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Curve crossing in a simple two-electron two-orbital model is considered. It is shown that the spin density wave 
(SDIi? solution has the correct crossing points and is closest to the exact solution of ali single determinants. 

Recently, in an interesting paper [I], Pople consid- 
ers a two-electron twc+orbital model in which there is 
curve crossing of a singlet and a triplet state. Ordinary 
molecular orbital theory, using restricted Hartree-Fock 
(RHF) singIe-determinantal wavefunctions, predicts a 
discontinuous change at the point where the energies 

of the s’s’ and s”s” singlets cross. As noted by Pople, 
this is an artifact due to the limited form of the wave- 
function which can be circumvented by a CI calcula- 

tion. Pople considers a single-determinantal wavefunc- 

tion with complex molecular orbitals which he main- 

tains is the best single-determinantal wavefunction for 

this mode1 system. However, we have found that the 
best unrestricted Hartree-Fock (UHF) wavefunction 

for this system is the SDW [2] wavefunction. The SDW 
wavefunction, unlike Pople’s complex wavefunction, 
gives the correct singlet--triplet crossings. Furthermore 

the projected SDW is a very good approximaticn to the 
CI result, while the projected complex wavefunction 
departs considerably frcl\m the CI result. 

Falicov and Harris [Z] have considered the spin den- 
sity wave (SDW) and charge density wave (CDW) solu- 
tions for the tweelectron homopolar molel:ule. Their 
model is the same as that of Pople except they neglect 
the atomic exchange and hybrid integrals. However, 
these integrals are of the utmost importance in the 
application of UHF theory to the curve crossing prob- 
lem. In fact if the exchange terms are neglected Pople’s 

solution becomes the MO solution. 

* Research supported in part by the NSF. 

Using the notation of Pople, we considerer the two 
molecular orbitals Gs, and Gs,,. From the symmetry 
MO’s we construct two localized, orthogonal orbitals: 

91 = 2 -112 (rL,! + &II), 

92 = 2 -W (&, - I&“). 

The hamiltonian is given by 

(I) 

(2) 

H=H, +Hz + l/Q! (3) 

where lji contains the interactions of electron i with 

the nuclei and with the core electrons. .4s mentioned. 
by Pople, the nuclear motions giving rise to the curve 
crossing will also modify the core energy, and in a com- 
plete t;estment this chz7ge in the core energy shouId 

also be included. We further define 

~1lHl1~=(2Wl2)=a, (4) 

(1 IHl2) = p, (9 

where the single-particle diagonal term is set equal to 
zero for convenience and fl corresponds to the single- 

particle off-diagonal term. (PC 0 if I&~, has a lower one- 
electron energy than $,,,.I 

Following Pople, we now consider the two-electron 
integrals in terms of the equivalent o;bitaIs: 
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p’ =p -t(lllI2), (7) 

+l&,, WI 1 \ITs,s,,) = A -K, ) (16) 

@P,,,,, IHI 3 \k,.,,,) = -K,, . (17) 

~A=(11111)-(11122), (8) 

Kex = (12112). (9) 

For physically meaningful values of the parameters, 
A and K,, > 0. We will not consider the case A< 0 
which has been considered by Falicov and Harris. We 

will also maintain Pople’s assumption that A> 2Kex 
(this is true whenever 61 and $2 are more localized 
than Gs, and Gs,,). Table 1 gives the matrix cielnents 
of the effective hamiltonian II’ = H -- (11122). 

The molecular orbital solutions are 

l\f’s,s, =2-l/2 l&(1)$,,(2) [43--k], (IO) 

39 S’S” 

=f [~s~(ij~,,.(2)-~s,.(1j~s.(2)] [cuptpo], (13) 

with energies 

(“$s, !Rl “I’s,,,) = 20’ ++A t&,, (14: 

0\k,,,s,, IHI Q&,, )=2p: +f AtK,,, (15 

Table 1 
The matrix clcments of the effective hamltonian H' = H - 
(111221, where litilj = 2-r” (&a@ -$$icr) 

Iltl?) 12t24, llt2?) 12t 1L) 

Il?lU A f&x P' p' 

12t21> J&x A P’ P’ 
lita&) 8’ II’ @ kv 
12t 10 P’ P’ GX 0 

‘The only off-diagonal matrix element in this repre- 
sentation is 

(‘Q,,,. IHI 1 Qs,,,J = + A, (18) 

so that the CI energies for the two mixed singlets are 

E(CI) =+ A +K,, 2 + [A2 + 16@‘)2]*/2. (19) 

The general UHF ground-state wavefunction is a 
Slater determinant of the form [2]: 

ix, I(cos0l~l te sin01$2)cx 

X (~osO~q6~ +e ix1 sinQ2&)/3), (20) 

where n I, Ox, x1 and x2 are variationally determined 
in order to minimize the energy: ~1 = (H* >. 

Table 2 gives the results ofthe variational calculation. 
In the localized orbital representation the wavefunc- 

tions Xe: 

ISDWl) = 1 (cod q’+ + sin0 @2) ct 

X (sin0 G1 f cod &)p), 

Table Z 

Value of Range over which 
parameters UHF solution is 

UHF Mixing of lower energy 
solution xt y.2 01 02 parameter than RHF solution 

,SDWI 0 n 0 0-x sin28= 
-IQ'/(A+U'ex) 12p’lG A+2Kex 

CI~WI 0 0 B t? sin 2 0 = 
2P’lW2&d l2$\ 4 A -2&x 

CSDWl y n/4 n/4 COSP = 
4 IKex P I< Kex 

CCDWI P v rri4 n/4 cos,u= 
-B’lKex @‘I< Ke, 
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X CcOs6 $1 + sin0 $2)/3), (22) 

ICDWI)= I(COS@ $1 + sinff #Q) 1y 

X (cos8 cjl t sin0 Q)p), (23) 

lCDW2> = I (sin6 $1 + cosB $2) a 

Pople’s solutions are: 

ICCDWl>=+ !(O1 +ei2192)a(91 +ei”02)P>, (27) 

ICCDW2) = i I (G1 t e-iic92) ctr ($Q f e-iLiQz) 0). (28) 

There exist two UHF solutions of each type and 
these have the srune enerB in each case. We c;?n take 
the appropriate linear combination of the two degen- 
erate solutions and get a solution of restored symmetry. 
The SDW solutions violate spin symmet~, tizat is, 
they are not eigenfunctions of@. Forming the 
linear combination i SDWI) + i SDW2) is equivalent to 
projecting the singlet spin function out of i SDWll or 
ISDWU. Similarly we can eliminate the singly excited 
singlet contaminant from the CDW solutions 2nd ob- 
tain a further iowering of the energy. In the CCDW and 
CSDW this symmetrization is equivalent to projecting 
out the re2I part of the complex wavefun~tion. 

It is illuminating to consider the UHF solutions in 
the representation of the s~nlmet~-ape molecular 
orbitals: 

I SDW) x s’s’ - X2s”S” t A (s’s” - s”s’), (29) 

I CDW) = s's' t X*s”s” + h(s’s” + s”s’), (30) 

1 CSDw) x S'S' t h*s”s“ + ih(s’s” - S”s’), (3 1) 

I CCDW) = s’s’ - X2s”s” f iX(s’s” + s”s’). (32) 

These four cases, in somewhat different context, have 

UtfF Energy t H’s 
solution 

SDW 
-2(&Q* 
h+ZK,X 

CDW cI t 2Q3’)2 

a-2&x 

CCDW ; _ 2 

Proj 
3 @‘)*.4 - 3W’f2K~&& 

CCDW (p’)” + K& 

CSDW 
#‘I2 

4 - - 
- s.x 

Proj A&x - 3@!)2K&& 

CSDW (J+ fk’& 

been discussed by Paldus and &iek [3] 2nd also by 
Musher f4f. The two camplex L’HF solutions give the 
same energy, However the projected soktions differ in 

energy, the projected CCDW being of lower energy and 
giving a better description of the curve crossing. 

In treating the curve crossing using projected SDW 
or projected CSDW we are not projecting out the 
iow’est energy component but rather the IS component 
(that comprised of 1 Gs,,, and 1 $s,,s,,). CIearIy, in the 
region of interest, the triplet component is of lowest 
energy. Also it should be made clear thhat by projected 
UHF we mean projection after variztion. If we reverse 
these two operations, we reproduce the CI resuits. This 
is due to the simplicity of the model under considera- 
tion; in general, projection prior to vlrriation Ieads to 
2r1 attemant MO type of function. 

The final resuIts for the energies are given in table 3. 
Examination of the table leads to the conclusion 

that the CDW and projected CDW solutions are not of 
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-“_ Proj. CCRW 

Fi,o. I. The energies of the various approximntions versus @. 
The configuration interaction (exact) eneraics are do tfcd lines; 
the approximate energies are fuil Iines. 

much Interest when A > LB&. We a!so see that, fol 
the range of their definition (@‘I <zi”,,), the projected 
CCDW is of lower energy than ttie projcc;ed CSDW 
solution. Comparison of Esuw and Eccpw yields the 
sported result that ES, < EccDWr for I$ I < K,,, 

In fig. 1 the varfotrs energies are plorted as a func 
tion of /3!. Following Pople, we neglect the variation 
in A, Kex, (11122) and the core enerB ano consider 

Table 4 

?oint Va!ue of Intersect&l: 
encrfl (I?‘) curves 

only varj~tion of /I’. The totally symmetric singlet 
states are denoted by “S, and the non-tota~y symmet- 
ric states by IAand 3A. 

The points of intersection of the various curves are 
given in table 4. The change from the con~guratio~ 
. ..(# to,..(s”)z occurs in a continuous manner in 
both the SDW and CCDW approaches. The SDW de- 
scription is preferable due to its greater range of valid- 
ity, The SDW gives the correct singlet-triplet inter- 
xc tions, whereas the CCDW solution is not even detln- 

ed in the region of the intersection (therefore the singlet. 
tripIet intersection obtained in Pople’s approach is the 
h<O intersection)“. We also found that the projected 
SDW solution is 3 much better approximation to the 
CI result than is the projected CCDW solution. 

In conclusions we have shown for the simple model 
considered that the best sin& de temGnan tai wavefunc- 
tion is an SDW, rather than the complex wavefunction 
of PopIe. It would be most interesting to study the use 
of UHF theory in more complicated curve crossing 
situations. JVe believe, based on the papers of &:iZek 
;md Paldus [3] and of other investigators~, that in 
general the SDW approach will better describe the 
cxve corssing than will a complex molecular orbital 
approach. 

One of the authors (K.D.J.) wishes to acknowledge the 
support of an -NSF predoctoral fe~o~vshj~. 

* If we extend the region of definition of &-cD\V (this is not 
rcarly valid since it is equivalent to sayin_g lies gL[ > 1) we 
find that ECCDW and _&A intersect at P’,P”. This is probably 
a fortuitous occurrence, In any case, if we try a similarexten- 
sion in the projected CCDW, we still get the incorrect inter- 
section. 

i An inter&in:: paper by Fukutome [5] on the use of UHF 
theory of chemical reactions appeared after we completed 
the calculations discussed in this paper. Fukurome uses UHF 
theory to an&ze the rotation about the double bond in 
ethylene and also considers the face to face addition of the 
two ethylenes. He suggests the possibility of a connection 
between fhe O~~~~DXXX of UHF sohxtions of broken sym- 
mctry and tht rules cf Woodward and Hoffmann. 
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