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The problem of electronic energy transport in solids is discussed. A model system of two molecules 
interacting with a lattice of phonons is considered. The spectral line shapes and energy transport are 
treated in various limiting cases, and the connection between these two phenomena is discussed. 

I. INTRODUCTION 

The problem of electronic energy transfer among 
crystal impurities has been approached theoretically 
by many authors from several directions. It has been 
investigated from the point of view of rate equations, 1 

hopping models,2 diffusion equations, 3 and microscop
ically by considering the interaction of the migrating 
excitation with the lattice. The most useful and popular 
model in the latter category is that of Forster4 and Dex
terS which can be derived either from quantum mechani
ca16

-
9 or classical10 principles, because it treats the 

lattice interactions simply as a means to determine the 
density of states. In a variety of cases this model has 
been shown to give good agreement with experiment. 11 

In a previous papers we examined a plaus,ible micro
scopic model using electron-phonon coupling. A simi
lar model has also been investigated by other workers. 9 

The model reduces to the Forster-Dexter results in lim
iting cases but may also treat situations for which the 
Forster-Dexter assumptions are not valid. This micro
scopic model also shows the competition between coher
ent and incoherent transfer processes and in that respect 
resembles the models of exciton migration in pure crys
tals. 

There is another aspect of this model which is of 
current interest: The connection between energy trans
fer and absorption and fluorescence spectra in the same 
system. Some theories have been developed, 12 using 
electron-phonon interactions, which predict spectral 
features of interacting impurities. Also, it has been 
postulated that there is a simple and direct relationship 
between the excitation and transfer processes in that the 
width of the spectral absorption line measures the same 
relaxation processes which appear in the energy trans
fer equations. 13,14 This is true for certain models, like 
those treated in Refs. 13-15; however more compli
cated models may lead to a more complicated relation
ship between these parameters. For example, if ap
preciable lattice relaxation occurs before transfer, then 
there may not be a simple relationship between these 
processes. 

Haken et al., 15 Gamurar, Perlin, and Tsukerblat, 16 

A vakian, Ern, Merrifield, and Suna, 13 Kenkre and Knox,9 

and Grover and Silbey17 have addressed the problem of 

exciton migration in the presence of lattice relaxation 
in different ways. The latter authors have argued that 
in order to treat exciton transport it is sufficient to con
sider the density matrix in the "clothed" exciton repre
sentation (where the "clothing" process corresponds to 
the relaxation of the initially formed exciton by phonon 
emission). While it is also possible to treat exciton 
transport in the "bare" exciton representation, it is 
necessary to treat the spectral line shape in the "bare" 
representation (as was done by Grover and Silbey). If 
one assumes that the phonon part of the spectral line is 
governed by a correlation function which is a single ex
ponential, exp(-Yot), then it can be shown that the equa
tions for the bare exciton density matrix in the Grover
Silbey model are identical to those of Haken et al. 15 or 
Avakian et al. 13 who do not distinguish the two repre
sentations. Thus the claim made by Ern et al. 14 that 
the Grover-Silbey17 model cannot give the correct line
width is based on the incorrect idea that Grover and 
Silbey were computing the bare exciton transport prop
erties. The microscopic model used by Grover and Sil
bey as extended herein can be used to compute both the 
spectral line shape and the transport properties of ex
citons. 

There are many mechanisms for the clothing process 
of an electronically excited molecule in a solid. This 
process can be visualized as the decay of the local lat
tice distortion produced upon vertical excitation of the 
impurity molecule. In a complete microscopic theory 
lattice relaxation and energy transfer can be treated on 
an equal footing and limiting cases can be examined. 

In the present paper we extend the results of Rackov
sky and Silbeys by including a site-diagonal excitation
phonon coupling (1. e., local scattering). This serves as 
a mechanism for vibrational and lattice relaxation of the 
excited molecule and host. We then derive the equations 
for the spectral line shape for a variety of model elec
tron-phonon coupling schemes. We also derive the 
equations of motion for the density matrix averaged over 
the phonon states. 

The paper is set out as follows: in Sec. II, the Hamil
tonian and the system are defined; in Sec. III, the gener
al formulas for spectral line shapes are given and ap
plied to a single impurity in Sec. IV; in Sec. V, the 
formulas for energy transfer are given and applied to 
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2318 I. I. Abram and R. Silbey: Impurities in crystals 

various models in Sec. VI. 

II. THE SYSTEM 

The system we consider consists of two impurity 
molecules embedded in a crystal lattice. Each molecule 
is viewed as having only two states: a ground state and 
a relatively long-lived excited state (such as a lowest 
singlet or triplet). Within the formalism developed in 
this paper, the vibrational states of the two impurities 
can be treated on the same footing as either the im
purity electronic states or the lattice phonons. For this 
reason we shall not deal with them explicitly; however, 
for concreteness, we may assume that the electronic 
state referred to in what follows is the lowest vibronic 
state of the impurity molecule. 

The two impurity excited states are coupled to each 
other via dipole-dipole, exchange, or other mechanism. 
This coupling is of course modified by the properties of 
the lattice. 18 Idealizing the problem, however, we as
sume that there is no interaction between the impurity 
and the crystal electronic states; in this respect the lat
tice is "inert." At the same time each impurity inter
acts with the acoustic and optical phonons of the lattice 
(electron-phonon scattering). The strength of this inter
action differs between the ground and excited states of 
each molecule. Since we are concerned only with the 
excitation and de-excitation processes of the two mole
cules, we can simply consider the difference between 
the excited and ground state interactions. In other 
words, we limit ourselves to the excitation-phonon in
terac tions. 

The Hamiltonian of a single impurity then is 
- - + - ... H=l:.c c+Zc c+Hphon , (2.1) 

where c+(c) are the creation (annihilation) operators for 
the vertical (or bare) excitation. t.. is the excited state 
energy, 

is the harmonic phonon Hamiltonian in which b;~(bq~) 
creates (annihilates) a phonon of wave vector q, branch 
A, and energy Wq~. The operator Z describes the cou
pling of the localized impurity excited state to the lattice 
vibrations. Part of this eXCitation-phonon interaction 
can be easily diagonalized by use of a unitary transforma
tion. There may however be a residual part of Z, 
representing the effect of the phonon bath on the impurity 
energy levels (such as the decay of an intramolecular 
vibration), which cannot be diagonalized exactly in a 
simple manner. This part will be treated by perturba
tion theory. 

Thus, for Z = Zd + Zr as described above, we can diag
onalize Zd by the transformation 

(2.2) 

where 

We also include in Zr terms which change the local ener
gy of the site which may be due to complicated factors 

(strain, imperfections, etc.) whose total effect is never
theless small and gives rise to a broadening of the spec
tralline of the noninteracting impurities. It should be 
pointed out that if a method for diagonalizing the part of 
H containing Zr could be found, then of course we could 
proceed with no "local" scattering present in the Hamil
tonian [see Eq. (2.2)]. We assume, however, that Zr 
is small and thus treating this as a perturbation is an 
excellent approximation. 

The operator a+(a) represents the creation (annihila
tion) operator for a "clothed" eXCitation, that is, an ex
citation in which the phonon terms are treated explicit
ly and separately from the electronic excitation. Thus, 
8+(8), the transformation operator, can be thought of as 
representing the creation (annihilation) of a phonon cloud 
which, together with the "purely electronic" excitation 
(a+) comprise the full "vertical" excitation (c+). For the 
two-impurity system the Hamiltonian is 

H = Hmol + Hphon + Hmp 

= t..(CiC1 - cicz) + JB(cicz + c2'c1 ) + L Wq~ b~~ bq~ 
q~ 

(2.3) 

The indices refer to impurity sites 1 and 2, JB is the 
intermolecular interaction, and Zj and <I> are phonon 
operators describing local and nonlocal scattering pro
cesses, respectively. This Hamiltonian can also be 
treated by a similar unitary transformation to give 

H = 1:.' (aia1 - aiaz)+ JB (8i 8zai az + 8281 a2'a1) 

where 81 and 8z are the operators which result when one 
diagonalizes "1d and ZZd' respectively. 

In the clothed exciton representation the terms pro
portional to JB give "nonlocal" excitation-phonon scat
tering. This describes the scattering that results from 
phonons carried along with the relaxed excitation during 
the transfer process, and leads to the Forster-Dexter 
results in the appropriate limit. 7

-
9 The terms in <1>' 

correspond to scattering of the vertical excitation (ci) 
and is due to residual heat bath interactions during the 
transfer process. 

It is convenient to write the Hamiltonian as 

H=Ho+ V, (2.5a) 

where Ho corresponds to the canonical average of the 
H for the given temperature and V takes into account 
the thermal fluctuations. 

Ho = l:.(aia1 - aliaz) + Jc(aiaz + alia1) + Hphon , 

I:. = 1:.' + t (Zf - Z~), 

Jc = JB (8i8z) + (<1>') , 

Zj = Z: - (Zl) , 

<I> = J B 8i 8z + <1>' - Jc • 

(2.5b) 

(2.5c) 

The energy zero in the above equation has been shifted 
to t (Zl + Zz) for convenience. We will now compute the 
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line shapes and energy transfer parameters to second 
order in V. 

III. SPECTRAL LINE SHAPES 

The spectral line shape for a system interacting with 
light is given by the imaginary part of the Fourier-trans
formed retarded Green function. In our system in which 
the excited electronic state is not thermally populated, 
the line shape can be reduced to: 

(3.1) 

where (J.LJ.L(t) is the transition dipole-dipole correlation 
function and the angular brackets denote the average 
taken over the canonical phonon ensemble of Our crys
tal. For a single impurity with one excited state 

(3.2) 

where J.Ll is the dipole matrix element for the transition 
between the ground and the excited state. 

The dipole-dipole correlation function then is 

(IJ. .IJ.(t) = Il~(clci(t» = lli(a181ai(t) 8i(t» 

~ Il~(alai(t» (818i(t). (3.3) 

The last equality in (3.3) holds within the Born-Oppen
heimer approximation. 

where the decoupling assumption of Eq. (3.3) is again 
invoked and 9 Ii and ~Ij are defined by analogy to Eqs. 
(3.4b), (3.4c), and 1J.1' /.1.2 is the scalar product of the 
two transition dipole vectors. 

The problem is to determine glj and ~(J in the pres
ence of the intermOlecular interaction terms. We will 
assume that .'.D1j(w), which is effectively the phonon spec
trum of the crystal-impurity system, is not affected by 
the presence of these interaction terms. We will carry 
out the calculations of Slj(w) to second order in J, the 
intermolecular interaction. 

In Appendix A we calculate the equations of motion of 

g Ij(t) =(alaj(t» 

and obtain 

~ ll(t) = it:. gu(t) + iJe S12(t) 

-lot dr{A(r)g u(t-r)+B(r)£h2(t-r)}, 

(3.7a) 
I 

The absorption spectrum then is given by 

I(w) = i:oo 

dw' Sll(w') ~ll(W - w'), 

where 

gu(w) = foo dte-lwt(a1ai(t» 

~l1(W) = [00 dte-IWf<8t8i(t» 

(3.4a) 

(3.4b) 

(3.4c) 

are the Fourier transforms of the clothed exciton cor
relation function and the phonon-cloud correlation func
tion respectively. Thus, within the Born-Oppenheimer 
approximation, the line shape can be considered as the 
combination of two parts; an "electronic transition [given 
by g(w)], which can be described by the correlation func
tions of the clothed representation, and an accompany
ing multiphonon transition [given by ~(w)] which is de
scribed by the relaxation (or clothing) process of the 
vertical excitation. S (w) is obviously not entirely elec
tronic in origin, but this nomenclature will be used 
throughout. 

For the two impurity system the transition dipole 
operator is 

(3.5) 

where the indices refer to the two impurity sites. Thus, 
the absorption spectrum is 

(3.6) 

9 12(t)=-it:. 912(t)+iJe gu(t) 
t -L dr{C(r) 912(t-r)+.8(r) 9u{t-r)} 

A A (3.7b) 
with similar equations for 9 21 (t) and 9 22(t). 

To obtain SIJ(w) we simply Laplace.transform the dif
ferential equation for S (J(t) [Eq. (3.7)] and solve for the 
real part of SIJ(P) evaluated at p=iw. 

The coefficients A(t), B(t), C(t) consist of oscillatory 
terms of frequency r and decaying terms (i. e., the 
phonon correlation functions such as (<I><I>+(t» [Eq. (A5)]. 
The real part of their Laplace transforms will be func
tions peaked near w = ± r with a width like the inverse 
of the characteristic time for the decay. We will as
sume that this width is large enough so that we can re
place the functions A(w), B(w), C(w) by their values at 
w=±r=±(J~+t:.2)1/2. Also, near the spectral peaks at 
w =± r, we expect the imaginary part of these functions 
to be negligible. 

With these approximations, we find 

(3. Sa) 
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where 

A = [(.6. + i!(A - C))2 + (Jc + iB)2] 1/ 2 

and the primed coefficients are evaluated at w '" - r 
while the unprimed are evaluated at w = r. 

IV. LINE SHAPES IN A ONE·IMPURITY SYSTEM 

We consider a single impurity molecule imbedded in 
an inert lattice having the Hamiltonian of Eq. (1). An 
expression for the spectrum of such a system is given 
in Eq. (9) as consisting of an electronic and a phonon 
part. 

The electronic part of the spectrum is 

(4.1a) 

1; = r'" dt(ZZ(t)) , 
-'" 

(4.1b) 

calculated easily from Eq. (3.8) and Eq. (A 7) with 
J = O. We note that the electronic part consists of a 
Lorentzian line shape whose finite width arises from 
the residual phonon scattering processes. 

To obtain an expression for the phonon part we con
sider the simplest excitation-phonon interaction which 
is linear in the phonon operators 

Zd = L zqwibq + b:), (4.2) 
q 

where Zq is the dimensionless coupling constant of the 
qth phonon mode to the electronic transition, Wq is the 
phonon frequency, and b:(bq) are the phonon creation 
(annihilation) operators. This interaction corresponds 
to a local lattice deformation due to a change in equi
librium positions of the impurity and its neighboring 
host molecules. The problem has been treated ex
tensively by several authors. 19 We will outline here 
the main results without their mathematical derivation, 
as a point of reference for the discussion of the two
impurity spectrum. 

The linear interaction of Eq. (4.2) is diagonalized by 

(4.3) 

Therefore the cloud correlation function is 

:1) 11 (t) = exp {- N-1 L;: Z ~[(2nq + 1) + nq e-iw qt 

+(nq+ 1) eiwqt ]}, (4.4) 

where 

nq = (e8wq _1)-1, 

f3 = (kTt1
• 

(3.8b) 

(3.8c) 

This gives for the phonon part of the spectrum 

~l1(W) =e6W
/
2exp [- NL z!(nq+ 1)J L p(Nql w, T), 

• (N l,w • 
(4.5) 

where the sum is over all phonon combinations of total 
energy wand P(N/w, T) is the temperature-dependent 
relative probability for each such combination. The 
form of these factors is 

(4.6) 

where IN is the hyperbolic Bessel function of order N, 
and Nq equals the number of q phonons participating in 
the process. We note that since hyperbolic Bessel 
functions obey 

I_N(x) = I N(X) 

we have 

p(N,) - w, T) = p(Nq/ w, T) 

and 

:1)11 (- w) = e-ewj)l1(W) • 

For dispersionless (Einstein) phonons 

:D11 (t) = exp{ - r[(2n + 1) + ne-lwt + (n + 1) e1wt
]} 

(4.7) 

(4.8) 

(4.9b) 

2 
Because of the factor e-z (2n+1l the integrated intensity of 
the spectrum is normalized to unity at all temperatures. 
Thus, at high temperatures ~l(W) will consist of a broad 
band composed of densely spaced ii-function peaks for 
all the multiphonon excitations, each combination having 
relative intensity P({Nq} I w, T). At low temperatures 
:Dll(w)will be dominated by the zero-phonon peak, since 
the relative probability (intensity) of the other peaks 
will be small. That is, 

(4.10) 

for Z2 csch(f3w/2) '" O. In this model the zero-phonon line 
has no width at low T. The full spectrum (i. e., convolu
tion of phonon and electronic parts) will therefore be a 
broad band at usual temperatures with its maximum near 
the multiphonon maximum. At low temperatures, where 
Eq. (4.10) is satisfied, the spectrum will consist of an 
intense Lorentzian line of width t [see Eq. (4.1b), the 
zero-phonon line] and a less intense phonon wing. 
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In the time domain the multiphonon band gives a de
scription of the clothing process, while the zero-phonon 
line corresponds to the creation of a "relaxed" elec
tronic excitation. We can visualize the relaxation pro
cess by considering a vertical excitation as consisting 
of an electronic excitation and an accompanying local 
lattice distortion given by Eq. (4.3). Since the Hamil
tonian [Eq. (1)] treats only harmonic nondecaying pho
nons the relaxation of the distortion will be due to the 
time evolution of the phonon combinations describing it, 
and appearing in the multiphonon band of the spectra. 
That is, when the phonons become de-phased, the local 
lattice distortion disappears and the excitation appears 
relaxed by the emission of phonons. However, the re
laxation due to anharmonic and other effects can be intro
duced phenomenologically by giving the phonon corre
lation function an exponential decay. 20 Since the relaxa
tion is into the phonon continuum, the decay rate will be 
proportional to the width of the phonon band which acts 
as the continuum. For strong lattice relaxation, as is 
the case at high temperatures, the spectrum is domi
nated by the multiphonon band making the clothing pro
cess extremely fast. For weak relaxation there is a 
finite probability of creating a relaxed species during 
excitation at temperatures near 0 OK, given by the rela
tive intenSity of the zero-phonon line. 

The situation is completely analogous for the emis
sion process, assuming that lattice relaxation is fast 
compared to the excited state lifetime: The relaxed ex
cited impurity radiates to produce a "vertical" (or 
"bare") excitation and upon relaxation a "clothed" ground 
state. The emission spectrum therefore is the exact 
mirror image of the absorption. 

At low temperatures the absorption and emission 
zero-phonon lines will be exactly coincident. At higher 
temperatures the absorption and emission maxima will 
not coincide since they correspond to the multiphonon 
maxima. This gives rise to the "Stokes" shift. 

V. INTERMOLECULAR ENERGY TRANSFER 

We consider the system of two impurities embedded 
in an inert lattice with the Hamiltonian given in Eq. (3). 
In order to understand energy transfer in this system, 
we must find the probability of excitation localized at 
each site as a function of time. 

We can study this process either in the cj representa
tion (i. e., looking at vertical excitations) or in the aj 
representation (i. e., accounting only for relaxed excita
tions). Since we expect lattice relaxation to be fast on 
the time scale of energy transfer, it is more convenient 
to calculate the population of "relaxed" (or "clothed") 
excitations. This assumption is definitely correct for 
separated impurity molecules. For near pairs, how
ever, one ought to study the intertwining of the relaxa
tion and the transfer processes. 21 This is difficult to 
do mathematically (except in a kinetic scheme) and we 
therefore have no knowledge of the transfer process 
before lattice relaxation is complete. 

To study the transfer process, we assume that site 1 
was excited at time zero, and then derive the equations 

of motion for the denSity matrix elements averaged over 
the phonon ensemble in the same manner as discussed 
by Rackovsky and Silbey8 or Grover and Silbey. 17 

For the case in which radiative and nonradiative de
cay of the excitation is neglected the three independent 
density matrix elements can be expressed as: 

f(t) = (Pu (f) - P22(t» , 

n(t) = (Pdt) + P21 (f» , 

m(t) = (P12(t) - P21 (t» . 

(5.1a) 

(5.1b) 

(5.1c) 

The subscripts 1, 2 refer to the two sites (in the aj 
rep~esentation) and the angular brackets denote an aver
age over the phonon ensemble. Since all other decay 
routes are neglected, PU(t)+P22(f) =1 for all time. 

We may now find the equations of motion for the above 
matrix elements using a projection operator technique. 
Since this was done in detail in previous work,8 we will 
not repeat the derivation here. It is sufficient to note 
that the exact equations are apprOximated again by re
placing the modified propagator which appears in the 
projection operator scheme by the zeroth order propa
gator. This makes the equations tractable and is equiva
lent to calculating the matrix elements to second order 
in J, the intermolecular interaction. 

We find 
t t 

j (t) = 2 iJc m(t) -10 F(T) dT - fo F,(T)f(f - T) dT 

-f Fn(T)n(f-T)dT, (5.2a) 
o 

n (f) = - 2i~m(t) - f N(T) dT - ~t N,(T)f(f - T) dT 

-f Nn(T)n(t-T)dT, (5.2b) 

m(t) := 2iJcf(t) - 2i~n(t) - lot Mm( T) m(t - T) dT . (5. 2c) 

The coefficients that have been omitted vanish or give 
negligible contributions in most models. The expres
sions for the coefficients are given in Appendix C. It is 
obvious from Appendix C that the correlation functions 
which are involved in the energy transfer equations (5.2) 
are the same as those in the spectral line shape equa
tions, (3. 6) and (3. 7). These correlation functions con
tain all the information needed, within our approxima
tions, to solve both sets of equations in principle. 

We note that to solve these equations we may Laplace 
transform and solve the resulting algebraic equations. 
For the long-time behavior of the solutions we may 
evaluate the coefficients for the transform variable 
p = 0 as was discussed by Rackovsky and Silbey. 8 This 
is done for specific models in Sec. VI. 

In previouS work, we found similar equations. How
ever, we had neglected the residual local scattering, 
Z" and had treated only the portion of local scattering 
that can be diagonalized. This scattering was treated 
as nonlocal by working in the clothed representation. In 
the present work, however, we explicitly deal with the 
residual scattering at each site which arises from the 
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fact that our system is open and interacts with the heat 
bath. 

The equations obtained give the correct equilibrium 
populations at infinite time and the decay rate reduces 
to the expression obtained by Rackovsky and SilbeyB at 
the appropriate limits. 

Lattice relaxation (and consequently the phonon part 
of the spectrum) enters in a different way in the treat
ment of energy transfer: We showed in Eq. (2.4) that 
the local phonon scattering responsible for lattice re
laxation appears in nonlocal (off-diagonal) scattering in 
the clothed representation of the two-impurity system. 
This implies that a relaxed excitation may undergo fur
ther relaxation upon transfer, since this will create 
new phonon clouds at the excited and de-excited sites. 

At usual temperatures where the phonon part of the 
spectrum appears as a wide band, lattice relaxation is 
extremely fast and it is certainly a good approximation 
to consider the relaxed excitation as the energy-trans
ferring species, even though the vertical excitation may 
be the species formed by light. 

At low temperatures (and weak excitation-phonon 
coupling) the spectrum is composed of the zero-phonon 
line and the phonon wing. The excitation corresponding 
to the phonon wing still relaxes to the clothed representa 
tion quickly; there is however a large probability of 
producing directly a relaxed state upon excitation (or 
energy transfer), given by the relative intensity of the 
zero-phonon line. This implies that atlow temperatures, 
phonon relaxation is no longer a mechanism that can 
justify the distinction between the bare and the clothed 
representations. 

In the development outlined herein, both cases can 
be treated easily: for weak excitation phonon coupling 
and low temperatures we use the unrelaxed (or bare) 
excitation representation throughout (i. e., B = 1). In 
the case of fast relaxation we use the relaxed excita
tion representation for transfer and the bare representa
tion for the spectral line shapes. 

VI. THE TWO-IMPURITY SYSTEM 

In this section we will evaluate the expressions for 
the spectral line shape and energy transfer of the two
impurity system, and relate them to experimentally 
measurable quantities. 

We will aSS1,1me for simplicity that no correlation 
exists between sites for the scattering process. 

(6.1a) 

and 

(6.1b) 

Although this is not necessary for the present discus
sion, it greatly simplifies the results and is undoubtedly 
a good approximation in most cases in which the two 
molecules are not nearest neighbors. 

A. Model 1: Energy transfer under fast lattice 
relaxation 

For fast lattice relaxation the bare and clothed repre
sentations for the excitation do not coincide. We as
sume that the clothed excitation is the migrating species, 
and is formed by fast relaxation of the bare excitation 
produced by light. 

In calculating the electronic part of the optical spec
trum in this model, we shall neglect the bare excitation 
nonlocal scattering term [.p' in Eq. (2.4)]. This term 
arises from processes such as phonon-induced transfer 
and we believe that it is negligible compared to the 
clothed excitation nonlocal scattering term [BiB2 in Eq. 
(2.4)]. 

Under these assumptions we can easily calculate the 
electronic part of the optical spectrum [Eq. (3.8) and 
Appendix A] and the coefficients that enter into it [Eq. 
(A 7)]. To relate these coefficients to experimentally 
measurable quantities we consider the fact that in many 
cases for nonadjacent impurities [Eq. (B4)] 

(.p.p+(t) = J~{ (B;ezBi(t)B1(t) - (B;ez)z:t 

~ JH(BzB2(t) (B;e 1(t) - (B;Bz)2} • 

The Fourier transform of (.p.p+(t) then is 

{ 1 +~ I} 
cp(z) = J ~ 211 L. :.1)11 (z - w) :.I)2Z(W) - 211 (BiB2)Zo( z) 

(6.2) 
according to Eq. (B5). Thus, cp(z) contains the overlap 
integral of the phonon parts of the spectra of sites 1 and 
2 when their origins are separated by energy x. We will 
now examine the qualitative temperature dependence of 
cp(z). 

We note that (B()+(t) gives the absorption spectrum, 
while «()+B(t) corresponds to emission. Therefore cp(2r) 
for r * 0 is related to the spectral overlap integral used 
in the Forster-Dexter theory in the limit that there is 
no local scattering. It represents the probability that 
the phonon clouds generated by the de-excitation of one 
site and the excitation of the other will contain phonon 
combinations that make the transfer process in reso
nance. These phonon combinations take up the energy 
difference of the transferred excitation (2r) and bring 
the transfer process towards equilibrium because of their 
fast subsequent de-phasing and scattering. The tempera
ture dependence of cp(2r) follows that of the overlap inte
gral of the two spectra each normalized to unity. Thus, 
at high temperatures it should be an increasing function 
of temperature, while at low temperatures it may be 
either increasing or decreasing, depending on the por
tions overlapping. 

Similarly, cp(O) represents the probability of transfer 
without energy loss to the lattice. It contains the spec
tral overlap integral at zero energy separation of the 
electronic states. At low temperatures this integral 
consists essentially of the overlap of the zero-phonon 
lines of the two spectra. However, as seen in Eq. (6.2), 
cp(O) is modified by o(w) which is due to the coherent 
part of energy transfer. In the simplest case of two 
impurities in a lattice having dispersionless (Einstein) 
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phonons, we would have that the magnitude of cp(w) at 
w =0 is 

cp(O) = J~e-( .~+.~)(2n+l) {I o(2nl/2(n + 1 )1/2(Z f + z~)) - I} 

=J~e-(·f+.~)(2n+l) f {Ik(2z~nl/2(n+l)1/2) 
k=_OO 

(6.3) 

The value of cp(O) therefore, is small at all tempera
tures. At absolute zero cp(O) =0 rigorously in the ap
proximation of Eq. (B4). This indicates that when there 
are no phonons present in the lattice, the energy-con
serving transfer process can only be coherent. At finite 
temperatures, however, the value of cp(O) will be finite, 
indicating that incoherent energy-conserving transfer 
processes are possible. At low temperatures, the value 
of cp(O) increases with temperature; at higher tempera
tures cp(O) is a decreasing function of temperature, since 
the probability of energy- conserving processes decreases 
at these temperatures. The maximum value attained by 
cp(O), and the temperature at which it is attained depends 
on the magnitude of the total excitation-phonon coupling 
of the two impurities. That is, in impurities having a 
weak excitation-phonon coupling (so that the zero-phonon 
line dominates their low temperature spectra) cp(O) 
reaches a maximum (typically - O. 3 J~) at relatively 
high temperatures, while in cases of very strong ex
citation-phonon coupling (so that the zero-phonon line 
has a very weak intensity even at 0 OK) cp(O) reaches its 
maximum at low temperatures. 

Also, cp(- 2r) contains the overlap integral for the 
"inverse" Forster-Dexter transfer process, that is 
energy transfer from the low-energy site to the high
energy site with the absorption of energy 2r from the 
lattice phonons. It is therefore the overlap of the high
energy site absorption and the low-energy site emission 
spectra. Because of Eq. (4.8) cp(- 2r) is related to 
cp(2r) by 

cp( - 2r) = e-2Br cp(2r) • (6.4) 

At absolute zero, this overlap is rigorously zero but at 
higher temperatures it has some finite value for small 
r. Like cp(2r) this function will vary very slowly with 
temperature. 

The relative magnitudes of cp(2r), cp(O), and cp( - 2r) 
will depend on the value of r, the magnitude of the ex
citation-phonon interaction and the temperature: (a) For 
small r as in the case of weak intermolecular coupling 
between similar impurities (A = 0) we will have 

cp(2r) ~ qJ(O) ~ qJ( - 2r) (6.5) 

at all temperatures: (b) In the case where the zero
phonon lines dominate the two spectra(i. e., low tem
peratures and weak excitation-phonon interactions) and 
widely separated energies for the two impurities we will 
have, 

qJ(O) > qJ(2r) • (6.6) 

(c) If 2r is of the order of or greater than the width of 
the phonon bands coupled to the excitation we would ex
pect the two spectra to have maximum overlap in the 
qJ(2r) integral thus giving 

cp(2r)>> qJ( - 2r) . (6.7) 

(d) For extremely large r, however, we will have negli
gible spectral overlap, making negligible the probability 
of any energy transfer which can bring the two site popu
lations into thermal equilibrium. 

The other parameter in these equations is 'I (x) [see 
Eq. (A 7) and Eq. (4.1)]. The purely electronic spectral 
line has a Lorentzian shape of width '(0) due to local 
scattering with no energy loss. Thus ,(± 2r) involves an 
energy loss of:;: 2r to the lattice and corresponds to the 
probability of local relaxation in resonance with the ener
gy transfer process. 

We shall discuss in this model the spectral line shapes 
and energy transfer equations for two cases: (a) Weak
ly coupled equivalent sites, resembling the case of mo
lecular excitons, (b) inequivalent sites with considerable 
spectral overlap giving Forster-like energy transfer. 

1. Model 1a: Equivalent sites-molecular excitons 

For similar impurities (A =0), the energy gap between 
the two exciton states is small, giving 

cp(2r)::::: cp(O)::::: cp( - 2r) = Cp, 

'(2r) = '(0) = '( - 2r) =', 
ear ~ 1. 

(6.8) 

(6.9) 

(6.10) 

Therefore the coefficients entering in the spectral 
functions are [from Eq. (A 7)] 

A = C=A' = C' =, + cp (6.lla) 

giving for the "electronic" part of the spectrum [from 
Eq. (3.8)] 

(6.llb) 

The phonon part of the spectrum consists of 
(6.llc) 

:Du(w), :D22 (W) 

which are the same as in the absence of the intermolecu
lar interaction [Eq. (4.9)] and :D12(W) = :D 21 (W) fot the 
phonon cross term. For nearest neighbor impurities 
this term has a complicated functional form, taking 
into account the spatial correlation of the crystal de
formation. This functional form is a narrow distribu
tion around w = 0, and as it is shown in Appendix B, it 
reduces to a 0 function at w = 0 for separated impurities. 

The electronic part of the spectrum for the two equiva
lent interacting impurities consists of two Lorentzian 
lines of width A separated by 2J [Eqs. (6.llb), (6.llc)]. 
The intensity ratio of these two lines is 

!..u !D11~' +!D22~i + 2:D12 f."1 • f."? 
I_J !Dll~l +:D22~2 - 2:D12 f."1· f."2 

(6.12) 

where :DIJ =:DIJ(O). For impurities having different ori
entations the two lines carry different polarizations and 
thus the splitting between them is easily measurable. 
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In the full spectrum each line is accomparrled by a 
phonon wing. Because of the very narrow distribution 
of the phonon cross term :Dtj(w), the phonon wings will 
be identical for the two lines within the assumptions of 
this model. They will only differ in the regions around 
W = ± Jc where their intensity ratios will follow Eq. (6.12). 

The dynamics of exciton motion in this case are rela
tively simple. The solution to the energy transfer equa
tions [Eq. (5.2)] shows that the excited state population 
oscillates between the two sites with a frequency 

w=(J~_/;2)1/2"'Jc (6. 13a) 

while at the same time the oscillation is damped at a 
rate 

(6. 13b) 

to achieve equilibrium. We note that these parameters 
may be obtained from spectral information for the iso
lated impurities. 22 

The rate of excitation localization can be considered 
as the exciton hopping rate, and thus it can be related 
to the exciton diffusion constant. If we assume that the 
full spectrum of the isolated impurity is a Lorentzlan, 
the overlap integral cp can be evaluated to give a migra
tion rate (y'" width) 

k=J~jy+b. (6.14) 

2. Model 1b: Inequivalent sites-Forster-like transfer 

Under Forster-like conditions of large energy separa
tion and substantial spectral overlap between the two im
purities the assumptions of this model are 

cp(2r) » CPt - 2r) 

and for simplicity 

61 = 62 = 6. 

The coefficients of Eq. (A 7) then are 

A = /;(0) + ellr € (2r); A' = cp(O) + 6( - 2r) 

C = cp(O) + 6(2r); C' = /;(0) + e-Ilr €(2r) , 

where 

€(2x) = ell"cp(2x) • 

We note that because of Eq. (6.4) we have 

€(2r)=€(-2r). 

(6.7) 

(6.15) 

(6.16) 

(6. 17a) 

(6.17b) 

Solving Eq. (3.9) to order J2 for the coefficients (6.16) 
the electronic part of the spectrum is found to be 

() 
{

2 2.6.(2 2 ~ } A I W = P,l + P,2 + r P,l - P,2) + r P,1P,2 (w _ r)Z +A2 

{
? ? .6. (? ? 2Jc } C' 

+ P,l + P,? - r P,l - P,?) - r P,1P,? (w + r)2 + C'2 

(6.l8a) 
The spectrum thus consists of two Lorentzian lines at 

W = + rand w = - r _ The width of these lines is '(0) 
+ ellr €(2r) and '(0) + e-Ilr €(2r), respectively; that is, the 
two peaks exhibit an additional component to their width, 
in each case proportional to the corresponding Forster 
transfer rate. Their relative intensities are 

R - p,i + p'~ + (p,~ - p,~)(.6./r) + 2p,1P,?(Jc/r) 
- P,1 + p'~ - (p,~ - p,~)(.6./r) - 2 P,1 P,2(Jc/r) 

which for the case P,l = P,? reduce to 

R=(r+Jc)/(r -Jc)· 

(6_ 18b) 

(6. 18c) 

The phonon part of the spectrum is similar to that dis
cussed in model 1a. 

The energy transfer equations (5.2) for this case re
duce to 

j = ZiJcm - (4A/r) sinh,8r €(2r) - 4[ €(2r) cos~r)j, 
(6. 19a) 

n =-2i.6.m-2[6(2r)+6(-2r)]n, (6. 19b) 

m = 2iJcf - ZiAn - 2{cp(0) H,o(O) + 6(2r) + 6(- 2r)}. (6.19c) 

The definition of <P(O) is discussed in Appendix B. Ener
gy transfer occurring according to Eq. (6.19) tends to 
the equilibrium value 

f = - (.6./r) tanh,Br (6.20) 

(to order J~) at long times. 

The emission spectrum therefore will not be identical 
to the absorption. If we assume that equilibrium is 
reached in a time much shorter than the radiative life
time, the system will radiate from its equilibrium dis
tribution. The intensity ratio of the two peaks at ± r 
will be for P,l'" P,? 

R = r + Jc • r -.6. tanh,8r 
r - Jc r + A tanh,8 r . (6.21) 

That is, in emission the bulk of the intensity shifts to 
the low-energy peak (sensitized fluorescence). 

Observing the time evolution of the two excited state 
populations for the simplest case (A = 0) we see that the 
excitation oscillates between the two sites with a fre
quency 

(6. 22a) 

This oscillation is damped to approach the equilibrium 
distribution at a rate 

k = cp(O) + <p(0) + 6(2r) + 6( - 2r) + 2€(2r) cos~r. 
(6. 22b) 

This damping is the equivalent of the Forster energy 
transfer rate since it determines the rate of localization 
of the excitation to the low-energy site. We note how
ever that this transfer rate differs from that obtained by 
Soules and Duke 7 in that it also takes into account locali
zation of the excitation due to randomization of phase. 
That is it includes the coefficients arising from both 
the diagonal and off-diagonal terms of the denSity ma
trix. The diagonal elements of the density matrix [Eq. 
(6. 19a)] decay to their equilibrium value by dissipation 
of energy 2r to the lattice during the transfer process 
due to nonlocal scattering, €(2r). On the other hand, 
the off-diagonal elements [Eqs. (6. 19b, c») decay to zero 
both because of energy fluctuations at each site [local 
scattering '(± 2r)] and because of loss of phase coher
ence during an energy-conserving transfer process [non
local scattering «11(0»). At high temperatures the con
tribution of these new terms to the localization of the 
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excitation at the low-energy site may be negligible. At 
low temperatures on the other hand, we would expect 
energy-conserving transfer processes to have a greater 
probability thus making their contribution to excitation 
localization measurable. 

Distinguishing between coherent and incoherent trans
fer processes we note that coherent energy transfer 
causes the excitation to oscillate between the two sites. 
In the frequency domain this moves the two spectral 
peaks to ± r. Incoherent transfer processes on the other 
hand determine the Forster-like energy localization 
rate. Viewed in the f:requency domain this gives rise to 
a transfer-dependent contribution to the width, unequal
ly distributed between the two spectral lines and in ad
dition to the single-impurity width (due to energy-con
serving local scattering). 

We also note that in the case of no local scattering all 
the parameters entering in the Forster-like localization 
rate (that is both these of the Forster process proper as 
shown by Soules and Duke 7 and those due to phase ran
domization arising from energy -conserving transfer) 
are obtainable from spectral information of the isolated 
molecules. If however local scattering is important, the 
dynamics of energy transfer are not simply related to 
the appearance of the spectra, since the former involve 
local scattering terms resonant with the transfer pro
cess [i. e., I:(± 2r)] while the latter includes only ener
gy-conserving local interactions [i.e., 1;(0)]. However, 
the correlation function, I:{w), contains all this informa
tion, and is, in principle, derivable from the energy 
transfer rate or the spectra. It may be difficult in prac
tice to retrieve this information. 

B. Model 2: Very weak excitation-phonon interactions 

We assume that Za, the diagonalizable part of the bare 
excitation local phonon scattering, is negligible. The 
bare and clothed excitation representations thus coinCide, 
with e = 1. This would correspond to a situation where 
the zero phonon line dominates the spectraum and has 
negligible width. 

In this case, the "phonon" parts of the spectrum will 
be 

(6.23) 

The structure of the one-impurity and the two-impurity 
spectra, therefore, will be determined completely by 
the features of their "electronic" part which are out
lined in Eqs. (4.1) and (3.8), respectively. We will 
find that it is not always possible to relate the param
eters in the single impurity spectra to the parameters 
in the energy transfer equations; thus we postulate dif
ferent models for the structure of the correlation func
tions in what follows. 

1. Model 2a: Stochastic scattering 

We assume that the eXCitation-phonon interaction is 
a Gaussian-Markov stochastic process. This is a sim
plifying assumption, often used to calculate exciton 
transport models. 15 Under this assumption, the corre
lation functions are 

(Z/Z;(t» = 21:0(t) 

(cI>cI>+(t» '" (cI>cI>(t» '" 2q70(t) , 

(6. 24a) 

(6. 24b) 

where o(t) is the Dirac 0 function. This however is an 
infinite temperature approximation since a O-function 
correlation implies a white spectrum with all phonon 
frequencies excited. On the other hand, the zero-pho
non line dominates in the spectrum, and in this regard 
the model resembles the low temperature case and at 
low temperatures we would expect a nonzero correla
tion time. We will use these assumptions, however, in 
order to acquire an insight into the essential features 
of bare excitation transfer, bearing in mind that we have 
chos"O!n the assumptions which give the simplest results. 

Under these assumptions the coefficients of the line 
shape equations [Eq. (A 7)] become 

and therefore 

A",(~2+J~)1/2",r. 

(6. 25a) 

(6. 25b) 

The two-impurity ~pectrum, therefore, consists of 
two Lorentzian lines at w =± r having width I; + q7. Thus, 
in this model also the width of the two-impurity spectral 
lines is affected by energy transfer. 

The energy transfer differential equations under these 
assumptions are 

j(t) = - 41] f(t) - 2iJcm(t) , 

n{t) '" - 4an(t) + 2i~m(t), 

m(t)", - 2iJcf(t)+2i~n(t) - 4(a+ l1)m(t). 

(6. 26a) 

(6. 26b) 

(6. 26c) 

We note that these equations are formally the same as 
those derived for model1b. This indicates that the dy
namics of energy transfer in the case in which the bare 
excitation is the migrating species is identical to the 
case in which lattice relaxation precedes any energy 
transfer. Due to the peculiarity of the o-function cor
relation, however, [Eq. (6.24)], high temperature equi
librium conditions are introduced in the energy trans
fer equations (6.26) so that f- 0 as t- 00, implying that 
the two site populations equalize at long times. 

2. Model2b: Temperature-dependent scattering 

In order to circumvent the difficulties associated with 
the infinite-temperature implications of the stochastic 
model we postulate a temperature-dependent correla
tion phenomenologically which at infinite temperature 
reduces to the stochastic model. 

(ZjZ/(t» = f~oo e-/
o.f 

I:(w, 1') dw, (6. 27a) 

(cI>cI> +(t» '" (cI>cI>(t» = i:oo 
e-/ o.t e8o. / 2 1/ (w, T) dw. (6.27b) 

The exact structure of the terms band 1] depends on the 
particular coupling scheme postulated. For Z linear in 
the lattice coordinates, for example, the functional form 
of I: is 

I;(w, 1') =p(w)g [n(w) + 1], (6.28) 

where p(w) is the phonon density of states, g(w) is the 
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excitation-phonon coupling coefficient and n(w) = (e BW _1)-1. 
In order to reach the proper equilibrium value [Eq. 
(6.20)] we must require that 

1/(w, 1') = 1/( - w, T), 

a condition which is similar to Eq. (6.17b) for the 
clothed excitation case. 

(6.29) 

Under these assumptions, model 2b is formally iden
tical to model lb. Note that some of the parameters in 
the energy transfer equations are not present in the sin
gle impurity spectra [i. e., 1/(w, T)]. However 1) (w, 1') 
will not be derivable from the overlap of the single im
purity spectra, Eq. (6.2), as in the Forster theory, 
because <I> in this model is an inherently two molecule 
effect [see <I> in Eq. (2.3)]. 

VII. CONCLUSIONS 

The system of two interacting impurities in an inert 
lattice was studied with respect to energy transfer and 
optical line shapes. 

Interaction of the system with light creates a vertical 
excitation which is viewed as localized on one site to 
facilitate the study of the energy transfer process. The 
relation of the spectrum to the energy transfer process 
was studied using both local and nonlocal excitation
phonon scattering. Two different models were adopted 
in this study. In the first model, the excitation created 
by light was assumed to relax into the clothed representa
tion by emission of a phonon cloud. This lattice relaxa
tion appears in the optical spectrum as a multiphonon 
band accompanying the transition. The clothed excita
tion can subsequently transfer its energy to a different 
site via the intermolecular coupling. Since this cou
pling is modulated by the lattice relaxation, spectral in
formation can be used to evaluate some of the transport 
parameters. A case resembling the molecular exciton 
and the case of energy transfer under Forster conditions 
were investigated. In the second model, the energy 
transferring species is the same as that created by light. 
By using stochastic and phenomenological excitation
phonon scattering it was shown that the excitation transfer 
parameters and the spectral line shape parameters are 
not related in the usual Forster way. In both cases the 
contributions of local and nonlocal scattering were 
examined and the processes leading excitation localization 
were discussed. In both cases formulas relating the 
localization processes to spectroscopic data were de
veloped. These formulas reduce to the usual exciton 
diffusion expressions and the Forster-Dexter formula 
in limiting cases. Extra terms in our formulas arise 
from the consideration of the off-diagonal terms in the 
excitation density matrix, and thus describe the effects 
of phase randomization during energy transfer. At 
ordinary temperatures, where energy dissipation into 
the lattice dominates the approach to equilibrium, their 
contribution is probably negligible. At low tempera
tures, however, we would expect them to produce a mea
surable effect which is not taken into account by the con
ventional theories on energy transfer. 

APPENDIX A: CALCULATION OF CLOTHED 
EXCITATION CORRELATION FUNCTIONS 

We defined implicitly in Eq. (9b) 

9 1J{t) = (a;aj(t» . 

This can also be written as 

A (t) ( IHXI +) (IH"'I) + gij = ale aj =al e aj, 

(A1) 

(A2) 

where H X is the Liouville operator. So we can define a 
2 x 2 matrix 9 (t) whose matrix elements are the S iJ(t) 
and is given by 

A IHXt I x 
s(t)=(e )=p(e H1

), (A3) 

where in the second equality we also define P as a pro
jection operator which gives the phonon ensemble average 
of what follows (in this case the time evolution opera
tor). 

Following the procedure of Rackovsky and Silbey8 we 
obtain 

. 11 9 (t) = iH~ S (t) - pvx dT el 
(l_P)H

x
T (1 - P) V' S (t - T) , 

o (A4) 
with Ho and V defined in Eqs. (9b) and (9c), respective
ly. 

We now approximate the correlation functions by re
placing the modified propagator el(l-P)H"'T by the zeroth
order propagator eIH~T. Solving for the matrix elements 
of g(t) we obtain Eq. (12). The time-dependent coef
ficients in this equation are given by 

A(t) =[cosrt +f sinrt] (Zl Zl(t» 

+ [cosrt - i % sinrtJ (<I>+<I>(t» 

+ 2i * sinrt(Zl <I>+(t» , 

C(t) = [ cosrt + if sinrtJ (<I>+<I>(t» 

+ [cosrt - i f sinrt] (Z2Z2(t» 

2iJ 
+ r c sinrt(Z2<I>(t» , 

B(t) = [cosrt + i ~ sinrt ] (Zl<I>(t» 

+ [cosrt - i ~ sinrtJ (Z2<I>+(t» 

+ % sinrt[(ZlZ2(t» + (<I><I>(t»] . 

(A5a) 

(A5b) 

(A5c) 

As indicated in Eq. (3.8) the Fourier transform of 
these coefficients at W =' ± r is needed to evaluate the 
spectrum. With the simplifications of Eq. (6.1) the 
Fourier transformed coefficients become 

A(r)=i-(l+%) (bl(0)+"P(2r» 

+~(1-%) (bl(2r)+"P(0», (A6a) 
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C(r) = i( 1 - % ) (S2(0) + rp(2r» 

+ ~ (1+ %) (rp(O) + s2(2r), 

1 J. - -
B(r) = 2' ; (rp(O) + rp(2r», 

where 

SI(X) = (00 dte-lxt(ZIZi(t» , 

rp(x) = (00 dte-Ixt (cp+cp(t» , 

cP(x) = 1:00 

dte-Ixt(cpcp(t» • 

(A6b) 

(A6c) 

For w = - r we get equations similar to (A6) with r re
placed by - r. Since cp is of order Je, </>(z) and cj)(z) 
are of order J~. Assuming that s(z) is of the same 
order of magnitude the equations (A6) reduce to 

A = Sl(O)+ rp(2r), 

c = rp(O) + s2(2r) , 

A' = Sl(- 2r) + rp(O), 

C = rp( - 2r) + S2(0), 
(A7) 

since our scheme accounts for terms up to second order 
only. The primed coefficients are evaluated at w = - r 
while the unprimed at w = r. 

APPENDIX B: PHONON-CLOUD CORRELATIONS 

For the two impurity system the phonon-cloud cor
relation function was found to be in the case of linear 
phonon scatteringS 

(cp+cp(t» = J~ {(8 18282(t) 8W» - (8i 82)2} 

:= J~ [exp ~ Fq(nq eiOlql + (n. + 1) e-iOlqt ) - 1] ' 

(B1) 
where F.=zr+~-2z1z2cosq.r, Zl is the linear excita
tion-phonon coupling coefficient for the ith site to the 
phonon of wavevector q, and r is the distance between 
the two impurity sites. The Fourier transform of this 
phonon correlation function is 

rp(x) =J~[e(3x12 L II IN (F.cschj3wq/z) - O(X)] , (B2) 
[N.I ,,] qq. 

where, as in Eqs. (4.5), (4.6) the sum I[N I"] is over all • phonon combinations of total energy x, N. is the number 
of q-phonon participating in the process, and IN

q 
is the 

hyperbolic Bessel function of order Nq • 

The cross term ZlZ2 cos(q· r) in Fq represents the 
spatial correlation of the crystal deformation upon ex
citaiton of one site. That is, its sum over all phonons 
I. Zl Z2 cos(q. r) is essentially the deformation suffered 
by one site when the other is excited. Soules and Duke 7 

point out that if the two sites are not coupled to the same 
pho nons , this term vanishes. In general however this 
condition is not met, and the sum of the cross terms 
will have a finite value. For dispersionless phonons, 
all equally coupled to the two sites, this sum reduces 
to 

IOlt ) -lOll ( l»sin(Nr/ag) 
2z1z2(ne +(n+l e - 2n+ . (! ) , sm r ao 

(B3) 

where ao is the lattice spacing. In other words, the de
formation vanishes very quickly at distances larger 
than the lattice spacing. For arbitrary phonon disper
sions we would expect this sum to be negligibly small 
at large distances even though it may be difficult to 
show mathematically (the details of convergence de
pending on the particular model adopted). For nearest 
neighbors, on the other hand, where r=ao, the sum may 
have some finite value. For distant impurities there
fore, it is a good approximation to write: 

(B4) 

The Fourier transform of this correlation function in 
this case reduces to 

1 J+oo 27T _00 Dll (x- W)D 22 (W) dw - 27TO(x)(8i82)2, (B5) 

where Dll (w) is defined in Eq. (3.4c). 

Similarly, the probability amplitude of phonon-cloud 
transfer could excitation transfer is given by 

" 1 ""'{ 2 2 D12(f)=exp- 2' Lt (Zlq+Z2q)(2nq+l) 

- 2Z1q Z2q cosq. r[nq e+ IOlI + (n. + 1) e-iOlI ]}. (B6) 

With a Fourier transform given by 

D12 (X) = eB"/2 exp [ - ;;: (z r + z~) (2n. + 1) ] 

x L II IN (2Z1.Z2.COS(q. r)csch /3~ ) . 
[Nol,,] 0 • 

Again, for nonnearest neighbors we should have 

making the Fourier transform in this case 

D 12(x) =[Dll (0)D 22(O)]1/2 0(X). 

(B7) 

(B8) 

(B9) 

Another correlation function encountered in the ener
gy-transfer equations is (cpcp(t». As it has been shown 
in the case of linear scatteringS 

(cpcp(t» = J! { exp [ - 2; Fq(no e
lOl •t + (n. + 1) e-IOl•t ] - 1 } • 

(BlO) 
The Fourier transform of this function is given by 

r,ii(x) =J~ [e-B"/2 L II IN (- F. csch/lw.l2) - O(X)] , 
[N.I,,]. • 

where the symbols are defined as in Eq. (B2). 

Since the hyperbolic Bessell functions obey 

I~(y)=(-1)~Ik(-Y) 

(Bll) 

(B12) 

we observe by comparing Eq. (Bll) and (B2) that rp(x) 
gives the total probability of all possible phonon pro
cesses that can occur at energy x, while $(x) consists 
of the probability of even-number phonon processes oc
curring minus the probability of the odd-number phonon 
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processes at energy x. In our case therefore <I>(x) is 
the probability of energy transfer occurring with the 
dissipation·of energy x into an even nwnber of phonons. 

To estimate r,ij(O), we can asswne that in the zero
energy phonon combinations (x=O) the even nwnbered 
processes dominate, since both the zero-phonon pro
cess and the process consisting of emission of a phonon 
and the subsequent adsorption of the same phonon, are 
both even-nwnbered. Thus, since the odd processes 
are negligible, the even-minus-odd probability should 
approximately equal the total probability (even-pIus-odd) 
and therefore we should have: 

r,ij(O) = rp(O). (Bl3) 

APPENDIX C 

We list here the coefficients appearing in Eq. (5.2). 
For these expressions we have used various properties 
of the <I> and Z,. We also assume that 

which is true for the <I> as given in Sec. VI. In order 
for this to be true, it is sufficient that l(nl<l>lm)12 
= 1 ( m 1 <I> 1 n) 12. This may not be true for more complex 
models than those considered herein. 

F = (2Ai/r) sin2rt([ <I> (t), <1>+]->, 

Ff=[(1+~)cos2rt+~] ([<I>(t),<I>+]+) 

J2 
- 2 f! sin2rt([ <I> (t),<I> t), 

Fn= 2~2A sin2rt{([<I>(t),<I>]+)-([<I>(t),<I>+t)}, 

N= ¥ sin2rt{([z Jt), zJ.) +t([ <I> (t), <1>+]-> 

-t([<I>(t),<I>L)} + 2;~A sin2rt{(<I><I>(t)-(<I>(t)<I>+)}, 

2iJ. . 2J. A . 
Nf =T sm2rt([z+ (t), z.L> + r sm2rt 

x {(<I><I>+(t) - (<I>(t) <I»}, 

Nn = 2 cos2rt([z.(t), z.t) - 2i
r
A sin2rt([z+(t), z.L> 

+(~~ sin2rt-l) {([ <I>(t), <1>]+) - ([<I>(t), <I>+t)}, 

A2 J2 
Mm =2 ~ cos2rt+ft" ([ zJt), z.t> 

+2 i; sin2rt([ z+(t), z.L> 

where we have assumed (Zj<l>(t) = 0 and have defined 

Z* =t(Zl ± zz) • 
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