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Starting from Redfield’s reduced density formalism, we derive the coupled relaxation equations and expressions for the
rate constants apphicable to excited dimer systems Ina comparative discussion the himitations are shown of relaxation mod-
els denived previously

1. Introduction

In recent years the phenomenon of excitation transfer between molecules in condensed phases has been subject
to numerous expenmental and theoretical investigations. Among these, the study of excited molecular dimers em-
bedded in a host crystal has been of considerable utility {1]. Theoretical models developed for such sysiems usual-
ly treat the crystal modes as a heat bath coupled to the dimer. In particular, theornes which have assumed that the
coupling between the electromc states and the bath degrees of freedom can be descnbed in terms of (gaussian)
random variables have been extensively used and greatly influential [2]. In the present note, we suggest limits of
vahidity to such theories operative 1n particular at low temperatures.

The hamiltonian of these models 1s given by

H=H e+ ng +86H ,

Hep =€ |+ 6512021 + JUDC2T + [2X1[}, 8H =86 [1X1] +8e,12X21 +8J{IX21+[2X1}, (1)

where P{g is the hamiltonian of the bath, 5% 1s the interaction energy operator between bath and electronic de-
grees of freedom, ¢, 1s the stationary energy of site state |z) and J 1s the stationary transfer matnx element. In con-
trast to €, and J, the interaction terms are vanables in the bath coordinates, which will remain unspecified. With
no loss of generality we can take the average of the interaction terms (over the bath density matnx) to be zero.

In the absence of interactions (§ X = 0), the electronic hamiltorian has eigenvalues and eigenstates given by:

E, =3(e; + &) £ [(e3 — €)*/4+T2]1/2, @

[+)=cos(8/2)I11> + sin(8/2)[2), |—)=—sin(0/2)[1)+ cos(0/2)12), tanO =-2J/(e;—e;), €3>€;- (3)

In the limut €, =€, the eigenstates are the symmetric and antisymmetnc combinations of the site states while for

le; —€; 1> |J1, the eigenstates are almost pure site states. In general, however, the eigenstates are as given in egs. (3).
In the presence of interactions, § 9, the dimer subsystem is subject to relaxation mechanisms. The case in

which the interactions are electron—phonon in origin has been discussed by Soules and Duke {3], Rackovsky and
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Silbey [4], and Abram and Silbey [5]. The case in which these interactions have been treated as classical random
functions was treated by Sewell [6], Haken and Strobl [2,7], and by Reneker et al. [8].

The basic approximations and results of these treatments will be discussed below (sections 3 and 4), in com-
parison with our present findings (section 2), which are based upon the quantum mechanical version of Redfield’s
reduced density formahism [9].

2. Derivation of the coupled relaxation equations

The total density matnx, p(r), of the system obeys the Liouvilie equation of mouicn

1:15(0) = [, p(D)] . “)

The dynamics of the dimer subsystem can be described by the equation of motion of the reduced density matrix o(z) =
Trg p(?), where Trg denotes the trace over the bath degrees of freedom. There are a number of methods to denve
this equation, and we will not repeat them here, but merely give the final result {9]. To second order in § ¥, the
equation for the matnx elements of o(¢) (in the so-called dimer representation which diagonahizes () 1s

Onag () = — iy Onpr (1) — g}, Rympo 9pp(D) )

where

RNAIPQ =— f dr [(8 thﬂfa ngP(T)) exp(—l wQMT) + (5 thﬁf (7)8 g(NP) exp(—i OJNPT)
[4)

— 6Qﬁf ? (5 g{NS (T)Sg{sp>exp(—inPT) bt SPN ? ¢} Q(QSS gfsn[(f)) exp(—inST):' . (6)

Here, coppr = (Eny — Eypfn, & glRS 1s the matrix element of 8% in the eigenstates of K |, and the brackets repre-
sent the average over the density matnx of the bath.

In denving this equation we have assumed that the itial density matnx was factorized p(0) = pg0(0) and that
the bath modes equilibrate fast in comparison with the dimer modes (negligible memory effects). The relaxation
matnx elements are in general complex, the imaginary part representing (dispersive) frequency shifts of the elec-
tronic states due to the interaction with the bath, and the real part representing relaxation constants. We will ne-
glect the frequency shift in what follows, and, 1n addition, we will assume that the bath density matrix is given by
that for the canonical ensemble. The validity of all these approximations will be discussed in a forthcomung article.

By neglecting the frequency shift, we may now write the integral in eq. (6) as 1/2 the integral from —oo to +o.
Then by using the detailed balance relation, eq. (13) below, we have in the |[+) representation

++ S +— —+
++ | AD -r Y(0) Y (0)
ro——|T r —4(0) ~(0) : 0
+— | A¥(w_y) —Y(w_y) Tpp + (1+A4)0/2 —(1+A4)r/2
—+ \ AP(w ) —v(w_y) —(1+A))2 T'pp + (1+A)T/2
where
r= # _ji dr e O—TEH_ (6K 4_) @®)
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Tep =2—;l—2 __/; AT(BH __(r) — 6K o o (P@H __ — 5FH ), ©
l r 1wt

W)= _fm drewT(EH _ (1)EH __ — 8K, ), (10)

A =A(T)=exp(—hc_ JkgT). (§8))

In deniving eq. (7) we have assumed 8% , _ to be hermitean for convenience.

The pure dephasing rate, I'pp, which describes spectral diffusion, and the population relaxation rate, I, repre-
sent autocorrelations (at specific frequencies) of the coupling energy fluctuations; Ipp is given in terms of the
static transition frequency fluctuations, and I' in terms of the state-to-state scattering fluctuations as mismatch
frequency w_,, the stationary transition frequency, ¥ represents cross correlation terms.

The relaxation constants satisfy detailed balance relations [note the Arrhenius factor A(T’), eq. (11)] accord-
g to

2 (—~w) = f dre'w(a"' b(7)) = exp(—hw/kgT) f dr et (b(r)a") . (12)

We mention that the secular matrnix associated with the differential equation (5) 1s singular of rank 3. This cor-
responds to the fact that the sum of the population vanables, 6, , + 0_ _, is a conserved quantity in the present
model. The set of four equations breaks eventually 1into two sets of two; one set of (linearity dependent) popula-
tion variables, o, , and o__, and one for the transition (or polanzation) variables o, _ and ¢_ ;. Such an approxi-
mate decoupling may occur for different reasons: (i) The presence of the frequencies +co_, in the secular matnx

associated with (5) can be already sufficient that the modes do not couple strongly (1 e. lw_ .| > T, [pp). (ii) At
high temperatures we expect the spectral densities g(w_ ;) and g(0) do not differ very much as long as lco_ ¢l is

small comnared to the Debye frequency. Now, If I'pp = TI' (or vice versa) then | (0) ¥ (co_ )] <€ a2 + [‘%D) and
consequently the coupling between the two sets is small. (u) At low temperature kg7 <fico_,, we expect that
the spectral densities available for quasi-elastic processes becomes very small (i.e. ¥(0), [pp —> 0 as T —> 0) so that
eventually I'2 > | {(0)¥(w_, )| and I‘%D; hence, the sets are decoupled once more. In general, however, no state-
ment can be made about the decoupling of population and relaxation variables unless microscopic arguments are
taken mto account.

3. The Haken—Strobl model

In the Haken—Strobl (HS) model the correlations between site fluctuations are approximated as
(5¢€,()d¢,(0)> = (B¢, (0)b¢€, (1)) = 2795, 5(2), (B¢, (£)6J(0)) =<{6J(0)d¢; (£)> =0,

(8J(£)8J(0)) = {8J(0)5 (D)) = 27, 5(¢) (13)

and it 1s assumed that the fluctuations are gaussian. This corresponds to a classical stochastic description in which
the cross correlations between the fluctuations in site energies (8¢, and 3€,) and between site energies and trans-
fer matrix elements are neglected. These assumptions are sensible at high temperature, for well separated mole-
cules, when the thermal fluctuations at different sites in the crystal may be quite independent of one another.
However, for neighboring molecules this approach will be inadequate, especially for low temperatures.

If we use the HS assumptions in the definition of R, we find the following relaxation parameters (where the
tilde refers to the HS model).
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T=slyy+ 22y, Tpp =262y + 452y, Ulw ) =9'(0)=sclyp— 21,
A=1(ie the_, ) €kgT), s=sinh, ec=cosd. (14

In the limit e; =€, 0~= 7/2 and soT= 7O’~FPD =4y and ¥ =0.1n the opposite case, when Je; — 31> 1/, 0 ~0
one obtains T* = 2¥1, Fpp = 27 and again y = 0. This shows how the fluctuations in site space change their mean-
ing as I(e; — e;)/J) goes from O to <=,

In order to compare the HS relaxation parameters, eqs. (14), with those obtained from the Redfield equations,
we give the more general relations between I, I'pp and ¥, egs. (8)—(10), and the fluctuations in site representa-
tion.

Tpp = 29w =0) = 25c 17 (@ = 0) + (w0 = 0] # 5Py (= 0) , (15a)
I'= 3527 (@_y) ¥ sclye (@ o) + Yelw_ )] + 2637 (w_y), (15b)
Y(w) = 156V (w) — 527, p(w) + €2y5,(w) — 250754() s (15¢)
A =exp(—hw_,/kgT) (15d)

and the correlation functions y(w) are given by the Fourier transform of

Yeelt) = 34[86,(1) — 1 (N} [Be2(0) — Bey (O, 7. (1) = 2{[Bex(®) — Bey (D]BJ(0))

Y7(t) = $6J()[5e5(1) — Be (D, v = LGN G (O) (16)
Note that v, (w) = 279, 7,7 > 7} and Ty = 7z, = 0 if the HS assumptions are applied.

4. Discussion

Haken and Strobl developed their original model for the high-temperature regime, where most of the under-
lying approximations are valid. Much of the subsequent experimental work, however, has been done in the low-
temperature regime where the HS model does not apply. Its limits of validity will be substantiated in the follow-
ing discussion by comparing the results given here with those of the HS model.

First, the assumptions of egs. (13) lead to a failure of the detailed balance relations, (12). The assumption of
white spectra for the correlations can only be used if |fiw_ ) € kgT [upon the assumption that the frequency
dependence of the correlations y(w) is much weaker than those of the reduced density matrix ¢(w)]. For naph-
thalene dimers of neighboring molecules at 1.4-2.8 K, w_, ~ 1-2 cm™4, so that the HS model will be inappli-
cable at these temperatures. This has been pointed out before: the equilibrium solutions of eq. (5) with the HS
assumptions lead to equal populations in the |+)and | - states contrary to the expectations of Boltzmann statis-
tics {1,10]. Correspondingly, the thermal activation of the [+) = | -) population relaxation, which is governed by
the Arrhenius factor A(T), eq. (11), is lost in the HS model.

Secondly, at low temperatures for neighboring molecules, the energies 8¢; and 8¢, , and also the transfer ma-
trix element &J, should experience fluctuations due to the same phonons and vibrational modes, and there is no
a priori reason, therefore, to neglect the cross correlations between these fluctuations. Comparison of egs. (14)
and (15) shows that the HS model will assign an inappropriate combination of site fluctuations to the relaxation
parameters I, Tppy, Y(w_ ) and Y(ew = 0) if cross correlations are significant. This is in particular true if the site
energy fluctuations be, — 5¢; show destructive interference.

Thirdly, the HS model does not take into account the fact that the relaxation terms can depend sensitively on
the frequencies, which occur in the Kubo integrals, e.g. (8)—(10). For example I'ppy results from quasi-elastic
processes (w = 0), while I originates with inelastic transitions (w = w__,.). We expect, at low temperatures, that
the spectral density at c_, is much larger than it is at w =0, so that T'py becomes eventually negligible as T - 0.
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This is in agreement with model calculatiéns for homogeneous relaxation processes [11], and also indicated by
experimenial observations on naphifialene dimers: although the transition frequencies w_, for pairs of fransiz-
tionally equivalent and inequivalent molecules differ only by a factor ~1.5, the ratio between the population
relaxation rates from these two systems is of the order 100 [12]. A particular sensitive point in relation to thisis
that ¢(0) and ¢{c2} may be very different at low temperatures, a fact not discerned in the HS model.

In order to examine these results in some more detail, let us first look at the general case where tan 8 is of or-
der unity. In this case, the HS model will ascribe certain temperature dependences to vg and ¥; which will imply
the T behavior of I' and I'ppy . According to our last argument, the temperature dependence of I and I'pp should
be very different in the low- and intermediate-temperature regime, and even if detailed balance would be fixed up

in an ad hoc manner, this will result in misinternretations of the temnerature denendence of the HS warameters

ad hoc manner, this will result in misinterpretations of the temperature dependence of the HS parameters
Yo and ;. In addition, for v — 27 comparable to or greater than w_,, the HS model would predict a dynamic
coupling of population and transition variables (for e.g. tan 8 = 1) even at low temperatures when we do not ex-
pect it, since Y{0)+Gas T~ 0.

We now consider the case # = 0, which cerresponds to J/(e; — e3) = 0. This occurs either for very small J (well
separated molecules) or for very different molecules (le; — €;] large). From (15) we have I' x v,y (w_ ), T'pp &
Yee{t2 = 0) and Y(w) isinsignificant aslong as lew_. 1> 1 {w_4 ). Hence, the HS model can be applied in this case,
provided that detailed balance is fixed up and that vy, ¢ are interpreted as v7,(w_ 1), Ye(w = 0).

The case 8 = #/2 is of particular interest because it corresponds to equivalent molecules: most experiments have
been done on dimers consisting of neighboring molecules, and 1f t}us case in which the HS model has been applied
most. Egs. (14) and (15) show that Tpp =4y (w=0)~>7, T -yEe(w) =7 and Y(w) = —vy,, (w) =0as
6 = 7{2; that is the HS model is only applicable as long as [feo_ .} € kg7, and (e _ ), ¥(0) are negligible for
any one of the reasons discussed in section 2. For temperatures comparable to or smaller than 7 fw_+ detaﬂed
balance has to be taken into account; as to the interpretation of the parameters Yo and 1y, one should be aware
of the fact that v,, includes cross correlations between B¢, and 8¢, and that 77, {w = 0) will be subject to a com-
paratively strong temperature dependence arising from the variation in the spectral density at zero frequency.

Finally, we would like to give a brief comment on Reineker’s treatment of the EPR spectra in (naphthalene)
dimers as presented in ref. [8]. The model developed there is essentially based on the HS model: the spin relaxa-
tion is described in terms only of the two very same orbital fluctuation parameters, v, and v, which affect the
spin modes via spin-orbit coupling. Thus the model by Reineker is subject to the same criticism as the HS model
itself. Among our objections it is in particular the argument about the mismatch-frequency dependence of the
different relaxation parameters, which spplies here, This is so, because there are six rather than two states in the

dimar trinlat sustam and the arder of maonitndes Betwean arhital. and EPRB.trancitinn fragnencies differ by ons
auner tripiel system, and e Oraer o1 Magniudes seIween Oroiia:- ans CaN-Iansiiion ITequencies &ilier oy one

order of magnitude, typically. We doubt therefore that all the relaxation rates between these levels can be de-
scribed in terms of just two independent parameters, as 7 becomes comparable to w_, /ky. This will be discussed
in more detail in a forthcoming article [13] (there we will include hyperfine interactions which dominate ihe EPR
dephasing of naphthalene dimers at least in the liquid helium temperature regime) [14].

To conclude, the Haken—Strobl model has its limitations of applicability, despite of its utility and attractive

conceptual simplicity. In particular, at low temperatures one must take care in its use for dimer systems.
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