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In the present note, we deri\ri an esact formal expression for the self energy of the electronic Green’s function 
for a heavily doped crystal. Several approsimations are discussed. 

1. Introduction 

In recent years, there has been an increased interest 
in the spectral properties of heavily doped crystals and 
the electronic structure of alloys [I-S] . In particular, 
various people have derived approximate formulas for 
the configuration averaged electronic Green’s function 
for the alloy, notably Soven [4], Matsuban et al. [S] , 
Onodera and Toyozawa [6], and Freed and Cohen [S]. 

There have also been a number of papers dealing with 
exact calculations of the disordered lattice [9]. Ke- 

cently, the theory has been spurred on by the experi- 
mental work on amorphous semiconductors. 

Ln the present note, we derive an exact closed ex- 
pression for the selr-energy, M(z), of the configuration 
averaged electronic Green’s function, by using the 
Zwanzig projection operator technique [IO] . This ex- 
pression, when expanded, gives the Matsubara result 

term by term and so represents a simple (non-dia- 
grammatic) derivation of this function. We then go on 
to present a systematic method for approximating the 
self-energy, which in the first approximation gives an 
expression very similar to, but not equal to the first 
approximation of Matsubara (the coherent potential 
approximation). 

2. Derimtion of the seIfene%y 

We consider a simple model hamiltonian which rep- 
resents a heavily isotopica!ly doped crystal [l-3] 

H=C 5, +,, + c J a+a 
,I ,, ),I llvl I? ??I ’ (1) 

where ai creates an excitation at site n: and E,, is the 
energy of the molecule at the ?zth site. For simplicity, 

we will consider a binary alloy of number fraction X* 

of A and X, of B so that in. (I), E,, = ?A, where we 
have chosen the zero of energy as the average of the 
two electronic excited state energies. Since we are 
considering only singly excited states and the hamil- 
tonian conserves excitation number this is allowable 

even though the ground state also has zero energy. 
However, it should be clear that we may also treat the 
band structure for alloys in the same manner. 

We introduce a random variable $,, with values +_! 
in the following manner: 

H=Ho + I’, (2) 

Ho = A(XA - XB) c aza,, + c J,,,, aza,,, 
I1 

=C e(k) aiak , (3) 

Thus l,, takes the value necessary to make (2) agree 
with (1). Note that Ho is now translationally invariant. 
W1 defie the configuration averaged Green’s function 
and self-energy by 
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It is w&i known that G(z) is diagonal in k-; that is, the 
random averaging makes the system tr~slationa~ly 
invariant. G(z) is the one sided Fourier transform of 

(exp(-iMr)) and we will find it convenient to deal 
with this latter form first. Defining a projection oper- 

ator P by 

PA=(A), (6) 

we write 

gt (t) = P exp(--i.E&) ) (74 

g,(r) = (1 -P) exp(-iHrj , WI 

using the equation of motion for exp(-i.Hf) and the 
facts that s,(O) = 0 and PY = 0, we find, following 
Zwanzig, 

f 

- i s drPVesp [-i(I -P)H(t- ?->I Vgl (Q . 
0 (3) 

Taking the one sided Fourier transform of this equa- 
tion, we find 

M(~)=(~‘tz-(i-P)H~-1fi>. (9) 

This is an exact result: however it contains the modi-, 
fied hamiltonian (1 -P)H and is very difficult to 
evaluate. This is reminiscent of the usual problem in 
the qvaluation of time correlation functions when 
the &ojection operator method is used (e.g., brown- 
ian motion). If we espand [z - (I -P)H] -I 3s 

[Z-fl-P)H]-‘I= [z-(l-f)H*]-r 

+ [z-(l-P)H&Q1 -P)Y[i-(I-P)H]-‘I , 

<If3 

noting that 

[z-(1--P&J--‘= P(z_l) f(1 -P)[z-H&l , 

we find that 

~~{z~={VG~V}~{VG~,~l -P)VG,V) 

+ WG,( 1 -P)YG,(l --P)VCaV) + . . . _I (I 1) 

where Go = (z - Ho j-1 _ This coirespondr to Marsu- 
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bara’s expansion after his partial summations leading 
to the c~~~lants has been performed. Thus, we 
have derived, in a simple manner, the result of Matsu- 
ban. 

3. Appro,ximation techniques 

There is a large “menu” of possibfe ways of ex- 
ptiding eq. (9) or its Fourier transform and truncat- 
ing so as to produce suitabfe approximations, In the 
following, we give only one such method, which was 
chosen so as to make cor,tact with Matsubara’s first 
approxiI~~tion to the selfenergy [5] _ We introduce 
this method by defining an operator F(O)(z) by 

W[z - (1 -P)H-J -I v> 

4 W[z - (1 -P)H&‘V)[l -F’*)(z)]-1 , (12) 

and 

F@)(Z) = >g x’“<;‘(z) . (f3 

Then by expanding the left hand side and the right 

hand side we fmd after performing the necessary 
averages, 

F:*“(z) = -zA(x, -XB)(GO)I,,, T a;+ , (14) 

and the first approximation to M(z) is 

M@)(z) = <YGgV)[I +2A(XA-XB)(G~),tti]-i ils) 

This corresponds tc a summation of the diagrams 
representing scattering from one site but important 
multiple occupance corrections have been omitted 
f7]. In order to incfude these in somz way, we ex- 
pand M(z) by defining 2 new operator F(t) 

W[z - (1 -P)HJ -1 V.cI.> = We V’) [I -F(z)] --I , 
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so that the kk matrix element ofM is given by 

#/(4 

4A’X&c,, 
= 

where 

and 

G Tl?Z 
=N--I c (z -Ek-Mk)-l . (21) 

k 

When eq. (19) is compared to the coherent potential 
approximation (CPA) we find that the difference be- 

hveen them is solely in that the (G?),?,, in (19) is 
replaced by (G,,)2 in the CPA equation f7f. Both 
eq. (19) and eq. (I 5) (as well as the CPA) reduce to 
the exact result in the limit that J,,,;, = 0 [where 

(G2)1111 = (q~J21 * 
It is easy to carry out higher approximations to 

Af(.z) using thz definition of F(z) - one must be 
careful of the non-commutativity of the F?](z). The 
use of the F(z) in this way is analogous to a cumu- 
hmt series in that it sums many diagrams in a geo- 
metric manner. 

There arc a number of interesting questions 
raised by this method: first, what is the relationship 
of the approximation of eq. (19) to the CPA, which 
has been so successful; second, what is the relation- 
ship of eq. (19) to the t matrix derivation of Soven; 

third, what other possibilities are there for the ap- 
proximation of M and how do these compare to the 
CPA. Finally, one may use the present method to 
calcuiate higher order Green’s functions such as that 
needed for electron transport 11 I]. These points 
wit1 be discussed in a future publication. 
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