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COMMENTS ON EXCITON-PHONON COUPLING. II. VARIATIONAL SOLUTIONS *
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Two variational calculations of the energy and correlation functions for a simple exciton—phonon coupled system are
presented and contrasted to the adiabatic solution and the exact solution. The simpler variational solution leads to two
minima and abrupt changes in the properties of the system; an asymmetric variational wavefunction, motivated by the
form of perturbation theory for this problem, leads to smooth behavior in agreement with the exact result.

1. Introduction

A recent variational calculation of the free energy
of an exciton interacting with Einstein [1] phonons
produced a free energy surface with two minima as
a function of the variational parameter. This result
held for a one-dimensional systern as well as higher
dimensionality. It is possible, however, to show that
in the adiabatic approximation, there will be only
one minimum in the energy surface in one dimension
[2]. Although the calculation of ref, [1] is not
adiabatic, this argument [2] has led us to re-examine
the variational calculation in an attempt to under-
stand at a more fundamental level the origin of the
two minima.

The importance of this matter is quickly enough
discerned. There have been several theoretical calcu-
lations concerned with abrupt conductivity transi-
tions in insulators due to the large changes in the
small polaron mobility resulting from changes in the
state of the small polaron [2]. The small polaron
states were found from a variational wavefunction.
The possibility of producing spurious minima in the

_energy surface (each minimum corresponds to a state
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of the small polaron) may seriously complicate such
theories. This happens because the resultant temper-
ature dependent appearance or disappearance of these
states could lead to the prediction of spurious transi-
tions.

Although it would be ideal to be able to assess be-
forehand the number of minima the energy surface
should have for a given hamiltonian, this is not fea-
sible. Thus, for a variational calculation, one cannot
be certain that sufficient {lexibility has been allowed
for in order that the different kinds of states are ade-
quately differentiated or even to guard against the
introduction of spurious states. The matter is further
complicated by the use of the Born—Oppenheimer
and adiabatic approximations. This occurs because
we want ta be able to dinstinguish between short-
comings that are the result of a mathematical tech-
nique and those that are the result of approximations
to the physics.

In lisu of a general theory of these shortcomings,
our approach is to examine a model in all of the vari-
ous methods and approximations, but one which is
amenaple to unambiguous solution (i.e. the exact re-
sult is known). The exciton dimer in the limit of lin-
ear exciton—phonon coupling has been selected for
this purpose. This model is discussed in detail in sec-
tion 2 where the known facts about the model are
collected and where some variational results are pre-
sented. In effect, the problem we are addressing in
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this paper is posed in the context of the dimer mod-
el.

The results are discussed in section 3. Briefly stated,
it is found that while the adiabatic energy does not
exhibit two minima and the exact energy does not
show any discontinuous behavior (which might arise
from two minima), the simple variational result has
two minima and discontinuous behavior. In addition,
a slightly more flexible variational form has no dis-
continuous behavior indicating that it is the simple
form of the variational wavefunction that is at fault.

2. The exciton dimer
2.1. The hamiltonian and exact eigenfunction

The hamiltonian for the exciton dimer with linear
exciton phonon coupling is given by

H=Juw(A} 4, + A5 4))
2
+ L {BATA, +3P 43 GP0]
n=

- 24020 a¥a,}, 2.1)

where 45(A),) creates (destroys) an excitation with
energy £ on site n, P, and @,, are the local vibration-
al momentum and coordinate at site n (weighted so
that the mass does not appear), J is the matrix ele-
ment of H between states with the excitation on dif-
ferent sites (i.e. the hopping or transfer integral) and
g is a dimensionless coupling constant giving the
strength of the excitation phonon coupling. If pho-
o creation and annihilation operators, B and B,),
are defined in the usual way, then

H=Jw(A] Ay + A5 4))
2
+ 25 {EAYA +(BIB, +1)
n=1

LK ! *
—gwA, A (B, + BN}

22)

Since we will only be concerned with one exciton
states, we can choose to reckon energy from the val-
ue £ + c (the zero point energy plus the exciton ener-
gy). Dividing H by w, so that all energies are measured
in units of the phonon frequency i, we find

hy SHjw=J(ATAy+AJA))
2

+ 21 (BB, - gA*A (B, + BL. (2.3)
n=

n-n

Note that this differs slightly from the treatment of
Suna [3], who divides H by the “polaron” binding
energy Ep = -;-gzw. In the k-representation, which in
this case reduces to defining new operators R from
the original R,, by

Rt =E(R1iR2)7
we find
iy =Ur(A:A+_AfA_)+(B:B++B"_‘B_)

—(g/2V) (B, +B¥) (A% A, + A 4_)

+(B_+B*)(ALA_+AT A} (2.4)

This representation shows clearly that in one-exciton
space, where AfA+ + A’i A_ =1, the exciton—phonon
coupling to the + vibrations can be removed by a sim-
ple change in definition of B, and B}:
B,=B,-g'?,  Br=pt_gni? (@3
Then,

Chy=JATA,-AT A )tBIB, +B*B_ - g2

— (g2 2y (4% 4_+A* A)(B_+B¥).  (26)

Since B;_*B_'l_ is a constant of motion, and g2/2 is just
an additive constant, we can neglect them in the fol-
lowing. The hamiltonian we have to deal with is then

h=J(ATA, ~A* A Y+B*B_

— @2 (4FA_+A*A)B_+BY), (27

which describes two closely spaced electronic states
coupled by a single vibration. This is isomorphic to a
pseudo-Jahn—Teller effect hamiltonian [4]. If €, is
an eigenvalue of # [eq. (2.7)] then the eigenvalue of
H s given by :
E =wle, ~ gD+ E+wtn,ew, (2.8)
where n, is the eigenvalue of BB,

Many authors have solved eq. (2.7) numerically to

find the low lying eigenvalues and eigenfunctions. In
the present section we will be concerned with the
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lowest state in one exciton space only, and in partic-
ular, with various approximations to the energy and
the wavefunction which will be compared to the ex-
act result. The exact lowest eigenfunction (in one-
exciton space) can be written

0= ,g {Cy, AXBEY" [(2m)1] 2

+Coypey AXB*M [+ D PPHD,  (29)

where we have assumed J < 0 for convenience. In the
limitg =0, C,, =6,(;in the limit J =0,

C, = (=82 (1)1} exp (<3

We have found ¢ numerically by diagonalizing the
matrix representing k using up to 30 functions. Thus,

" in our case, the sum in (2.9) is cut off at n = 15. The
coefficients can be assumed real.

In order to assess the character of this state, we
will use two measures of exciton—phonon correlation.
The first is the number of quanta of vibration relative
to that number when J =0, and is given by

Vo) = (2fg?)SIB B_|)= Z% C2r(2/g?). (2.10)
n=

The second was introduced by Suna and given by §,
where

§=(2"2%) IKel(A*A_+A* 4,)(B_+B*)I®)

= (21%g) ZZ% C.Cpuy(n+ 1)1, @.11)
n=i

Thé factor 21/2¢ is the value of the matrix element

in the limit J = 0, thus § = 1 when the exciton and

the phonon are completely correlated (J = 0).

2.2 Sfmple variational caleulation

In treating exciton—phonon coupling and electron—
phonon coupling (e.g. polarons) in insulating crystals,
a simple variational procedure is frequently employed
[1,5]. In the case of a dimer this procedure would re-
duce to

F=exp (@22 (UXA_+4% 4,)(B_-B*)}AN0),
(2.12)

where the parameter g is varied to find a minimum

in the expectation value of 4 in state ¢. The motiva-
tion for the form of  is that in the limit J = 0 setting
£ =g gives the exact state. In addition, forg=0

(/ # 0), setting & = g = 0 gives the exact eigenstate
again. Thus the state 5 has the correct form in the
limits g/J = 0 and g/J = o0, With this form, we find

T=Jexp(-22) +1%% — 7, (2.13)
so that setting 9€'/0g” = O gives
F=g[l +2Jlexp(—gH)] L. (2.14)

This equation may have multiple solutions depending
on the values of J and g. In appendix A, we derive the
conditions for two minima in the € versus g curve. In
the polaron and exciton cases, this has been taken to
imply the existence of two states with similar ener-
gies and very different properties. For example, one
of these states has small exciton phonon correlation
(5 or {Vp?) while the other has large correlation. In
addition, variational calculations of the free energy
[1,2] have shown that, within this approximation,
which of these two states is lower in free energy
changes with temperature, so a rather abrupt change
in the properties of the lowest state is predicted. This
can also be inferred from the change in € with in-
creasing g (which is often taken to be proportional to
temperature); as g increases from zero at constant
J, the nature of the lower state changes abruptly from
delocalized (small e—p correlation) to localized (large
e—p correlation). This appearance of these two types
of states coexisting for a single value of g for the
dimer and for the one-dimensional exciton is unex-
pected since rather general arguments [2] seem to
preclude this behavior in these low dimensional sys-
tems, while not ruling it out for three dimensions.

In order to compare these results with the exact
results, we derive formlllas for the exciton—phonon
correlation functions, § and {(Vp):

M ={1B* B_I9)2Ig) = @le), (2.15)

T =I@NATA_+4% 4,)B +BHBIE 9!
=(&/2). (2.16)
These formulas are derived using the standard proce-

dures in appendix B. We will compare these to the
exact results below. We note parenthetically that the
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overlap of ¢ with the exact wavefunction never falls
below ~ 0.9, so that it seemns that § is quite closc to

Pexact:

2.3. Asymmetric variational calculation

In order to examine the variational results more
closely, we will introduce an asymmetric variational
function below. To motivate the discussion, consider
the eigenstate near g = 0. The lowest order approxi-
mation is

¢ = 4%0). (2.17)

Using this as a zeroth order function in a perturba-
tion calculation with the perturbation, V, given by
the term proportional to g in 4 {eq. (2.7)], we find
(J<0)

o=ANO+—E5

A*B*|0)
2001+ T

& *0 ka2
T ERY ATBHO+ ..., (2.18)
whereas § feq. (2.12)] when expanded gives
8= {420+ @2V AT BX|O)
+ %ng:(B:)QIO) +_.Yexp(-iZ?). (2.19)

Comparing (2.18) and (2.19) we see that ¢ fails to

_ give the correct ratio of the first three coefficients no
matter how g is chosen. In order for these coefficients
to be given correctly, a more flexible variational func-
tion must be used. The simplest one is

V=expl@,A%4_+7,4%4,)(B_~ BY)} %0
(2.20)

This function is unnormalized since the transforma-
tion in (2.20) is not unitary; however, it can easily
be normalized by dividing by (\,D[l[l)l/ 2 This form will
be flexible enough to reproduce eq. (2.18) at small g,
and in addition will reproduce the correct form of ¢
at large g, which the variational function ¢ can do al-
s0 since, in this limit,§ =gineq.(2.12) org; =85 =
gineq. (2.20).
The introduction of two variational parameters

makes the calculation much more difficult and time

~ consuming; we investigated instead the one-param-
eter form 2’1 = —(g/21/2),§‘2 = —(g/2112) @ 50 that

T =exp o (5/2V/2)(4% 4_+aa* 4,)(B_-B*)}IANO.
2.2

This (unnormatized) function has the flexibility to
be correct to O(g2) at small g [where o~ (217|+1)~1]
and to be correct at very large g (where a = 1).

Using this form, we compute in appendix C the:
energy and two-correlation functions. The results are

L=+ +a)e e
L(1 ra) +(1 —a)e 8

m??

+_fola- — —§;—°‘,' 222)
(1+0)+(l —a)e 8
N=af(l +a) — (1 — a) e8]
X [(1+) (1 — e8]~ (2.23)
-°a/[(1 +a)+(1 —q)ede]. (2.24)

Even with one variational parameter, the energy,?,
is complicated enough that finding the minimum is
a complex matter. We resorted to a hand calculator
to compute € versus « for each value of J and g and
found the minimum by inspection. There is only one
minimum for all values of J and g investigated. We
will discuss the values of &y, (Np)mm and & i
below.

2.4. Adiabatic caleulation

The eigenvalues of /1 can be found approximately
by using the adiabatic approximation [3]. To do this,
we must neglect the vibrational kinetic energy; trans-
forming the phonon variables (B_ and B ) back to
momentum and coordinate (P_ and Q_) we find:

=JAF A~ AT A )07 P Hjw gl ~]

—gw'?Q_(A¥A_+4* 4)). (2.25)

Neglecting the term (1/2)P2_ we can solve for the elec-
tronic wavefunction and energy (which are both func-
tions of @_), in the usual way. The lowest energy
state is written

8y =C, AT+ C_A% 0, (2.26)

and the eigenvalue (i.e. the adiabatic potential) is

= (P +82w@h) 2 +1w?, (2.27)
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where we have added 1/2, the zero point energy in
these units, in order to compare with the earlier re-
sults. The minimum of € isat @_ =0 forJ2 > g4
and at @_ = 2{(g* - J?)/g2w] /2 for /2 <g*. The
different signs in the latter case refer to two possible
(and degenerate) electronic states which are semi-
localized. By this is meant that the probability densi-
ty onsite 1 is different from the probability density
on site 2 for these configurations. This is summarized
below

€A, min =~IJl,
(Cpin =1 (€ =0, 1 P> (2.28)
@ Iin =0;
~ 1 1927,2
€A,min “igz —3Je"%,
(C)pin = LW, 02 <4 (2.:29)

2 g4 24,2
(0 )in =& - J)g"w.
The amplitudes of excitation at sites 1 and 2 are given
by

c =27 +c), =27, - ), (2:30)
thus
2>gticP =i =172,

Table 1
Comparison of energies and correlation functions

S <gt |C1]2 =i+iq —J2/g4)1/2, (2.31)

ey =1 — 11— jghy2, (2.32)
The latter values are for one of the two degenerate
minima (i.e. that at (Q_ )y, = +@*—JHg2w)H2).
Note that these two degenerate minima are dictated
by the symmetry of the system.

. The effect of the nuclear kinetic energy operator
will be to “mix” these two possible configurations
(i.e. two values of (Q_)piq)s since the adiabatic po-
tential is a double well, We will neglect this in what
fellows and use the lowest order adiabatic states as
approximations to the eigenstate. The exciton—pho-

" non correlation functions § can be calculated for these

states also and we find
‘SA = 2C+ C_(Q_ ]J/(Q_)J:Q)

SO

5, =(1-x%), x?=rt<,
- 2

SA—O, x“>1.

2.5. Comparison of approximate theories

Using the results of sections 2.2-2.4, we can com-
pute the values of the energy and correlation functions

gt E (Ny 5

exact 3 g N exact (W) N exact & 3 84
J==2
1 -2.109 -2.101 -2.109 -2.000 0.074 0.041 0.071 0.240 0.202 0.238 0
2 -2.244 -2.206 -2.239 ~-2.000 0.136 0.046 0.108 0.303 0.214 0.281 0
3 ~-2419 -2.317 —-2.400 ~2.167 0.252 0.051 0.212 0.409 0.225 0.312 0.555
4 -2.662 —-2.433 -2.605 ~2.500 0.446 0.057 0.380 0.567 0.238 0.394 0.750
5 -2,987 —-2.563 -2.878 -~2.900 0.659 0.927 0.576 0.729 0.963 0.563 0.840
6 -3.381 -3.005 -3.245 -3.333 0.803 0.978 0.71% 0.836 0.989 0.745 0.889
J= -:1
1 -1.188 —1.174 -1.187 -1.000 0.214 0.130 0.211 0.430 0.360 0.424 0
2 -1.437 ~1.365 -1.427 -1.250 0.394 0.171 0.318 0.571 0.413 0.526 0.750
3 ~1.766 - ~1.600 -1.736 -1.666 0.629 0.325 0.481 0.745 0.570 0.663 0.889
4 =2.171 -2.024 ~-2.125 -2.125 0.813 0.898 0.641 0.866 0.948 0.783 0.938
5 -2.622 -2.508 ~2.575 ~2.600 0.907 0.970 0.755 0.929 0.985 0.861 0.960
6 -3.095 -3.002 ~3.052 _—3.083 0.950 0.988 0.809 0.960 0.994 0.894 0972
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g~
Fig. 1. Exciton—phonon correlation, 8, as a function of g2
for J = —1. Solid line: adiabatic theory; dashed line: simple

variational theory; dotted line: asvmmetric variational theory;
dot-dash line: exact result.

for the exact and approximate theories. In table 1,
we present, for two values of J and a number of values
of g, this comparison. In figs. 1 and 2, we compare
the calculated values of § as a function of g and in
figs. 3 and 4, we compare the calculated values of

gt —

Fig. 2. Same as fig. I exceptJ = 2.

<N>

' Fig. 3. The number of phonons /V associated with lowest

state as a function of g% for J = —1. Dashed line: simple varia-
tional theory; dotted line: asymmetric variational theory;
solid line: exact theory.

{N) for two values of J.

Note that the simple variational function has an
abrupt change in its properties as g increases for |J] =
2. This is due to there being two minima in the varia-
tional energy as a function of g. Although the exact

<N>

Fig. 4. Same as fig. 3 exceptJ = -2,
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detail in the next section. The asymmetric variational
function does not show two minima or an abrupt
change.

The general characteristics of the three approxi-
mate solutions can be seen from the figures and table,
In particuiar, the simple variational function is under-
correlated for g2 < |J| and overcorrelated for g2 2 |J;
on the other hand, the asymmetric variational func-
tion is correct at small g but undercorrelated for large
£. In addition, the adiabatic function is undercorre-
lated at small g and overcorrelated at large g. More-
over, the simple variational form gives a rather poor
energy as g2 gets large while the asymmetric variation-
al form and the adiabatic wavefunction give rather
good energies in this region.

3. Discussion

The results presented above indicate that:

(i) in the adiabatic approximation, there is only
one¢ minimum in the energy surface, in agreement
with the arguments in ref. [2];

(ii) in the exact solution, there is no discontinuity
in either of the exciton—phonon correlation func-
tions, although there is a rapid change in both as the
exciton—phonon coupling is increased;

(iii) in the simple variational solution, there are
two minima in the energy surface (as a function of
variational parameter) which leads to a discontinuity
in the correlation functions;

Appendix A

T
<
=%
":‘

...,

:|"
cn

g

be remedied by llowmg he variational form to be
slightly more flexible; this leads to nondiscontinuous
correlation functions and a single minimum in the
energy surface.

The abrupt change in the simple variational result
is reminiscent of the resuits of unrestricted Hartree—
Fock theory (UHF) [6] where the character of the
variational lowest energy wavefunction (constrained
to be a single determinant) changes dramatically as
the parameters of the system are varied. In that case,
the variational wavefunction may become a spin den-
sity wave or a charge density wave with certain cor-
relation functions exhibiting sharp changes, even
though the exact ground state does not exhibit these.
In spite of this, the variational function may be use-
ful in discussing curve crossing and other effects.

In the present case, even though the simple varia-
tional solution shows incorrect behavior as far as the
number of minima in the energy surface and the pres-
ence of a discontinuous change in certain properties,
it is still approximately correct in the value of the
energy as well as being qualitatively accurate for the
correlation functions for g small and g large. In addi-
tion, for J small enough so that two minima do not
occur, it is reasonably accurate. However, it is clear
that for J large enough so that two minima are pre-
dicted, the simple variational result will give inaccu-
rate results for the correlation functions and the ab-
ruptness of the transition. In these cases, neither the
simple variational result nor the simple adiabatic re-
sult is very good for all g.

In this appendix, we derive the conditions for the existence of two minima in the simple variational energy, T,
given by eq. (2.14). The condition for an extremum in the € versus g curve is

F[L+2Jlexp(-g2)] =¢

(A1)

The 1hs of this equation may be graphed as a function of g. For [J] greater than a certain value, to be found be-
low, this curve has two extrema at values of g which we label g and g5. There will then be three solutions to

eq. (A.1), one maximum in € versus g and two minima, for

~ 2 ~ ~2
g [1+2(/1e781] 2g2g,[1+21Je752].

(A2)

To find g; and g5, we note that they are values of & for which the lhs of eq. (A.1) has an extremum; they are thus

given by setting the derivative of the ths to zero:
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1 — (52 ayn (32 ;=
'2'“% -(25,- - 1)&:,\1)(—5 [), i },.:.. (‘..3)
For this equation to have solutions (and so there be two minima in € versus g),
+ ' :
21 >1et5 =224, (A4)

This is the condition on |J| for there to be two minima; the condition on g is given in (A.2) with g; and g, given
by (A.3). By substituting (A.3) into (A.2) we find the condition on g can be rewritten

2231282 - =g > 283273 - 1).
For |/] =2, we find 8] = 0.88,8 = 1.73 and two minima exist for 2.50 >¢>2.07.

Appendix B

From 5 given by &q. (2.12), we will compute (Mand §.
(Ny=(91B* B_l9)(2/g?)

=(2/g2 X014, exp{(g/2"2)(A%4_+A* 4,)(B_—B*)}B*B_exp{(e/21/1)(4X4_+A* 4,)(B_— B*)} 470

(B.1)

By using the formula

eABe A =B+ (4B +5- (A [AB] + .., (8.2)
we find

B =(2g2) 014, [B* +Z/2V2(A%A_+a* 4 )] [B_+Z2VH A% 4 +4% 4,)]4%0),

=@l (B.3)
To find §, we note the definition

= (212 GI(ATA_+ A% 4,)(B_+ BB (B.4)
Using (B.2) once more, ‘ .

5 =2g) 014, (AT A_+A* A)[B_+B* +2M2F(ATA_+ A% 4,)]A,10=Flg). (B.5)

Appendix C
Using the asymmetric yariational function,g, given by eq. (2.21), we will compute the energy and correlation
functions. First we write ¢ as :

S=exp{-g/2V2[A%A_+ad* 4,1[B_- B*]} 40

= {coshg(e/2)/2(B_ — B*)} 4%10) — o {sinhg(ef2) /2 (B_ - BH)} A% |0), ' (C.1)
where the cosh and sinh are to be represented by their series expansions. From eq. (C.1) we find
(@139 = <0l {cosh? [g(e/2)2(B_ - B*)] — asinh? [g(e/2)/2(B_ — B*)1 HO)
=(O[[{[1+ coshg(za)lfz(_B_B‘_‘)] /2} - a{{~1 + coshg(2)/>(B_ — B*)]/2}] IOV
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=1(1+a) + 1(1-0) Ol {exp[e(20)2(B_—B*)] + exp[—g(20)V*(B_—B*)] HO)
= %( 14a) + §(1-a) exp (—g2a), : (C2)
where we have used the result that
(Z(B~B*) _ ~2B* 2B o377 (C.3)
for boson operators. Using (C.1), we compute (zlhlz) and find, with ¥ = g(a/2)1/2(B_ - B%),
(B 1h18) = —1JI0l [cosh® Y + aisinh? ¥]10) + <0lcosh ¥(B* B_) cosh Y10 — a<Olsinh ¥(B*B_) sinh Y|0)
+ g(e/2)1/2(0 {cosh ¥(B_ + B*)sinh ¥ — sinh Y(B_ + B* ) cosh Y}|0. (C4)

Using eq. (C.1), eq. (B.2) and eq. (C.3), we find

§;<E|h15>;=!u,![(1 —@)+(1+a)eFe) gfa Pofl-a) _ (C5)
Gl lire+a-ee=] 2 qrgra-gee
The correlation functions can be found using eq. (C.1) and the definitions. We find
(NY=(2/g7)(¢1B*B_|9)/<616) BN (%)

= (2/g%){O}(cosh ) (B* B_)(cosh Y)|0) — a{Ol(sinh Y)B* B_(sinh Y)IO)}/(;I?)
= (2/g®){3(1-0)0le” B*B_e¥|0) + 1(1-a)Ole™YB*B_e~¥10) + L(1+a)0leY B*B_e~Y10)
+1(1+a)0le™ Y B*B_e¥|0}/(818) = (2/g) (1 +e) g

A - 2
—L1-0)gtae 8 Y /ple) = a [“"“‘) —(1-a)e gz a] (€.7)
(1+a) + (1-a)e~8"«

and
8 =2V Kplata_+4* 4,)(B_+BX)OWGIH
= (21729)~1a12((0} {cosh Y}(B_ + B* ) sinh Y10 — O] {sinh Y}(B_ + B*) cosh Y0)/3|¢)

L _ _ "R 2a
=22 Lo {—LoleY (B_+B*) e~ Y10y + L0l Y (B_+B*) ¥ |01}1/(0] 9} = — . (C8)
(1+a) + (1-a)e~6=
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