 
5 -2.987 -2.563 -2.878 -2.900 0.659 0.927 0.576 0.729 0.963 0.563 0.840 
6 -3.381 -3.005 -3.245 -3.333 0.803 0.978 0.719 0.836 0.989 0.745 0.889 

J=71 

1 -1.188 -1.174 -1.187 -1.000 0.214 0.130 0.211 0.430 0.360 0.424 0 
2 -1.437 -1.365 -1.427 -1.250 0.394 0.171 0.318 0.571 0.413 0.526 0.750 
3 -1.766 -1.600 -1.736 -1.666 0.629 0.325 0.481 0.745 0.570 0.663 0.889 
4 -2.171 -2.024 -2.125 -2.125 0.813 0.898 0.641 0.866 0.948 0.783 0.938 
5 -2.622 -2.508 -2.575 -2.600 0.907 0.970 0.755 0.929 0.985 0.861 0.960 
6 -3.095 -3.002 -3.052 -3.083 0.950 0.988 0.809 0.960 0.994 0.894 0.972 
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Fig. 1. Exciton-phonon correlation, 6, as a function ofg” Fig. 3. The number of phonons N associated with lowest 

for J = -1. Solid line: adiabatic theory; dashed line: simple state as a function ofg” for J = -1. Dashed line: simple varia- 
variational theory: dotted line: asymmetric variational theory; tional theory; dotted line: asymmetric variational theory; 
dot-dash line: exact result. solid line: exact theory. 

for the exact and approximate theories. In table 1, 
we present, for two values of J and a number of values 
ofg, this comparison. In figs. I and 2, we compare 
the calculated values of 6 as a function ofg and in 
figs. 3 and 4, we compare the calculated values of 
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Note that the simple variational function has an 

abrupt change in its properties asg increases for IJI = 
2. This is due to there being two minima in the varia- 
tional energy as a function of g. Although the exact 
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Fig. 2. Sam. as fig. 1 except d = -2. Fig. 4. Same as fig. 3 except J = -2. 
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function changes very quickly in this region ofg, it (iv) the failure of the simple variational result can 

does so in a smooth fashion. This will be discussed in be remedied by allowing the variational form to be 
detail in the next section. The asymmetric variational slightly more flexible; this leads to nondiscontinuous 
function does not show two minima or an abrupt correlation functions and a single minimum in the 
change. energy surface. 

The general characteristics of the three approxi- 
mate solutions can be seen from the figures and tabIe. 
In particular, the simple variational function is under- 
correlated forg* 5 lJ1 and overcorrelated for g7 2 lJ1; 
on the other hand, the asymmetric variational func- 
tion is correct at small g but undercorrelated for large 
g. In addition, the adiabatic function is undercorre- 
lated at small g and overcorrelated at large g. More- 
over, the simple variational form gives a rather poor 
energy as g’ gets large while the asymmetric variation- 
al form and the adiabatic wavefunction give rather 
good energies in this region. 

The abrupt change in the simple variational result 
is reminiscent of the results of unrestricted Hartree- 
Fock theory (UHF) [6] where the character of the 
variational lowest energy wavefunction (constrained 
to be a single determinant) changes dramatically as 
the parameters of the system are varied. In that case, 
the variational wavefunction may become a spin den- 
sity wave or a charge density wave with certain cor- 
relation functions exhibiting sharp changes, even 
though the exact ground state does not exhibit these. 
In spite of this, the variational function may be use- 
ful in discussing curve crossing and other effects. 

3. Discussion 

The results presented above indicate that: 
(i) in the adiabatic approximation, there is only 

one minimum in the energy surface, in agreement 
with the arguments in ref. [2] ; 

(ii) in the exact solution, there is no discontinuity 
in either of the exciton-phonon correlation func- 
tions, although there is a rapid change in both as the 
excitor+phonon coupling is increased; 

(iii) in the simple variational solution, there are 
two minima in the energy surface (as a function of 
variational parameter) which leads to a discontinuity 
in the correlation functions; 

In the present case, even though the simple varia- 
tional solution shows incorrect behavior as far as the 
number of minima in the energy surface and the pres- 
ence of a discontinuous change in certain properties, 
it is still approximately correct in the value of the 
energy as well as being qualitatively accurate for the 
correlation functions for g small and g large. In addi- 
tion, for J small enough so that two minima do not 
occur, it is reasonably accurate. However, it is clear 
that forJ large enough so that two minima are pre- 
dicted, the simple variational result will give iriaccu- 
rate results for the correlation functions and the ab- 
ruptness of the transition. In these cases, neither the 
simple variational result nor the simple adiabatic re- 
sult is very good for allg. 

Appendix A 

In this appendix, we derive the conditions for the existence of two minima in the simple variational energy,F, 
given by eq. (2.14). The condition for an extremum irr the 7 versusg curve is 

g[l t21J1exp(-~2)] =g. (A.1) 

The lhs of this equation may be graphed as a function of?. For lJ[ greater than a certain value, to be found be- 
low, this curve has two extrema at values of g which we label FI and zZ. There will then be three solutions to 
eq. (A.l), one maximum in7 versusg and two minima, for 

F1[l t21JleBZ~] >gZ&[1+2[Jle+]. (A.2) 

TO findK1 and &, we note that they are values ofF for which the lhs of eq. (A.l) has an extremum; they are thus 
given by setting the derivative of the lhs to zero: 
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fpj-’ =(2$ - l)exp(-g;), i= 1,2. (A.3) 

For this equation to have solutions (and so there be two minima in? versus a, 

2]J] > f e+1-5 = 2.24. (A-4) 

This is the condition on ]J] for there to be two minima; the condition on g is given in (A.2) with g1 and g2 given 
by (A.3). By substituting (A.3) into (AZ) we find the condition ong can be rewritten 

2$/(2# - 1) ag> 2@(2$ - 1). 

For ]J] = 2, we find zf = 0.88,g2 = 1.73 and two minima exist for 2.50 >g > 2.07. 

Appendix B 

From; given by eq. (2.12), we will compute (% and T. 

W) = GIB*_B_ $(2/g*) 

=(2/g2)~Ol~+exp~~/21~2)(A~~_+A*A+)(B_-B*)~B*B_exp{~/21’2)(AfA_+A*A+)(B_-~+)}Af~O). 

(B-1) 
By using the formula 

eAIIeeA =Bt [A.B] t$[A,[A.B]I t . . . . 

we find 

(9.2) 

6% = (2/g2)(0]‘4*[@ +~/21’2(&I_ tATA+)] [B_ +~/21’2(_&_ t‘4’ AJA~IO), 

6) = @/g)2. 

To find g, we note the definition 

X q  (21!*g)-‘I(&Ql_ + ‘4: A+) (B_ •t B”)I& 

(9.3) 

(B.4) 

Using (B.2) once more, 

~~(2~/*g)-~(~[~+(~c*A_tA~A+)[B_tB~t2~’~~(A,*A_+A+~+)1~+I~~=~~~). (8.5) 

Appendix C 

Using the asymmetric sariational function,;, given by eq. (2.21), we will compute the energy and correlation 
functions. First we write $ as 

z 

= {coshg(o/2)“*@?_ - B~)}A~lO) - 01/2{sinbg(cy/2)1’2(B_ - BT))Af(O), 

where the co& and sinh are to be represented by their series expansions. From eq. (C.l) we find 
zz 

(@IQ) = (01 {cosh2 [g(c~/2)“~(B_ - II:)] - osi_nh’ [g(~1/2)“~@_ - Br)] }lO) 

= (01 [{[l + coshg(2c#‘*(B_B”)] /2) - (Y{ [-1 + coshg(2c#‘“(B_ - Bq)] /2}] 10) 

(C.1) 
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=$tl+cU) + $(l-cuj(OI{exp[g(2a)1/2(B_-B+)] t exp[-g(2&2(B_-B+)]}10) 

=~(1+~)+~(1--01)exp(-&), (C.2) 

where we have used the result that 
ez(B-Bf) = e-ZB’ ,I 2 ezB e-p (C.3) 

for boson operators. Using (C.l), we compute (~l/zl~) and find, with Y =~(LY/~)“~(E_ - Br), 

(~lfzl~) = - jJj(Oj [cosh2 Y t (Y sinh2 Y] 10) t (Olcosh Y(BT B_) cash YIO) - cu(Olsinh Y(BzB_) sinh YIO) 

+ g(a/2)1’2(OI {cash Y(B_ + B*) sinh Y - sinh Y(B_ + Bt) cash Y}IO): K.4) 

Using eq. (C.l), eq. (8.2) and eq. (C.3), we find 

F = GG) = _IJI 

[ 

(1 - Q) + (1 + a) e-g*& 

I 

g2a $oc(l - 4 
w --- 

(QIC) (1 ta)t(l -a)ee-g*a 2 (1 tor)t(l -+-g2a’ 
(C.9 

The correlation functions can be found using eq. (C.l) anti the definitions. We find 

65 = (2/g*)&:II_ l;y(;l;) 

= (2/g2){(O[(cosh r)(BI”_E_)(cosh Y)IO) - a(Ol(sinh Y)BrB_(sinh Y)[Ol}/$j~) 

=(2/g*)($(l-ol)(OleYB*B eYIO~t~(l-c+Ole-YB*B e~Y~O~t~(ltor)~OleYB*B_e~YIO~ - - - - 

t $(l+a)(Ole-YB*B eYIO)}/(~I~} =(2/g2){,(l+c4g20 - - 

(C.6) 

- $( 1-ol)g2, e-g2”}/(Tlz) = LY 
[ 

(1tor) -(l-a)e-g2a 

(lta) t(l-c@e-g2a I 
CC.71 

and 

F = (2’/2g)&‘4fA_ +A* A+)@_ t B+)l;)l/(;l;) 

= (21’2g)-1&21(01 {cash Y}(E_ t Br) sinh yI0) - (01 {sinh Y}(B_ t Bt) cash YlON/(~l~) 

= (21/2g)-1al {-~(O~eY(L?_+L3~)e-Y~O) + $lOlesY(B_+B*) eYIOFjl/(TII$ = 
(1 t(u) t (L) e-@a . 

WI 
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