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The transport of electrons or excitations on a lattice randomly occupied by guests is
considered. The equation governing the transport in any configuration is assumed to be
the master equation. A projection operator technique is used to derive the exact equa-
tion governing the transport averaged over all configurations, which can be written as
either a generalized master equation or the continuous-time random. -walk equations
(CTRW), establishing the correctness of the CTRW for these problems.

Recently there has been considerable interest
in various aspects of dispersive incoherent trans-
port in condensed disordered media. ' ' Both
charge transport ' and electronic energy trans-
fer' ""have been extensively studied, resulting
in interesting short-time (ac limit) and long-time
(dc limit) behaviors. Two main approaches have
been adopted in order to investigate the disper-
sive nature of transport in disordered systems:
(A) The Green's function, or self-energy (SE)
method, ""(8) the continuous-time random
walk (CTRW)' ' "'which was originally based
on an approximate equivalence between the prob-
lem of an incoherent, random-walk migration on
a disordered lattice and the CTRW on an ordered
lattice. " The CTRW is found to be an attrac-
tive approach to tackle these problems because
it is mathematically tractable and it contains
all the information of the disorder in the system
in a hopping-time distribution function. The
theory accounts very well for the transport behav-
ior in a broad class of materials. '~ '

The CTRW ideas were first suggested by Mon-
troll and Weiss, "who introduced the distribution
function g(t) into the usual random-walk formal-
ism to discuss a random walk with random jump
times. This approach was elaborated later by
Scher and Lax,~ who were the first to introduce

the equations for the CTBW, the generalization
of ((t) to g„- - ' and the applications to trans-
port in disordered systems. Application of a de-
coupled scheme of the CTRW was also proposed
and studied by Scher and Montroll. " The con-
nection of the CTRW to the master equation (ME)
was discussed by Bedeaux, Lakotos-Lindenberg,
and Schuler, "and the connection to the general-
ized master equation (GME) was pointed out by
Schlesinger, Kenkre, and Montroll'~ and by Ken-
kre and Knox. " This latter connection was stu-
died only in a decoupled scheme which corre-
sponds to the Scher-Montroll approximation. "
There has been recently much discussion in the
literature on the point of whether the CTHW is
exact and, if it is not exact, to what approxima-
tion it does correspond. v' 'i' ' rn this Letter
we derive the CTBW for transport on a lattice
which is fractionally occupied by impurities.
We shorn that both the CTHW equation and the
GME are equivalent and exact equations for the
dynamics of the system. This exact derivation
should provide the justification to the approach
which has been recently subjected to some criti-
cism

The argument proceeds in the following way.
Assuming that the equation governing the migra-
tion in each configuration is a ME, we average
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over all possible configurations to arrive at an
exact GME. We then rework the equations so
that they are identical to the CTHW equations for
transport on a translationally invariant lattice.
We also comment on the approximations which
have been used for the hopping-time distribution
functions in the CTHW and their connection to the
exact relations with the GME.

Consider a lattice on which there are two kinds
of sites: those containing a guest (or impurity)
molecule and those containing a host molecule.
The host molecules are incapable of participating
in the transport, so that migration can occur on-
ly among the guests. There is an enormous num-
ber of configurations consistent with the fractional
concentration of quests (=c). The equation of mo-
tion of the probability I'n (t) of an electron (or an
excitation) being on site n at time t is, for each
confi

gustation,

IJ~(t) — Q (w~~~~ w~ ~+~) (1)
m

gues ts
mwn

where the sum is over the guest sites only. W- -„

is assumed to be a function only of Rg-R-, and
for convenience symmetric, i.e. , W„-= W- -„,
which is the usual high-T limits. This symmetry
is not necessary for the formal development
which follows; however, we assume hopping rates
which do not depend on site-energy fluctua-
tion. "'" Define

then

5 (t)= Q w--v-= g w--g-g-z- (s)
g uests

& (t)=[exp(Vt (4)

where

We now average over all possible configurations
to find

(Pgt)& =(exp(Vt})-„;

and, by Laplace transform,

(P-.( )& =((zl- V) ')-. ,;.
An exact form for this can be derived with use of
the Zwanzig projection operator method. " Defin-
ing a projection operator D as the configuration-
averaging operator

where $- is a variable which equals 1 if m is oc-
cupied by a guest molecule and 0 if m is occupied
by a host molecule. The last sum in Eq. (3) is
now over all lattice sites because of the introduc-
tion of the $-. We solve Eq. (3) formally, assum-
ing that at t = 0 the electron is at n = 6 so that

Wn, rn =(1 bn, m)Wn, m ~n, m Z Wr, n r
r~n

(2)
DW-=Q),

then

—[D exp(Vt)] =DV exp(Vt) =DVD exp(Vt) +DV(1 —D) exp(Vt),

—[(1—D) exp(Vt)] = (1-D)VD exp(Vt)+ (1 —D)V(1- D) exp(Vt),
d

so that

(1 —D) exp(Vt) = fod& exp[(l -D)V(t —7.)](1—D)VD exp(V&) (10)

[D exp(Vt)] =DVD—exp(Vt)+ f,dr DV(1 —D) exp[(l —D)V(t —r}](1—D)VD exp(V~).

Then, by Laplace transform,

((zl -V) ') =[zl —(V& —(&V[z 1 —(1-D)V)] '-=[zl -M(z)]-'

where 5V=V —(V) and M(z) is the self-energy matrix. Since

(12)

[zl-M(z)] '=(z '1+z-'M( )[zl- M( )] 'j,
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we find, using Eq. (7), that &P~(z)& obeys a GME:

z&P, (z)& = 5„+g M-„(z)&P (z)&.

By conservation of probability Q-„M- -„(z)= 0, therefore

M-„-„(z)=- Q Q--„(z)
men

(14)

(15)

z&P-. (z)& = 6-.,;+ Z (M-.,-(z)&P-,.(z)&-M" Az) &P-.(z)&),
mwn

which may be rewritten as

(P„-(t)&= Z f dTPS-„-(t T)(-P-(T)&-M- „-(t-T)&P„-(~)&].
m&n

(16)

(i7)

M-„-(z) =M„- -(z).
We now define

M-„-(z) = j-„-(z){z/[1—X(z)]],
where

X(z) = Z j-, -(z)
n&m

=z-'[i —X(z)] E M-. -(z),
n&m

(is)

(i9)

(20)

ol

X(z) = Q M„- -(z)[z+ Q M„- -(z)] '. (21)
n&m m&n

Substituting Eq. (19) into the GME, Eq. (16), we
find

z+ X(z) —,1&P.(z) &

z

Thus, the basic equation for transport in a dis-
ordered system is a GME, Eq. (17), in contradic-
tion to some arguments of Pollak' concerning a
conceptual problem of the applicability of a homo-
geneous non-Markovian equation in the case of
disordered systems. " We should emphasize that
the GME, Eq. (17), is exact only for the averaged
probability (P;(t) &. An equation for the variance
of the p"„(t) 's soould almost assuredly involve
more than g-„"&'~.

Upon averaging, each site is identical, so that
the system is translationally invariant, and thus

&P-.(t)&

=6-„-,C(t)+ 5 f dTp„-(7')(P (t —~)&, (24)
rn ~ n

where C(t) is the inverse Laplace transform of
Ii- x( )]t:

c(t)=1- f, x(&)«

=i- f d~ P ~ -„'(~). (25)

These equations, (24) and (25), can be identified
as the generalized CTRW of ocher and Lax, '
where j-„~(7) is the probability of the particle
jumping from a distance R"„—gm after a waiting
time r C(t) .is therefore the probability of re-
maining on the initial site for time t. Note that,
by configuration averaging, the translational in-
variance of the lattice has been reintroduced into
the exact equations of motion in spite of the fact
that, for any configuration, there is no transla-
tional invariance.

We have derived the CTRW equation from the
exact transport equation, Eq. (16), and so shown
that it is also exact. However, in order to pro-
ceed, the exact form for g„(T) has to be formed,
which contains all the microscopic details of the
system. Alternatively, an exact form for M-„" (z)
must be found. Note that these are related by the
exact relation, Eq. (19), namely,

C-. -.( ) =M;;(z)+(z) (26)

or
= -„-,+ Z

( )
y-„-( )&P-( )&, (22)

m&n
q-„-(t) = f, drM-„= (t T)c (T). — (27)

which is rewritten as

&P-„(z)&= 6"„-,z '[1 —X(z)]+ P tt„- "(z)(P (z)&.

(23)

These exact relations provide an extension of
conclusions by existing theories' ' "that the
CTRW is equivalent to modified pair approxima-
tions in solving the ME, Eq. (1). Making use of
the translational symmetry of the conf igurational-
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ly averaged system, Eq. (18), we are now able
to directly relate the CTRW to a% representation
of SE in the GME. Define

supported in part by a grant from the National
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M$, z) = Q exp[i% (m —n)]M- -„(z), (28a)
m san

M/=0, z) = Q M"„~(z)=-M„„(z).
~it
m&n

(28b)

The GME, Eq. (16), can be rewritten as

(9-„(z)=[z+M(k=o, z) -M(l, z)] ' (29)

which is similar to the form derived in Ref. 2.
Note, however, that any function of z [say, K(z)]
can be added to M(k, z), for all %, and the form
of Eq. (29) remains invariant. In our case, we
have the added condition that Q k M(E, z) =0, from
Eq. (28a); this must be satisfied in order to make
the connection to the CTRW. A variety of forms
for Z(k, z)=-M(k, z)+H(z) can be derived, depend-

ing on the method of summing the diagrammatic
series. Care must be taken in identifying the cor-
rect form to insert in the CTRW.

The above arguments establish for the first
time the correctness of the CTRW and provide a
deeper insight into the nature of the hopping-time
distribution function g" „(t) via its exact relations
with the self-energy, M"„"(z). In forthcoming
publications, we will derive the hopping-time dis-
tribution function from an exact one-dimensional
self-energy, "and adopt a modified undecoupled
pair approximation' to study the short- and long-
time behavior of the mean square displacement
of an excitation in an impure crystal. "
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