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In the present note, we derive an exact formal expression for the seif energy of the electronic Green's function
for a heavily doped crystal. Several approximations are discussed.

1. Introduction

In recent years, there has been an increased interest
in the spectral properties of heavily doped crystals and
the electronic structure of alloys [1—8]. In particular,
various people have derived approximate formulas for
the configuration averaged electronic Green’s function
for the alloy, notably Soven [4] , Matsubara et al. {5],

Onodera and Toyozawa [6], and Freed and Cohen [8].

There have also been a number of papers dealing with
exact calculations of the disordered lattice [9]. Re-
cently, the theory has been spurred on by the experi-
mental work on amorphous semiconductors.

In the present note, we derive an exact closed ex-
pression for the self-energy, M(z), of the configuration
averaged electronic Green’s function, by using the
Zwanzig projection operator technique [10]. This ex-
pression, when expanded, gives the Matsubara result
term by term and so represents a simple (non-dia-
grammatic) derivation of this function. We then go on
to present a systematic method for approximating the
selienergy, which in the first approximation gives an
expression very similar to, but not equal to the first
approximation of Matsubara (the coherent potential
approximation).

2. Derivation of the selfenergy

We consider a simple model hamiltonian which rep-
resents a heavily isotopically doped crystal [1~3]

+ +
H= ? € 90y + ",% Jmn % (1)
where g creates an excitation at site n, and ¢,, is the
energy of the molecule at the sth site. For simplicity,
we will consider a binary alloy of number fraction Xy
of A and X of B so that in (1), €, = £A, where we
have chosen the zero of energy as the average of the
two electronic excited state energies. Since we are
considering only singly excited states and the hamil-
tonian conserves excitation number this is allowable
even though the ground state also has zero energy.
However, it should be clear that we may also treat the
band structure for alloys in the same manner.

We introduce a random variable £, with values #!
in the following manner:

H=Hy+V, (2)
-_ + -

HO - A(XA - XB) %; 2.4, * Z;Jnm 2,8
= Ee(k) aZak,_ (3

V= ; Afg, — (X, - X )}a'a (4)

nn°
Thus £, takes the value necessary to make (2} agree
with (1). Note that H, is now translationally invariant.
We define the configuration averaged Green’s function
and self-energy by
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@D =- = —Hy-Mz)] 7. &)

Tt is well known that G(z) is diagonal in X; that is, the

random averaging makes the system translationally
invariant. G(z) is the one sided Fourier transform of
{exp(—ift)) and we will find it convenient to deal
with this latter form first. Defining a projection oper-
ator P by

P4 =4y, (6)
we write

gi(z‘) =Pexp(—~iH1), (7a)
£,() = (1 —P) exp(~if1) (7b)

-using the equation of motion for exp(—iff¢) and the
facts that g5(0) = 0 and PV = 0, we find, following
Zwanzig,

ig (D =PHyg,(H

t
=i [ arPVexpl-i(1~P)H(1-7)] Ve, (7).
0 {(8)

Taking the one sided Fourier transform of this equa-
tion, we find

ME)=[z-(1-PHI 1. {9)

This is an exact result; however it contains the modi-,
fied hamiltonian (1 —P)H and is very difficult to
¢valuate, This is reminiscent of the usual problem in
the evaluation of time correlation functions when
the projection operator method is used (e.g., brown-
ian motion). If we expand [z — (1 -P)H] ~1 as

z-(1-PH] = [z-(1-PH,]
+ 2~ (1-PH) " (1 =P V[z - (1-P)H] !,
(19
1oting that
Iz~ (1-P)H 1" =PE ) +(1=P)z - H,] ",
-we find that )
Mz)= (VG V) + VG, (1 -P)VEG V)
+ VG (1 =PWG,(1-PWVG ¥y + ..., (11)
where'Gg ’—"(~ ;»HO)'—i. This corresponds to Matsu-
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bara’s expansion after his partial summations leading
to the cummulants has been performed. Thus, we
have derived, in a simple manner, the result of Matsu-
bara.

3. Approximation techniques

There is a large “menu” of possible ways of ex-
panding eq. (9) or its Fourier transform and truncat-
ing so as to produce suitable approximations. In the
following, we give only one such method, which was
chosen so as to make contact with Matsubara’s first
approximation to the seifenergy {S]. We introduce
this method by defining an operator F(0)(z) by

Wiz— (1 -PH]" 1y

=Wz~ -P)H] ' -FO@I, 12

and

o

FOz) = Zl N EO(z) | (13)

=

Then by expanding the Ieft hand side and the right
hand side we find after performing the necessary
averages,

FO@) = 28X, ~ X3) (Gy),, 2;3-'\ G, ,  (14)

and the first approximation to M(z) is

MO (z) = WGV +24(X,~ X5) (Gy),, ) 70 -

(15)

This corresponds tc a summation of the diagrams

representing scattering from one site but important

multiple occupance corrections have been omitted

[7]1. In order to include these in some way, we ex-

pand M(z} by defining a new operator F(z)

Viz - (1 =-PYH|" vy=WGe V|1 —F(@)]~ L,
(16)

and
F() = %) N'F () . an

This gives, in the first approximation,

Fi(@) = 240X, - X,)G,, ~ (G, )G, M@) .
L (18)
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so that the Kk matrix element of Af is given by

M@

Ve =
i 42X, X,G,
= o ,
l +2A(XA_XB)GI1H +(G’7”) I(G ')?7P1‘A/11(fi)(z)
(19)
where
(G2, =N ? G-e~M,) 2, (20)
and
D 1)

When eq. (19) is compared to the coherent potential
approximation (CPA) we find that the difference be-
tween them is solely in that the (G2),,, in (19) is
replaced by (Gp,)? in the CPA equation [7]. Both
eq. (19) and eq. (15) (as well as the CPA) reduce to
the exact result in the limit that J,,, = O [where
(Gz)nn = (sz)z]'

It is easy to camry out higher approximations to
M(z) using the definition of F(z) — one must be
careful of the non-commutativity of the £, (z). The
use of the F'(z) in this way is analogous to a cumu-
Iant series in that it sums many diagrams in a geo-
metric manner.

There are a number of interesting questions
raised by this method: first, what is the relationship
of the approximation of eq. (19) to the CPA, which
has been so successful; second, what is the relation-
ship of eq. (19) to the r matrix derivation of Soven;
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third, what other possibilities are there for the ap-
proximation of M and how do these compare to the
CPA. Finally, one may use the present method to
calcuiate higher order Green’s functions such as that
needed for electron transport [11]. These points
will be discussed in a future publication.
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