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The electronic struct~rcs of small clusters of sodium atoms xc calculated using the ssmt-cmptrtcal dlatomtcs-in- 
molecules method. 

1. Introduction 

Small clusters of metal atoms are of current inter- 
est because of their catalytic properties [I]; however, 
very little is known about the physical or chemical 
properties of such clusters, or indeed of clusters of 
even the simplest atoms. This paper is a theoretical 
study of the electronic properties of sodium atom 
clusters, for which some experimental data is available 
on the effects of size and number of atoms on physi- 
cal properties. The most extensive experimental 
work on the effect of cluster size on a physical prop- 
erty is that of Leckenby. Robbins et al. 12) who 
studied the ionization potential of sodium clusters, 
Na, from II = 3 IO II = 12. This work indicates that 
the ionization potential of these clusters can be ap- 
prosimated by that of a small spherical droplet of 

brrlk metal of the appropriate size. The natural ques- 
tion which arises is whether any other properties of 
interest can be so treated. 

There have been a number of approximate quan- 
tum mechanical calculations which give predictions 

for the ground state energy and geometry of clusters. 
Baetzold [3] has used estended Hiickel and CNDO 
methods for Ag,, and Pd,, while Companion [4], 
Ellison [S] and Pickup [6a] have used the diatomics 
in molecules method for Li,,. Both of these methods 
give appro.ximate potential surfaces from which 

atomization eneigies and other properties can be com- 
puted. Witehcad and Grice [6b] have used the DIM 

method for mixed alkali triatomics. while Janoschek 
[6c] and von Niessen [6c] have used LCAO h10 
methods for Lij. In addition, Burton [7] and lloare 
and Pal [S] have used a simple Lennarddones potcn- 
tial to compute total encrgirs. Finally, Johnson et al. 

[91 h ave used the SCF-Xa method for Li,, for rc- 
stricted geometries. The latter are likely to bc the most 
accurate calculations of those mentioned. 

In the present paper, we use the diatomics-in-mole- 
cules approach (DIM) which for the systems considcrcd 
herein can be considered an’extension of the London, 
Eyring, Polanyi, Sato (LEPS) valence bond calcula- 
tions for three atom interactions [ IOa]. Taylor ct al. 
[lob] have also applied this method to sodium clusters 
in which the atoms sit on sites in a cubic lattice, in an 

attempt to study microcrystal growth. This procedure 
has given good results for many systems, but is also 
capable of large error. We will dlscurs this below. 

The paper is set out in the following manner: in 
section 2, general formulae for the Dlhl energies for 
small cluster of 4, 5 and 6 atoms are given and the 
formulae for special geomctires are discussed in detail. 
In section 3, the potential curves for h’a, arc dis- 
cussed and the results of the Dlhl calculstions for Na,,, 
II = 3-6 are presented in section 4. These results are 
discussed in section 5. 

l Present address: Dept. of Engineering & Applied Science, 
Yale University, New Haven, Conn. 06520. USA. 
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2. DIM formulae 

In the DIM method with neglect of interatomic 
overl;lp* the input consists of the diatomic potential 
curves [ 121. For the present discussion of the alkalis 
(and hydrogen) let us assume both the lowest singlet 
curve l/to)(R), and the lowest triplet curve, LI(‘)(R), 
for n dintomic with its one valence electron in art 

s-state are known, and are all the information required 
to understand clusters. We define 

J = f [(/‘O’(R) + c+‘)(R)], (2.1) 

n’=5[cIl’O’(R)-4.+‘)(R)]. (2.2) 

Notice that K is less than zero for the values of R con- 
sidered herei. and that J is visually negative for the 
important region near the singlet mil:irnum. For Hz, 
both of these curves are known exactly and the triplet 
curve is strongly repulsive near the singlet minimum. 
For the alkalis, these curves are known less well. but 
it is certain that the triplet curve is less strongly repul- 
sive than in Hz so that qualitative differences occur 
in the two cases. 

Given the Coulomb nnd eschnnge integrals, J and 

A’, we may write down the appropriate formulae for 
the small clusters. 

3.1. 77rree and jti~rr atom Asters 

For three atom clusters, the formula for the iow- 
est S = l/Z states is ihe LEPS form. The drstances 
between atoms a, b. and c are written R,,, R,,, Rbc 
as usual. The collection of these distances will be de- 
signated by R. Then 

J,, = .Wab), I\‘ab = K(R,,). (?..I) 

The energy of the S = 3/Z state is given by 

3E(3’2’(R) = Jab+Jac+Jbc- Rab- h’,, - rib, 

= c&) + @+ Q. (2.5) 

m This causes an insigndicxtt dtfference in the calculationS: in 
addition, Stemer et al. [ I I ] have shown that It is r!ecesQT’ 
to neglect overlap in the DIM method. 

For the four atom clusters, we have singlet states 

‘E(‘)(R) = gjJij)+ [(Kac+Kbd-K,b-Kd)2 (2.6) * 

+ (Kac+Kbd- K,, - K& (Kab+ Kcd- K,,- Kh)2]1’2, 

a quintet state 

‘E”‘(R) = c(J,- 
i>j 

(2.7) 

and three triplet states whose energies are given as the 
eigenvalues of the following 3 X 3 matrix: 

‘E(‘)(R) = I ,9ii 
( ) 

i 

h&+Kbd K, -h-:3b h-,,- K,, 

- K,&Cab Kad+Kbc I\‘,,--K,, 

I 

(2.8) 

Rbc--Kad K,,-Ka, Kab+Kd 

For special, symmetric geometries we can simplify 
these formulae as shown in table 1. 

We see that the 4 atom tetrahedral structure has a 
degenerate singlet state which means that it is unstable 
with respect to a distortion (Jahn-Teiler effect) of 
e-symmetry. The lowest state of the four atom struc- 
ture will be either the square or the dispenoidal (Dzh) 
geometry depending on the details of the potential 
curve. 

17.2. Five afonl clmters 

For the five atom clusters there are five DIM states 
of S = l/3, four states of S = 311, and one state of S = 

S/7_. For simplicity we will discuss only the S = l/3_ 

states. The energies of these are given as the eigen- 
values of the following 5 X 5 matrix. 

5 

IEf =,sJij 1 - KC’), (2.9) 

where the form for K is given in the appendix. For 
special, symmetric geometries the eigenvahres of K 
can be found easily and are listed in table 2. 

-7.3. Sir atom clusters 

For these molecules, there are five DIM states of 
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Table 1 

Geometry (remarks) state and cncrgy 

3 atom isoceles tri3ngel (apex = C) 3EV’I) = &)+ ;u$’ + f f_P 
+ 3c 

4 atom reg. tetrahedron (all bonds equal) 

4 atom distorted tctrahcdron (CJ,) (3pc.y = d) 

4 atom square (DJh). numbcrcd clockwise 

tR,b is side and R 3c 1s diagonal of square) 

4 .itom disphrnoidal (Dzd). “crossed” diJtomics 

tR ab =Rcd:Rac=R3d=Rbc=Rbd) 

Table 7- 
Five atom clustcrs;S = I/?; cigcnvalues oi K ior symmetric configurations 

____- 

Reg. pentagon 

xtquarc pyramid (e 13 apex. 
square is numbered clockwise) 

Xab k:=Z) -- 

2Kac 

?A’,, + 2Kab - x,, 

x,, - ZKab + ‘)Kac 

bipyramid (D,h: d and e apices) 3Kab + Kde - Ka, - Kad 

(Kae + K,d ) t (I/,/3 [(bra, . Kdc)‘l + (K_& - h’,J + Wad - Kdc?] 2 @a) 

crossed (Dzd) 

R nb =Rcd 

2K,, (&?=a 
2Kab 

ZKa, + 2K,, - ZKab 

‘)K,, - ZRa, + 2Kab 

(R,, = Rde = Rbe = R,,) 
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Table 3 
Six atom clustr’rz 

reg. hexagon 

S = 0, nine of S = I, five ofS = 2 and one of S = 3, 
The energies of the S = @ states arc given as the eigen- 
values of the following 5 X 5 matris: 

6 

E= c Jii l-K’@, 
i>i 

where Kt6) is given in the appendix. The energies for 
symmetric geometries are given in table 3. 

3. Potential curve of NaZ 

The two curves used in this study are the lowest 
smgler and lowest triplet curves of Na,. For the struc- 
tures we are concerned with, we need the potentials 
most accurately from R zz 3.1 X to R = 5 .A. The 
lower portion of the singlet curve has been derer- 
mined accurately by Znre and co-workers [ 121 using 
laser fluorescent techniques and RKR inversion. 

The lowest triplet state curve is much more dif- 
ficult to determine; however, Pritchard and co-workers 
[ 131 have determined some of the parameters of the 

triplet curves for aimed alkali alkali interactions (e.g., 
h’aK, CsNa, erc) in a series or beautiful spin flip es- 
periments. From these curves, which are not too dif- 
ferent from one another, we have synthesized a Na2 
triplet curve of the following simple type: 

tit)(R) = (!!EjS - ‘!Sj!j ev, (r in A). (3. I) 

The results reported he:ein are not sensitive to chang- 
ing the triplet parameters within the bounds of the 

r(A) 

Fig. 1 Single1 (‘E) and triplet (3E) potenl~al curves for Naz. 

mixed curves given by Pritchard. That is, changing the 

well depth and position of the minimum of the triplet 
between the smallest the largest values given for the 
mixed alkalis does not alter the results significantly. 
We note that the triplet curve is much lzss steeply re- 
pulsive near the minimum of the singlet curve than 
in the case for H9 (where, of course, the curves are 
known with more accuracy). We also note that we 
are only interested in the triplet curve in the range of 
internuclear separation from -2.75 X to -4.5 X, so 
we have not included in til)(R) the asymptotic form 
oi Dalgarno and Rudge [ I3b] and Knos and Rudge 

[ 13~1. As Pritchard points out [ 1331, these forms do 
not fit all the data known at that time. We emphasize 
that the important point for our discussion is that 
the triplet curve is not very repulsive in the region of 
interest. 

Finally, we note that the RKR singlet potential is 
different from a 6-S or Morse curve close to the mini- 
mum (the FLKR being narrower). Using a 6-8 or 
hlorse curve changes the final results somewhat from 
those reported here. 
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Fg. 2. Potential curves for special gcometires of Nq; full 
lint: square; dashed line: tetrahedron; dotdashcd line: per- 
pendicular crossed (disphenoidal) with R,b ‘Red = 3.14. 
The variable, r. is the side length for the square and temhed- 

ron and is the distance between midpoints for the cross. 

4. Numerical results 

In fig. 2, the lowest energy surface is given for a 
number of special geometries of four atom clusters. 
We note that the lowest energy form is the crossed 
(Did) geometry, which can be viewed as a distorted 
tetrahedron. Since the tetrahedral structure will have 

a two fold degeneracy, the Jahn-Teller theorem re- 
quires that the distorted structure be lower in energy. 
In Li, and H,, the diatomics in molecules theory 
gives the square geometry as lowest in energy, in con- 
trast with the present results for NQ. However, the 
two structures are extremely close in energy. In the 
present case, the square configuration is at a mini- 

mum of potential energy with respect to all motions, 
as is the crossed configuration of lowest energy. This 
means there are at least two minima in the four atom 
surface, a complication which may have an effect 
on the properties of these systems as measured from 
nozzle beam sources. 

We also note that in H,. the DIM method gives a 
total energy for the square configuration which is 
lower by - 60 kcaJ/mole than the best ab-initio caJ- 
culation. III fact, thcr DIM method predicts that the 
square configuration (at the saddle point of the 
HZ-HZ interaction) has lowest total energy [ 14) 
-2.193 hartree at r= 2.0 bohr while Conroy and 
hlahi [ 151 predict -2.157, hartree at 2.2 bohr. Rubin- 
stein and Shavitt [ 161 give -2.075 hartree at R = 2.47 
bohr, and Silver and Stevens [ 171 give -2.099 har- 
tree at r = 2.4 bohr. Conroy and hlahi, and Silver and 
Stevens claim that their results rule out the square 

geometry for H, and thus tie Dlhl results which give 
an activation energy near the experimental value 
(based on the square geometry) would be in error by 
= 60kcal/mole. Whether the same is true for Li, and 
N a4 is not known, of course. It should be pointed out 

that the Dlhl results for linear H, are in good agrce- 
ment with the ab initio calculations. 

In figs. 3 and 4, the lowest DIM enera surfaces for 
a number of special geometries for Na, and Na, are 

shown. It can be seen that for I$, the DIM method 
predicts that the square pyramidal and bipyramidal 
geometries are quite close in energy over the distances 
considered. For Nab, the eclipsed equilateral triangles 
are lower in energy by -0.1 eV over the octahedrai 
structure, and is the lowest energy structure. 

The results for Lid [4] are not too dissimilar from In table 4, we list the total binding energies and 

these for Na, in the DIM method. However, in Li,, atomization energy (neglecting zero point energy) for 

the square configuration is lowest. In the SCF-X, re- the most stable structures for the cluster sizes con- 

sults of Johnson for Li,, it is found that the spin polar- sidered. Two trends are indicated: (a) the atomization 

ized technique predicts a square to be lowest and the 
refruhedruf to be almost as low in energy. Since the 
spin polarized wavefunctions will lower the degcner- 

xy (in the tetrahedral structure) from the tz elcc- 
tronic configuration, a portion of the lowering which 
would be ascribed to Jahn-Teller distortion is :akcn 
into account already. The distortion of the tctmhed- 
ron has not been investigated as yet by Johnson et al. 
The SCF-X, results also predict that the minimum 
energy square in Li, will have a near neighbor dis- 
tancc of 3.5 A whereas the DIM calculation predicts 
-2.9 A. The value in the SCF-X, is singular in that 
it is the largest nearest neighbor distance found by 

Johnson et al. for the many clusters (up to II = 13) 
they examined; the value 2.9 A is much closer to the 
values for the other clusters ca!culated by Johnson 
et al. 
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Fig. 3. Potential curves for special rcgula~ gcomrtrics of Nas: 
full lint: regular pentagon; dashed line: square pyramid; dot- 
dashed lint: trigon bipyrclmid. The variable r is the bond 
diskmce betwcrn ncxcst neighbor atoms in each case. 

-3.1 I- 

-3.2 

- 3.3 

EM’) 

-34 

-3.5 

-3.6 

2 
I 

30 3.5 4.0 

rtA1 

Fig. J. Potential curves for special regular gcomctries of Nab: 
fnU hne: regular octahedron; dashed line: eclipsed equdateral 

triangles; dot-dashed line: staggered equilateral triangcs. The 

variable. r is the side length for the octahedron. and is the dis- 

txtce between the midpoints of the triangles in other cases. may also be complicated, and that the molecules may 

Table 4 
Total binding cncrgies and atomization energy for most stable 

clurlers (in cV) 

!I Eg a) EA b) 

2 0.10 0.35 
3 0.96 0.32 
4 1.98 0.50 
5 2.33 0.46 
6 3.54 0.59 

‘) EB = IEmost stable - “Eatomt. 

b, EA =E&n. 

energy is increasing with size, and (b) there is oscilla- 
tion of atomization energy with II, the even numbered 
clusters being more stable. The value of the standard 
enthalpy of atomization (at 298 K) of Naa has been 
inferred from pITmeasurements [ 181 to be 41.5 
kcal/mole. Our value for the energy from the bottom 
of the potential surface of Nad to free atoms is 45.5 
kcal/mole. We have not computed the zero point en- 
ergy, but estimate it to between 1 and 2 kcal/mole, 
thus bringing our value of aEoK to -44 kcal/moIe, 
in reasonably good agreement with the value of Ewing 

et 21. 

5. Conclusions 

The diatomics in molecules method, which was 
used in this article, has a number of drawbacks as 
well as a number of good points. It has been shown to 
give inaccurate numerical results for square l-1, (too 
rn~A binding); however, the qualitative behavior of 
the surface near the square configuration is given cor- 
rectly by Dlhl. In addition, the quantitative behavior 
of the surface for linear Ha is given correctly by DIM. 
These facts, in addition to the work of Ellison and 
coworkers [S, 141, have led us to believe that this 
method is capable of surprising accuracy. The method 
is very economical in computer time and storage, and 
thus is capable of mapping out large portions of the 
potential surface inexpensively. 

The numerical results for the sodium clusters indi- 
cate that thzse potential surfaces are extremely com- 
plicated with many minima and saddle points. This 

means that the vibrational structures of the molecules 
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exist in afew geometric forms at low temperatures. 
We intend to study these problems as well as the ioni- 
zation potentials in a future publication. 

The most important result oi these calculations is 

that the closest packed geometires are not necessarily 
the lowest energy structures for these clusters. If the 
interaction energy could be taken as a sum of two 
atom terms which are spherically symmetric (e.g., 
Lennard-Jones potentials), then closest packed 
geometries ought to be most stable. The introduction 
of the spin symmetries in the manner outlined above 
has led to stabilization for other than most closely 
pakced geometries. In addition, there are many Jahn- 
Teller splittings occurring on the potential surface 
which also give rise to lower symmetry solutions. 
Whether this result is general for larger clusters is not 
yet known (however, the icosahedral symmetry pre- 
dicted [9] for 13 atom clusters would not follow 
this rulej. 

Appendix 

(a) The matrh Kc51 is a symmetric five by five ar- 
ray with matrix elements given by 

u;:) = -Kab-Kcd-+ i(K,,+&+ hrae 

+ Kt,= + I\‘,, + K,, + h’,,+ ICde) 

K;T=E;Pb+h’cd + f(E: ae +Klhe+K ce 

+ K,, - f;,, - h’;3c - &,d -Ktid) 

K\53’=I\’ .& - &d + f W,, + j\rac + q, 

+I&, + hrti+Kdc- Kibe-Kae) 

K$ = f$d - lY,b •t $(K x + K,, + F:le 

+ li’b, f lib, + Kbd - h’_ - Kdr) 

K;;) = K,, k Kcd 

K $j = 4 (A’d, - i\‘a,) 

K$T = i(Kb, - li’ 
ae 

) 

K:“: = (I/&) (K,, + I& - f;,, - h’de) 

$7 = ;(Kbd + K,, - Kbc - Ka,) 

K ::’ = (1 /\/z) (Kde- K,, + K,, - Kbd - ‘cad f K,,J 

K:y=(I/a)(K,,-K,+Kbd--Kac-Kad+Kk). 

(b) The matrix K(6) is a symmetric five by five 

array with 

K;6/ = K;51’ - Kc,. + i(Kar + h’bf + Kcf f h’d,) 

KY! = K;:’ - Kcf + f(Kti +h-bf +Kcf f Kdf) 

K$y: K’353’ + K',, + f(K:,, + K,, - K, - K,& 

K$ = Kg t K,, + i(K\', + K _ bf - ‘cf - iidf) 

K$) = K;y + K,, 

K\6,& K(5) 
I2 

K\y = K\!,) + &/?S (Arbr - Kti) 

K(f!j = K\y f 44 (K,, - K,) 

K(6)= 0 
16 

K$j = K!$i + f (Kcr - K,,) 

h$65’ = K\y + f (Kd - Kbf) 

K$ = K’z + (I/&) (Kcf + Kc’,, - Kd - Kbf) 

&$ = K:‘: 
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