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The electronic structures of small clusters of sodium atoms are calculated using the semt-cmpirical diatomics-in-

molecules method.

1. Introduction

Small clusters of metal atoms are of current inter-
est because of their catalytic properties [1]; however,
very little is known about the physical or chemical
properties of such clusters, or indeed of clusters of
even the simplest atoms. This paper is a theoretical
study of the electronic properties of sodium atom
clusters, for which some experimental data is available
on the effects of size and number of atoms on physi-
cal properties. The most extensive experimental
work on the effect of cluster size on a physical prop-
erty is that of Leckenby, Robbins et al. [2] who
studied the ionization potential of sodium clusters,
Na, from n = 3 to n = 12. This work indicates that
the ionization potential of these clusters can be ap-
proximated by that of a small spherical droplet of
bulk metal of the appropriate size. The natural ques-
tion which arises is whether any other properties of
interest can be so treated.

There have been a number of approximate quan-
tum mechanical calculations which give predictions
for the ground state energy and geometry of clusters.
Baetzold [3] has used extended Hiickel and CNDO
methods for Ag,, and Pd,;, while Companion [4],
Ellison {5] and Pickup [6a] have used the diatomics
in molecules method for Li,.. Both of these methods
give approximate potential surfaces from which
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atomization encn:gies and other properties can be com-
puted. Witehcad and Grice {6b] have used the DIM
method for mixed alkali triatomics, while Janoschek
[6¢] and von Niessen [6¢] have used LCAO MO
methods for Liy. In addition, Burton [7} and Hoare
and Pal [8] have used a simple Lennard-Jones poten-
tial to compute total encrgies. Finally, Johnson et al.
[9] have used the SCF-X_ methed for Li,, for re-
stricted geometries. The latter are likely to be the most
accurate calculations of those mentioned.

In the present paper, we use the diatomics-in-mole-
cuies approach (DIM) which for the systems considered
herein can be considered an'extension of the London,
Eyring, Polanyi, Sato (LEPS) valence bond calcula-
tions for three atom interactions [10a]. Taylor ct al.
[10b] have also applied this method to sodium clusters
in which the atoms sit on sites in a cubic lattice, in an
attempt to study microcrystal growth. This procedure
has given good resuits for many systems, but is also
capable of large error. We will discuss this below.

The paper is set out in the following manner: in
section 2, general formulae for the DIM cnergies for
small cluster of 4, 5 and 6 atoms are given and the
formulae for special geometires are discussed in detail.
In section 3, the potential curves for Na, are dis-
cussed and the results of the DIM calculations for Ny
n =36 are presented in section 4. These results are
discussed in section 5.
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2. DIM formulae

In the DIM method with neglect of interatomic
overlap™ the input consists of the diatomic potential
curves [12]. For the present discussion of the alkalis
(and hydrogen) let us assume both the lowest singlet
curve UO(R), and the lowest triplet curve, U{(R),
for a diatomic with its one valence electron in an
s-state are known, and are all the information required
to understand clusters. We define

I=4UOR) + UDR)]. 2.1)
K =3 [UOR)--U'VR)]. (2.2)

Notice that K is less than zero for the values of R con-
sidered hereia and that J is nsually negative for the
important region near the singlet mi;:imum. For H,,
both of these curves are known exactly and the triplet
curve is strongly repulsive near the singlet minimum.
For the alkalis, these curves are known less well, but
it is certain that the triplet curve is less strongly repul-
sive than in H, so that qualitative differences occur
in the two cases.

Given the Coulomb and exchange integrals, J and
K, we may write down the appropriate formulae for
the small clusters.

2.1. Three and four atom clusters

For three atom clusters, the formula for the low-
est S = 1/2 states is the LEPS form. The distances
between atoms a, b, and ¢ are written Ry, R ¢, R
as usual. The collection of these distances will be de-
signated by R. Then

312 py = .
L, (R)"Jab+‘]ac+‘lbc (2.3)
1 . . - -, - - \241/2
7 (=Ko (R =K o)+ (Ko =Ko 12
where
Jap =IRyp):
The energy of the S = 3/2 state is given by
332 — - - -
eV )(R) =J ot et o Kap Kae = Kpe
= /Al 1) 1) -
- U(ab) + Uflc + Ugc' (2.5)

" This causes an insignificant difference in the calculations; in
addition, Steiner et al. [11] have shown that it is necessary’
to neglect overlap in the DIM method.

Kab = K(Rnb)' (2'4)

For the four atom clusters, we have singlet states

400 Ry = L ;i 2
EDR) = LU 75 KoK pg~K gy =K o) (26)

- r ’ r 2 r d « o, 2 ] 2
+ (I\ac-”\bd_[\ad_ I\bc) +(Aab+[\cd—l\ad_ I\bc) 1 2,
a quintet state
EQR) = LU,;-K,) = L), @7
> i>F

and three triplet states whose energies are given as the
eigenvalues of the following 3 X 3 matrix:

i “)(R) = l(,->2,-',ii)

KictKpg K=Ky KoKy
Kyq-K

bd"l‘ac ’\ab+1‘cd

Keg=Kpp KgtKy

K K

(2.8)

ac

bc_‘[\ad

For special, symmetric geometries we can simplify
these formulae as shown in table 1.

We see that the 4 atom tetrahedral structure has a
degenerate singlet state which means that it is unstable
with respect to a distortion (Jahn-Teller effect) of
e-symmetry. The lowest state of the four atom struc-
ture will be either the square or the dispenoidal (Do)
geometry depending on the details of the potential
curve.

2.2. Five atom clusters

For the five atom clusters there are five DIM states
of § = 1/2, four states of S = 3/2 and one state of S =
5/2. For simplicity we will discuss only the § = 1/2
states. The energies of these are given as the eigen-
values of the following 5 X 5 matrix.

5
IEl= 257, 1-k®, (2.9)
i>f
where the form for K is given in the appendix. For
special, symmetric geometries the eigenvalues of K
can be found easily and are listed in table 2.

2.3. Six atom clusters

For these molecules, there are five DIM states of
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Table 1
Gceometry (remarks) State and encrgy
3 atom isoceles triangel (apex = c) 31;'}[':) = Uf,og+ '!.‘U_S,,l;) +4 quoc)
JE(_I,I‘.’) = Us.llb) + %U.(](::) _ %U:(;C)
4 atom reg. tetrahedron (all bonds equal) 4E(:°) = 3lU510b) + Uglb)] !
M =400+ 20D e=3)
4 atom distorted tetrahedron (C3y) (apex = d) EO =3uQ i+ 39+ ulh
30 1+ 20 + v
4,
HUQ + Ul + 30Ul + U =
4 atom square (D4 p), numbered clockwise 4[:;(0) = [3U;Ob) + Ug'b)] + 2U!]'L_)

(R, is side and Rnc 1s diagonal of square) 4[1(_0) _ U(o) . 3U(') . ZU(O)

U‘°)+ U(l) i 3,_,(1) + U(O)
. {

0) 4 O, O 4 ) (e
30+ U+ U+ Ul e=2)

ab
4 atom disphenoidal (Dzg). “"crossed™ diatomics 4L-',(,O) = ZUE‘(:)) + 3U;lc) + fooc)
(R,p =RCd:Rac=Rad=Rbc=Rbd) 4E(_0) =,,U(|)+U(|)+3U(O)

(|)+‘)U'(|)+ 1U(0)
() -
iE
{U(l) + U(O) + 3U“) fo?:)

Table 2
Five atom clusters; S = 1/2; eigenvalues of K for symmetric configurations

Reg. pentagon K + K
/“)f. pr VK, =D

) . 2K (g=2)
square pyramid (e 1»> apex, ab
square is numbered clockwise) ZKnc
WK 2K 21K
;Aac + "l\.xb _"A ac
A, .
“Kac "Kab +2K ac
bipyramid (D;p: d and e apices) 3Kab + Kde - Kue - Kad . . -
Ko™ Kad) £ (VD) [(Kae . ch)- * (Kac - Kad)- * (Kad - chrl e
crossed (Dag) 2K, €=2)
c.\\e b 2Kab
RS Ko+ 2K~ 2Ky,
de” a - ;
WKy = 2Kge* Wy
Ryp=Rea
(Rce = Rde = Rbe = Rae)
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Table 3
Six atom clusters

reg. octahedron
e

2K Kog
2Kub * Kel' €=
Wt 2"’ac - Kot

o

; 6K 1y~ 2K~ Kop

reg. hexagon ZKab + Kad £=2)
3K

f b ad
e [4 Kap* 3K o Kpg = (4K - K )"

, - 2,12
d +9(A.\b' A:u:) I

S=0,nineof S=1, five of $ =2 and one of § = 3.
The energies of the S = Q states are given as the eigen-
values of the following 5 X 5 matrix:

6
E= 2 Ji1- K&
i»i Y

where K®) s given in the uppendix. The energies for
symmetric geometries are given in table 3.

3. Potential curve of Na,

The two curves used in this study are the lowest
siglet and lowest triplet curves of Na,. For the struc-
tures we are concerned with, we need the potentials
most accurately from R = 2.2 Ao R~ 5 A. The
lower portion of the singlet curve has been deter-
mined accurately by Zare and co-workers {12} using
laser fluorescent techniques and RKR inversion.

The lowest triplet state curve is much more dif-
ficult to determine; however, Pritchard and co-workers
[13] have determined some of the parameters of the
triplet curves for mixed alkali alkali interactions (e.g.,
NaK, CsNa, etc) in a series of beautiful spin flip ex-
periments. From these curves, which are not too dif-
ferent from one another, we have synthesized a Na,
triplet curve of the tollowing simple type:

UOR) = (l_(l():_()_ _ 6664.) eV,
r r

The results reported herein are not sensitive to chang-

ing the triplet parameters within the bounds of the
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Fig. 1 Singlet (l E) and triplet (3E) potential curves for Na,.

mixed curves given by Pritchard. That is, changing the
well depth and position of the minimum of the triplet
between the smallest the largest values given for the
mixed alkalis does not alter the results significantly.
We note that the triplet curve is much tzss steeply re-
pulsive near the minimum of the singlet curve than

in the case for H4 (where, of course, the curves are
known with more accuracy). We also note that we

are only interested in the triplet curve in the range of
internuclear separation from ~2.75 A to ~4.5 A, so
we have not included in UW(R) the asymptotic form
of Dalgarno and Rudge [13b] and Knox and Rudge
[13c]. As Pritchard points out [13a], these forms do
not fit all the data known at that time. We emphasize
that the important point for our discussion is that

the triplet curve is not very repulsive in the region of
interest.

Finally, we note that the RKR singlet potential is
different from a 6—8 or Morse curve close to the mini-
mum (the RKR being narrower). Using a 68 or
Morse curve changes the final results somewhat from
those reported here.
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r{(A)

Fig. 2. Potential curves for special geometires of Nagy; full
line: square; dashed line: tetrahedron; dot-dashed line: per-
pendicular crossed (disphenoidal) with Ry, =Red =3.1A.
The variable, r, is the side length for the square and tetrahed-
ron and is the distance between midpoints for the cross.

4. Numerical results

In fig. 2, the lowest energy surface is given for a
number of special geometries of four atom clusters.
We note that the lowest energy form is the crossed
(D44) geometry, which can be viewed as a distorted
tetrahedron. Since the tetrahedral structure will have
a two fold degeneracy, the Jahn—Teller theorem re-
quires that the distorted structure be lower in energy.
In Liy and Hy, the diatomics in molecules theory
gives the square geometry as lowest in energy, in con-
trast with the present results for Na,. However, the
two structures are extremely close in energy. In the
present case, the square configuration is at a mini-
mum of potential energy with respect to all motions,
as is the crossed configuration of lowest energy. This
means there are at least two minima in the four atom
surface, a complication which may have an effect
on the properties of these systemns as measured from
nozzle beam sources.

The results for Liy [4] are not too dissimilar from
these for Nay in the DIM method. However, in Liy,
the square configuration is lowest. In the SCF-X,, re-
sults of Johnson for Liy, it is found that the spin polar-

ized technique predicts a square to be lowest and the
retrahedral to be almost as low in energy. Since the
spin polarized wavefunctions will lower the degener-
acy (in the tetrahedral structure) from the t2 elec-
tronic configuration, a portion of the lowering which
would be ascribed to Jahn-Teller distortion is taken
into account already. The distortion of the tetrahed-
ron has not been investigated as yet by Johnson et al.
The SCF-X,, results also predict that the minimum
energy square in Li, will have a near neighbor dis-
tance of 3.5 A whereas the DIM calculation predicts
~2.9 A. The value in the SCF-X, is singular in that
it is the largest nearest neighbor distance found by
Johnson et al. for the many clusters (up to n = 13)
they examined; the value 2.9 A is much closer to the
values for the other clusters calculated by Johnson
et al.

We also note that in Hy, the DIM method gives a
total energy for the square configuration which is
lower by ~ 60 kcal/mole than the best ab-initio cal-
culation. In fact, the DIM method predicts that the
square configuration (at the saddle point of the
H,—H, interaction) has lowest total energy [14]
—2.193 hartree at r = 2.0 bohr while Conroy and
Malli {15] predict —2.152 hartree at 2.2 bohr. Rubin-
stein and Shavitt [16] give —2.075 hartree at R = 2,47
bohr, and Silver and Stevens [17] give ~2.099 har-
tree at r = 2.4 bohr. Conroy and Malli, and Silver and
Stevens claim that their results rule out the square
geometry for Hy and thus the DIM results which give
an activation energy near the experimental value
(based on the square geometry) would be in error by
= 60kcal/mole. Whether the same is true for Liy and
Na, is not known, of course. It should be pointed out
that the DIM results for linear H, are in good agree-
ment with the ab initio calculations.

In figs. 3 and 4, the lowest DIM energy surtaces for
a number of special geometries for Nag and Nag are
shown. It can be seen that for Nag, the DIM method
predicts that the square pyramidal and bipyramidal
geometries are quite close in energy over the distances
considered. For Nag, the eclipsced equilateral triangles
are lower in energy by ~0.1 eV over the octahedral
structure, and is the lowest energy structure.

In table 4, we list the total binding energies and
atomization energy (neglecting zero point energy) for
the most stable structures for the cluster sizes con-
sidered. Two trends are indicated: (a) the atomization
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Fig. 3. Potential curves for special regular geometries of Nas:
full linc: regular pentagon; dashed line: square pyramid; dot-
dashed line: trigonal bipyramid. The variable r is the bond

distance between nearest neighbor atoms in each case.
=31~
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Fig. 4. Potential curves for special regular gcometries of Nag:
full line: regular actahedron; dashed line: eclipsed equilateral
triangles; dot-dashed line: staggered equilateral trianges. The
variable, r is the side length for the octahedron, and is the dis-
tance between the midpoints of the triangles in other cases.

Table 4
Toual binding encrgies and atomization energy for most stable
clusters (in eV)

n Eg a) Ep b)
2 0.70 0.35
3 0.96 0.32
4 1.98 0.50
5 2.33 0.46
6 3.54 0.59

a) EB = 1Emost stable — #Eatom!-
b) Ep =Eg/n.

energy is increasing with size, and (b) there is oscilla-
tion of atomization energy with n, the even numbered
clusters being more stable. The value of the standard
enthalpy of atomization (at 298 K) of Na has been
inferred from pVT measurements [18] to be 41.5
Kcal/mole. Our value for the energy from the bottom
of the potential surface of Na, to free atoms is 45.5
kcal/mole. We have not computed the zero point en-
ergy, but estimate it to between 1 and 2 kcal/mole,
thus bringing our value of AEgy to ~44 kcal/mole,

in reasonably good agreement with the value of Ewing
et al.

5. Conciusions

The diatomics in molecules method, which was
used in this article, has a number of drawbacks as
well as a number of good points. It has been shown to
give inaccurate numerical results for square Hy (too
tnuch binding); however, the qualitative behavior of
the surface near the square configuration is given cor-
rectly by DIM. In addition, the quantitative behavior
of the surface for linear Hy is given correctly by DIM.
These facts, in addition to the work of Ellison and
coworkers [5, 14], have led us to believe that this
method is capable of surprising accuracy. The method
is very economical in computer time and storage, and
thus is capable of mapping out large portions of the
potential surface inexpensively.

The numerical results for the sodium clusters indi-
cate that thzse potential surfaces are extremely com-
plicated with many minima and saddle points. This
means that the vibrational structures of the molecules
may also be complicated, and that the molecules may
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exist in a few geometric forms at low temperatures.
We intend to study these problems as well as the ioni-
zation potentials in a future publication.

The most important result of these calculations is
that the closest packed geometires are not necessarily
the lowest energy structures for these clusters. If the
interaction energy could be taken as a sum of two
atom terms whi<h are spherically symmetric (e.g.,
Lennard-Jones potentials), then closest packed
geometries ought to be most stable. The introduction
of the spin symmetries in the manner outlined above
has led to stabilization for other than most closely
pakced geometries. In addition, there are many Jahn—
Teller splittings occurring on the potential surface
which also give rise to lower symmetry solutions.
Whether this result is general for larger clusters is not
yet known (however, the icosahedral symmetry pre-
dicted [9] for 13 atom clusters would not follow
this rule).

Appendix

(a) The matrix K() is a symmetric five by five ar-
ray with matrix elements given by

(5)— e ~ 1 - - -
Ky _—Aab_l\cd+7(1\ac+’\ad+1\ae
+Kbc+Kbd+Kbc+Kce+Kde)
(5) _ ¢ - (27 , -
K?.'.’ - Aab+]\cd t E(Aae +I\he+'\ce
+ Ky —Kb-——K - K —Kad)
(5) - - , .,

Aab —Acd+ %(Abc + ’\ T I\
+Kbd+[\a.d+ch_Kbe_Rae)
) . S .
K3 —A +%(Aac+,\ad+f‘ae
+Kbc tKye t Kyg = Ko = Kg.)

K =K, t Koy

K =4 \/_(1\3c +Kpg -

K(5)=§\/§(Kae—1\’ )
(5)_ -

K 3 \/—(I\ce - de)

(5)_
Kis =0

Kyg — Kye)

K = 3K 4 ~ Kpe)

K(S) 2(Khe Kae)

KE) = (12 (K, + Kipe — Ko — Kg)

K = 4(Kpq + Ky — Ko = Kog)

K = (IV2) (K go— Koot Koo = Kpg = Kag + Kie)
KD = (VD) (Ko~ Ko + Ky~ Koo = Kpa + Kie) -

(b) The matrix K®) is a symmetric five by five
array with
KO = KE) — K+ 5K+ K+ K g+ K gp)

6) = 1(5) _ & - ek E otk
K3y = Ky "cf“’-‘("ar”‘bf*"cf”‘df)

Ko KD + Ko + 3K+ K gp = Ky Kop)
KE) = K+ Kop + 2K 5 + Kyp = K= K yp)
(@ K,

k(Y = K

K= K + 13 Ky - Ky

K(6) = K(154) +13 Ky — Kop)

K® =0

KE) = k) + (K — Kyp)

R = K+ (K- Ky

KR = KD+ (IVD) (Ko + Kyp — K g — Ky

(6) = (5)
Kyg = K3

KO = KD+ (1V2) Ky - K p)
K = KD+ (VD) (K - Ky

References

[1} Science 185 (1974) 772.

{2] R. Leckenby, E. Robbins and P. Willis, Advan. Phys.
16 (1967} 739.

{3} R. Baetzold, J. Chem. Phys. 55 (1971) 4355; J. Chem.
Phys. 55 (1971) 4363; Inorg. Chem. (to be published).

{4] A.L. Companion, J. Chem. Phys. 50 (1969) 1165.



182 A. Gelb et al.[The electronic structure of small clusters of sodium

i5] F.O. Ellison, J. Am. Chem. Soc. 85 (1963) 3540;
F.O. Ellison, N.T. Huff and J.C. Patel, J. Am. Chem.
Soc. 85 (1963) 3544.

[6] a. B.T. Pickup, Proc. Roy. Soc. A333 (1973) 69.

{6] b. J.C. Whitehead and R. Grice, Mol. Phys. 26 (1973)
267.

[6] c. R. Janoshek, J. Mol. Struct. 6 (1970) 283;

V. von Niessen, Theor. Chim. Acta 31 (1973) 111.

[7] 1.J. Burton, J. Chem. Phys. 52 (1970) 345.

{8} M. Hoare and P. Pal, Advan. Phys. 19 (1972) 161.

[9] J.G. Fripiat, K.T. Chow, M. Boudart, J.B. Diamond and
K.H. Johnson, The Structure and Bonding of Lithium
Clusters, to be published in J.C.S. (Faraday).

[10] a. J.K. Cashion and D. Hershbach, J. Chem. Phys. 40
(1964) 2358;
M. Polanyi, Atomic reactions (Williams & Northgate Lid.,
London, 1932);
S. Sato, 1. Chem. Phys. 23 (1955) 2465;
S. Glasstone, K. Laidler and H. Eyring, The theory of
rate processes (McGraw—Hill, N.Y., 1941),

[10} b. H.S. Taylor, H. Eyring and A. Sherman, J. Chem.
Phys. 1 (1933) 68.

[11] E. Steiner, P. Certian and P. Kuntz, J. Chem. Phys. 59
(1973) 47.

[12] W. Demtroder, M. McClintock and R.N. Zare, J. Chem.
Phys. 51 (1969) 5495.

[13] a D. Pritchard, G. Carter, F.¥. Chu and D. Kleppner,
Phys. Rev. A2 (1970) 1922;
D. Pritchard and [F.Y. Chu, Phys. Rev. A2 (1970) 1932.

[13] b. A. Dalgarno and M.R.H. Rudge, Proc. Roy. Soc.
A286 (1965) 519.

[13] c. H.O. Knox and M.R.H. Rudge, Proc. Roy. Soc. A286
(1965) 519.

{14] R. Abrams, 1. Patel and IF.Q. Elison, J. Chem. Phys. 49
(1968) 450.

[15] H. Conroy and G. Malli, J. Chem. Phys. 50 (1969)
5049.

[16] M. Rubinstein and 1. Shavitt, J. Chem. Phys. 51 (1969)
2014,

[17} D. Silver and R.M. Stevens, J. Chem. Phys. 59 (1973)
3378.

[ 18] C. Ewing, J. Stone, J. Spaan and R. Miller, J. Phys.
Chem. 71 (1967) 473.



