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Exciton-phonon coupling in a dimer: An analytic 
approximation for eigenvalues and eigenvectors8

) 
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(Received 19 June 1980; accepted 12 September 1980) 

An analytic approximation method is introduced to study the eigenvalues and eigenvectors of the dimer 
exciton-phonon Hamiltonian with linear coupling. The transition from quasilocalized to quasidelocalized 
states as a function of n, the number of vibrational quanta, is discussed for various coupling strengths. A 
discussion of the applicability of this method to other problems is given. 

I. INTRODUCTION 

Exciton-phonon interactions playa crucial role in 
determining static and dynamical processes in molecu­
lar aggregates. Therefore, many workers have studied 
aspects of exciton-phonon coupling in the context of 
various problems l

-
6 e. g., optical line shapes, excita­

tion transport, electron transfer. and vibrational re­
laxation. Although many approximation techniques have 
been used, a common theme has been partial diagonaliza­
tion of the exciton-phonon Hamiltonian to reduce the 
magnitude of the Off-diagonal perturbations; despite the 
sophisticated methods available to the theoriest (pro­
jection operators, Green's function's, etc.), it is still 
essential to find a suitable representation for the sys­
tem under study. 

The exciton dimer, the simplest of aggregates, is 
particularly amenable to investigation of the fundamental 
quantum mechanical features, eigenvalues, and eigen­
vectors. Several authors have diagonalized a model 
dimer Hamiltonian numerically, 1 while others have 
studied this same Hamiltonian analytically. 2 These ef­
forts have produced qualitative inSight into the nature 
of the low lying dimer vibronic states. 

However, all of these methods have been very limited, 
both in their ability to treat more complex Hamiltonians 
qualitatively and in the physical picture they have pro­
vided. The numerical calculations provide no systema­
tic understanding of the dependence of the dimer states 
on interaction parameters, while the analytical methods 
have usually been restricted to the lowest one -exciton 
state. Discussion of weak and strong coupling or lo­
calized and delocalized states have been somewhat con­
fused in part because of a lack of a coherent picture of 
the entire vibronic manifold. 

In this paper we introduce a new technique for ap­
proximate diagonalization of the dimer exciton-phonon 
Hamiltonian which yields accurate analytical solutions 
for the eigenvalues and eigenvectors for all values of the 
exchange interaction J, exciton-phonon coupling param­
eters g, and phonon number n. The method results in 
a comprehensive overview of the problem which clari­
fies the nature of dimer vibronic states, replacing the 
old weak/strong coupling localized/ de localized distinc-

alSupported in part by the National Science Foundation (grant 
CHE-7807515). 

tions by an alternate set of criteria. Furthermore, 
the method is quite general, and can be used to solve 
other vibronic coupling problems. 

II. THEORY 

A. Variational calculations of the ground state 

We consider a system composed of two identical mol­
ecules, each with a ground state, one excited electronic 
state, and one vibrational mode. The orbital overlap is 
taken to be small enough so that the tight-binding ap­
proximation is valid; then, the Hamiltonian is in the lin­
ear exciton-phonon coupling model: 

2 

H=J(AfA2 +ArAj) + ~ [B:Bn -g(Bn+ B:)](A:An) , 

(1 ) 
where A:(An) creates (destroys) an exciton at site n, 
B:(Bn) creates (destroys) a phonon at site n, J is the 
exchange interaction, and g the exciton-phonon cou­
pling parameter. We have expressed J and g in units 
of the vibrational spacing wand set the zero of energy 
equal to iwn + I::;.Eo, where I::;.Eo is the separation of the 
electronic ground and excited states. It is well known 
that there is a smooth but relatively sharp transition 
in the nature of the vibronic one -exciton ground state 
as a function of g and J. This transition is reflected 
in exciton-phonon correlation function Ii: 

Ii = (1j!1 (A!A. +A!A.) (B. + B!) 11j!) x l/g , (2) 

which varies from zero to one as Ig/JI varies from 
zero to infinity. It is also manifest in the behavior of 
the average number of phonons and the energy as func­
tions of g and J. This transition is the analogy of the 
delocalized to localized transition in the exciton states 
of solids. 3 

Recently, Allen and Silbey4 investigated this ground 
state transition by means of a modified variational cal­
culation. They were able to derive expressions for the 
wave functions, energy, and exciton-phonon correlation 
function which reproduced the exact numerical results 
reasonably well in the transition region and in both 
asymptotic limits. 

This variational procedure, however, is limited in its 
application to the ground one-exciton state. In order to 
calculate the excitation spectrum of the system the ex­
cited n-phonon vibronic states must also be determined. 
The existence of the ground state transition suggets 
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that a similar transition may occur for an arbitrary 
phonon number; however, the partitioning of (J, g) space 
may be altered substantially as n is varied. 

Before proceeding further, however, we note that the 
transition we have been discussing is not one between 
a localized and de localized state in the rigorous sense 
of these terms. We can represent the vibronic wave 
function as 

iJ!= 11)Xt(Q)+ 12)X2(Q) , 

where 11) = ct>ict>~ and 12) = ct>;ct>~ are singly excited con­
figurations, and Xt and X2 are vibrational wave functions. 
The excitation denSity on site i is 

By the symmetry of the Hamiltonian P t = P 2• Therefore, 
the excitation is completely de localized according to 
this criterion and the transition must be characterized 
in some other manner. The formalism developed in 
this paper will provide a framework in which to do this. 

We set B. = (1/ v(2)(Bt + B2), B. = (l/I2)(Bt - B2), 
B: = (l/I2)(Bt + Bf), and B! = (1/ v'2)(Bt - Bf). 

Then, the Hamiltonian becomes 

H=J(AtA2+AfAt) + B!B.+ B!B. 

+ (g/v'2)(AtA t -AfA2)(B! + BJ 

+ (g/v'2)(AtAt + AfA2)(B! +B.). (3 ) 

In one-exciton space AtAt + AfA2 = 1, so that the B. 
vibration is equally coupled to both sites; we may then 
remove the B. vibration in one-exciton space by simple 
unitary transformation. We then ignore the B. vibra­
tion and take 

H=J(AtA2+AfAt) + B!B. 

+ (g/v'2)(AtAt -AfA2) (B. + B!) . (3a) 

If fa is the eigenval~e of Eq. (3a), the excited energy 
levels of the dimer are given by 

where n. is the number of (+) phonons in the state of 
interest. 

(4) 

If we set J = 0, this Hamiltonian can be diagonalized 
by the transformation H' = e·s H e· s, where 

s= (g/v'2) (AtAt -AfA2)(B. - B!) . (5) 

The eigenstates of H, in coordinate space, are then 

(6) 

where ct>~ is the nth harmonic oscillator eigenfunctions 
with argument Q. + g. Note that the eigenvalues are f! 
= -1/2 + n, so that iJ!! are degenerate. 

One would expect that in some neighborhood of J = 0 
the functions iJ!! constitute an approximate solution to 
the Hamiltonian. We investiage this further by writing 
H in matrix form in the iJ!" basis: 

H!,,=n-tt±J<ct>~Ict>;') , 

(iJ!! I HIIJ!:,) = ± (J/2)( ct>~1 ct>;,') + <ct>;'1 ct>~») , 
(iJ!!1 HI iJ!~) = ± (J/2)( - (ct>~1 ct>;,') + (ct>;'1 ct>~») . 

(7) 

Because of the parity of the harmonic oscillator func­
tions, the Hamiltonian matrix splits into two blocks, 
with one state at each value of n having total even parity 
and one having total odd parity. 

The validity of this representation for further ap­
proximation will depend on the convergence of the per­
turbation series for the energy and wave function. Un­
fortunately, this is difficult to evaluate, since there are 
an infinite number of off-diagonal elements. As a first 
approximation we could look at 

(8) 

However, even this is hard to work with as the overlaps 
(ct>~1 ct>;,') depend in a complex way on g, n, m. 

It is clear, however, that for sufficiently large J the 
perturbation series will not converge and the iJ!! will be 
a poor representation. In fact, this condition corre­
sponds to the transition discussed in Sec. ITA. The 
problem is then to find a representation in which per­
turbation theory will be valid for large J. 

The usual approach to this has been based on the vi­
brational calculation mentioned earlier. First, the ex­
citon operators in Eq. (3) are converted to the k repre­
sentation i. e., [A. = t(A t + A 2), A: = t(At + Af), A. 
=t(At -A 2); A!=t(At -An, 

H=J(A!A. -A!AJ+B!B. 

+C~) (A:A.+A!A.) (B.+B!) . (9) 

Then, a transformation H' = e·s H e·s is applied where 

S=g/v'2 (A!A.+A!A.)(B.-B!). (10) 

When g=g, we immediately obtain the earlier represen­
tation (5). When g= 0, we remain in the k space, which 
is diagonal when g = O. Thus, in some neighborhood of 
g = 0 we expect this representation to be valid. 

The trouble with this method is that no matter how 
small g is, one eventually reaches a pOint in the matrix 
of H where perturbation theory fails. The matrix in 
the 1+) ct>~, I - )ct>~ basis can be factored into two blocks 

1=1+0)1-1)1+ 2) ... , 

11=/-0>1+1>1-2> , 
where I+n>= I+>ct>~. 

(11) 

For one of these blocks (the other is found by changing 
the sign of J), we have 

H",,=n+J(-l)" , 

H",n.l=H",n.l=g..fn , (12) 

Hnm = 0 , m * n, n + 1 , or n - 1 . 

The criterion for perturbation theory to be valid is 
approximately 
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(13) 

or 

IgVn/(1 - 2J) I < 1 . 

Thus, when n>(1-2J)2/i', this representation no longer 
provides useful energies or wave functions. 

If we set g in Eq. (10) to SOme value 0 <g<g, the 
same problem appears, although now the condition is 
n> (1 - 2Jj2j(g _g)2. FurtherIpore

J 
for g> 0, off-di­

agonal terms of the form J<<1>~ 1<1>;f) appear, and lead 
to the same sort of problems as the full site space rep­
resentation. 

We see then that the canonical transformation given by 
Eq. (10) is limited in its ability to generate useful ap­
proximate eigenstates. It is possible to show that a gen­
eralized form of Eq. (10) (using vibronic excitation 
operators rather than separate phonon and exciton oper­
ators) is also insufficient. 1 We therefore formulate a 
new representation which in combination with the site 
space representation, completely spans the space of all 
values of g, J, and n. For the moment, we shall refer 
to that part of the (J,g) plane in which the site space 
representation is a good approximation as region I, and 
the remainder as region n. 

B. SchriXJinger representation 

In phonon coordinate space the dimer vibronic wave 
function is 

If!= 1+)xI(Q)+ 1-)X2(Q)· (14) 

The Schrodinger equation for If! is 

{ 
1 d2 1 

-2" d(1 +2" Q2 +J(A!A+ -A!AJ 

+gQ(A~A_+NA')}If!=EIf! . (15 ) 

Multiplying both sides by either 1+) or I -) and inte­
grating, we obtain two coupled differential equations: 

(h+J-E)XI(Q)=-gQX2(Q) , 

(h -J - E)X2(Q) = -gQxI(Q) , 
(16) 

where h= _t(d2/dQ2)+tQ2 is the zeroth-order phonon 
energy operator. 

We now expand XI(Q) and X2(Q) in harmonic oscillator 
states centered at Q = 0: 

(17) 

Substituting into Eq. (16) and integrating over ¢~ yields 
a set of coefficient equations 

cn(n + J - E) = (-ft) (b n_1'111 + bn+l'ln + 1 ) , (18a) 

bn(n-J-E)=ft (cn_Ivn+ cn+lv'n + 1) . (18b) 

Inserting Eq. (18b) into Eq. (18a) gives 

C (n +J _ E)_(L)2[cn-2v'n(n -1) + cn+2v'(n+ l)(n+ 2) 
n - {2 (n - 1 - J - E) (n + 1 - J - E) 

cnn cn(n+l) ] 
+n-1-J-E +n+l-J-E . 

(19) 

If the energy is shifted from its zeroth order value by 
an amount large compared to unity, which we will show 
to be correct in region II, we can then make the approx­
imation on the right-hand side 8: 

n-1-J-Ezn+l-J-Ezn-J-E. (20) 

Then, we obtain 

cn[(n +J - E)(n -J -E) - (2n + 1)i'/21=cn+2 ~ 

xv'(n+1)(n+2)+cn_2 ~ v'n(n-l) . (21 ) 

The entire set of these equations constitutes a matrix 
equation for the cn's: 

(22) 

where 

Mnn = (n - E)2 - [J2 + f (2n + 1)] '" (iJ.n + n - E)( - iJ.n + n - E) , 

iJ.n=[J 2 +i(2n+ 1)/21112 , (23) 

Mn,n+2 = M n+2,n = ~ v'(n + l)(n + 2) . 

As there are no Cn,l terms, M can be divided into two 
unconnected blocks, one in which n is even, the other 
in which n is odd. The condition for the eigenvalues 
of H are of course that the determinant of M vanishes. 
Since M factorizes, this occurs when the determinant 
of either the even block or the odd block vanishes. 
Since the diagonal elements of M are quadratic in E, 
the number of eigenvalues of each block will be twice 
the order of the block. Thus, the entire eigenvalue 
spectrum is obtained in this way. 

In order to find apprOXimate values of the energies, 
we factor one of the blocks of M (say the even block for 
definiteness) by writing 

M = M(1) • M (2) , 

(M1I»nm= (n+ iJ.n -E)onm, 
(24) 

(M(2»nm= (n -lin -E)onm + om,n+2i[(n+ l)(n+ 2)}1I2 

x (n + 2 + iJ.n - Erl 

+ Om,n-2i'[ (n - l)n p 12(n - 2 + lin - E)-I. 

Note that since nand m are both even numbers, M(2) is 
a tridiagonal matrix. (Also, this factorization could be 
done just as easily by dividing through by n - iJ.n - E 
rather than n + iJ.n - E; this freedom can be considered 
by allowing lin to be either positive or negative in the 
above.) The eigenvalues are then given by the zeros of 
det MIl) ordet'M'(Zl. The zeros of det MO), however, oc­
cur at E=n+ lin at which value some off-diagonal ele­
ments of M (2) blow up. The zeroth order approximation 
to an eigenvalue will be 

(25) 
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Substituting this into the off -diagonal elements of M(21 

results in 

{M(21}',J>+2 ~I[(p + l)(p + 2)]1/2(p + jJ.,+ 2 -n + jJ.n)"t . 
(26) 

The first correction to E~O) will then re 

~ 1) =g4(n + 1 )(n + 2)/[ (2 iln + 2)( iln - iln+2») 

+g4(n-1)n/[(2iln_2+2)(iln-iln_a») , (27) 

which for large J/I will be O(g4/J) and therefore small, 
and in addition for large n will be small. We have thus 
taken as an apprOXimate eigenvalue E~O) (as given 
above). Numerical calculations (see below) will show 
the accuracy of this expression in region II. A further 
justification for this approximation can be made by not­
ing that M~~~+2' in the region of the matrix near p = n, 
will for large n look like 

while the separation between diagonal elements be­
comes 

(28) 

(29) 

so that in this region the matrix resembles a displaced 
harmonic oscillator of frequency 2. This leads to a 
correction in the energy of -1/2, which is small rela­
tive to iln• In order for our approximation (in region 
II) to be valid, I iln I > ~I. Numerical calculations con­
firm this in this region. 

This discussion suggest a mathematical model for the 
transition in the vibronic wave function. In region I of 
(J,g) space the matrix of Eq. (4) is close to a DHO so 
that the energy is within a neighborhood of the DHO en­
ergy [Eq. (5)] [equivalently, the matrix defined by Eq. 
(6) is nearly diagonal). In region II it is M(2) which ap­
proximates a DHO; the energy is then given by Eq. 
(25). The criterion for "closeness" to a displaced os­
cillator for each matrix must be the inverse of the 
other, i. e., perturbation theory cannot be valid for both 
representations simultaneously. 

This situation corresponds to a well-known mathe­
matical behavior of the roots of polynomials. The deter­
minantal equation for E has an unstable region (as a 
function of parameters g, J) where the roots are trans­
formed by a small change in the parameters from 
n±tl to n±lJ2 + (I/2)(2n + 1)]1/2. The characteriza­
tion of the instability criteria is equivalent to evaluating 
the convergence criteria of the perturbation series for 
matrix (6) (or, alternately, for M(2». This is an inter­
esting but difficult problem, and we shall not attempt 
its solution here formally. In the results section we do 
investigate several points in (g, J) space, make some 
empirical observations about the n dependence of the 
tranSition, and formulate an approximate analytical 
criterion which is valid tn some parameter regions. 

In the transition region itself the energy can be ap­
proximated by E :::: n - [J 2 + (I - s2 )(2n + 1 )/2 ]1/2, where 
s is a parameter obtained by expanding Xb X2 in Eq. 
(11) in a basis {</>~, </>~S} and evaluating the vahie of s 
which leads to the best DHO approximation. We have 
not investigated this region in detail nor determined a 
practical procedure for finding s. 

C. Determination of the wave function for region II 

While Eq. (i9) yields the correct eigenvalues of M as 
those of M(21, the presence of MOl transforms the eigen­
vectors of M away from the DHO solutions to the prob­
lem M(2)· C' =0. Therefore, the coefficients have to 
be obtained in a different manner. Because of the dis­
placement of E from n({J2 + (1/2)[2(n + 1))}1/2), we can 
use the matrix equations from Eq. (4) and the energy ex­
pression to determine the eigenvectors directly. Note 
that the coefficients Cn now refer to the original {I + n), 
1-, n + 1), ... } basis rather than the 1+, n), J +, n + 2) 
basis, which spans the Hilbert space of Xl' 

First, we determine the coefficient cn+t as a function 
of cn (if - il - + jJ., we first determine Cn-t) as follOWS 
(note that we are performing this calculation for block 
1 here): The relevant matrix equations are, for gener­
al k, 

Ck_2gv7i"=f + ck_t(k -1 - E±J) + CkgYk = 0, (30) 

where the ±J depends on k and the block number. 

We take, in a second order approximation (this pro­
cedure could clearly be extended to higher order), the 
two equations 

Setting cn+3 = 0, substituting E= n - il, eliminating Cn+2. 
and solving for cn+t yields 

- cng";n+ 2 (2 + jJ. -J) 
(32) 

This procedure converges effectively because of the 
relatively large value of n - E + J (the displacement of 
the diagonal element multiplying cn), 1. e., il <grn. 
The remaining coefficients can now be obtained exactly 
by iteration of the matrix eQuations, 1. e. , 

- Cn-k+I(jJ. ±J) - Cn_k_tgv'n+T 
cn_k = gTii ' (33) 

where, again, the ±J depends on k and the block num­
ber 

- C n+k-t (jJ. ± J) - C n+k-2 gv'n=T 
c n+k = gin (34) 

Finally, c n is determined from the normalization condi­
tion 

(35) 

III. RESULTS AND DISCUSSION 

We present our results in the form of energies and 
eigenfunctions for various values of n for fixed points in 
the (J,g) plane. Viewing the transition as a function of 
n, there are three types of points: 

Case (1): All n states are in region II. 

Case (2): States of both types exist, but there is no 
configuration interaction between them (i. e., the sites 
of region I and region II states are well separated. ) 
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Then, one can define a critical phonon level n-r such that 
for (np):S nT' I/In is in region I while for (np) > nT' I/In 
.. . II p p 
IS ill reglOn . An approximate expression for nT is 
given by the breakdown of perturbation theory in the k­
space representation when 2J < 1 (see Sec. II E for a 
more detailed discussion of this point), i. e. , 

(1 - 2J)2 
nT '" ? (36) 

Case (3): Some n states fall in region I and others in 
region II, but extensive configuration interaction (CI) 
occurs. The approximate states described here are not 
exact and will have nonzero off-diagonal terms in the 
Hamiltonian; if these are large compared to the energy 
difference, CI will be important. This interaction will 
generally be relevant when it is between region I and 
region II states which are nearly degenerate in energy. 

The n referred to above is not the rank of the energy 
level in the exact diagonalization but is instead the index 
of the diagonal element (minus one) used in the approxi­
mate calculation. Thus, in region I we define the states 

1 
IJ!,. ~ v'2 (ll)cp! + 12 )cp~") , 

(37) 
En~n-!t±J(cp~lcp~K) , 

and'in region II, I/I~ is given in Sec. IIC, with 

En=n±[J2 + ~ (2n+ 1)] 1/2 (38) 

The corresponding state in the exact diagonalization 
can be found by computing the average phonon number 

(39) 

For g< 1 this number will be reasonably constant for 
regions I and II [i. e., the state corresponding to the nth 
diagonal of the matrix of Eq. (7) will have an (np) close 
to the state corresponding to the nth diagonal element of 
the matrix of Eq. (23)]. For g» 1 one would have to 
renormalize for the region I states. 

We examine examples of each of these kinds, making 
quantitative comparison with exact numerical results 
and providing a qualitative overview. Numerical re­
sults are in all cases obtained by diagonalizing a 75 x 75 
matrix given by Eq. (4). We consider only n:S 50 and 
g < 1. 0 as these limits are reasonable ranges of inter­
est for typical molecular systems. Also, all results 
here are for block I (cf. Sec. lIB); block II gives analo­
gous results. 

A. Case I 

Table I compares numerical and approximate calcula­
tions of energies and coefficients at several pOints in 
(J, g) space for which the states are in region II for all 
n. In the approximate calculations, Eq. (25) is used 
for the energy and Eq. (32) or its analog for either Cn,! 

or Cn_1 (see the text of Sec. II C for a further explana­
tion). Only the ratio cn*ti cn is computed. Calculation 
of the remaining coefficients involvp.s no further approx­
imations, although of course the error in cn ± 1 will be 
propagated. 

TABLE 1. Energies and eigenfunctions in region II for various 
J and g values. 

nph [i1 a E (exact) E (approx) C n• t (exact) C n.t (approx) 

(a) J - 0.5, f{lf2-0.5 

5[71 6.77 0.73 0.380 0.377 
1O[~J) 7.69 7.06 -0.577 - O. 510 
15 [18] 17.80 17.83 0.585 0.545 
20 [17) 16.80 16.76 - O. 705 - O. 6200 
25 [29] 28.70 28.61 0.667 0.632 
30(26) 25.90 26.06 - O. 736 - O. 686 
35[39) 38.80 39.20 0.925 0.6940 
40[36) 35.70 35.47 -1.02 - O. 734 
45(50) 49.70 49.80 0.886 0.734 
50[45) 44.90 44.95 - O. 923 -0.771 

(b) J ~ 1. 0, gl.f2~o. 5 

5(8) 6.92 6.94 0.314 0.307 
10 [9) 7.54 7.50 - O. 415 - O. 430 
15[19) 17.8 17.96 0.529 0.471 
20[ 18) 16.7 16.65 - O. 267 - O. 542 
25[30) 28.6 28.71 0.618 0.561 
30[27) 25.9 25.97 - O. 705 - 0.613 
35 [40) 38.9 39.33 0.811 0.622 
40 (37) 35.6 35.40 - O. 899 - O. 664 
45 [51) 49.7 49.87 +0.833 0.668 
50[46] 44.9 44.88 - O. 901 - O. 704 

(c) J~2. 0, g/f2~0.5 

5[9) 7.59 7.60 0.215 0.212 
10[8] 6.96 6.96 - O. 340 -0.310 
15[20] 18.40 18.43 0.372 0.356 
20 [18] 16.30 16.23 - O. 479 - O. 418 
25 [30] 28.90 29.09 0.492 0.442 
30(27) 25.70 25.61 - O. 581 - 0.490 
35[41] 39.50 39.66 0.5S0 0.504 
40[36] 35.10 35. OS - 0.656 - O. 544 
45 [51] 49.90 50.17 0.691 0.553 
50[ 46) 44.S0 44.59 - O. 765 - O. 587 

(d) J~O. 5, gl.f2 =0.2 

5[7] 5.95 5.83 0.188 0.197 
10 (10) 8.89 8.96 - O. 274 - O. 268 
15 [17] 16. 1 16.22 0.320 0.307 
20 [20] 18.80 18.63 - O. 383 - O. 347 
25[26) 26.10 26.51 0.447 0.370 
30 [29] 28. 10 28.36 - O. 375 - O. 400 
35(38) 36.90 36.76 0.401 0.415 
40[39] 38.0 38. 13 - O. 435 - O. 439 
45[48] 47.0 46.97 0.458 0.452 
50(49) 47.90 47.93 - O. 490 - O. 472 

a Ii) = level index (see the text). 

The agreement of the energies is excellent over a 
range of J and g values, while that for CUI/Cn is fair, 
worsening with increasing g.fri. This latter effect is 
due to truncation of the matrix equations (30); precision 
could be improved by truncating at a further point. The 
necessity of such a procedure will be clearer when we 
have performed calcultions of optical or dynamic prop-
erties. 

In Table I, we have also indicated the level index of 
the exact energies. This index is the number of lev­
els of the same total symmetry below the one considered 
(so that the lowest level has index 0). Note that even 
when the energy is very close to the level index, the 
largest component of the vector C n has an index n which 
may be far from the level index. Finally, we note that 
the approximate eigenvalues fround from Eq. (7) (by us-
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TABLE II. Energies and eigenfunctions for various J and q values in region I and region n. 

C •• 

n Eex Eapp n -1 n +1 n -1 

(a) C =0.1, g/.f2=0.2 

0 - 0.134 -0.133 -0.168 
2 1. 90 1. 90 0.364 -0.309 0.353 
4 3.92 3.93 0.526 -0.425 0.500 
6 5.94 5.966 0.662 - O. 537 0.612 
8 7.96 7.974 0.791 -0.652 0.707 

10 9.97 10.633 0.922 -0.774 0.790 
12 10.9 11. 0 -0.995 -0.369 
15 16.0 16.12 +0.410 +0.720 0.380 
18 16.9 16.78 -0.675 -0.462 
20 18.9 18.72 -0.589 - 0.493 

(b) J=0.3 g/!2=O.1 

0 -0.306 - O. 306 -0.0626 
5 5.20 5.18 0.151 -0.530 0, 140 

10 9.83 9.89 0.652 -0.0236 0,79 
15 15,10 15.01 0.292 -0.775 0.242 
20 19.9 20.07 0.852 -0,364 0.12 
25 25.0 24.83 0.421 -0,939 0,312 
30 30.0 30.25 0.474 -1. 0 0.342 
35 36.0 35.89 0.272 0.286 
40 39.0 39.05 -0,294 
45 46.0 46.0 0.308 0.314 
50 48.9 48.95 -0.328 

ing the diagonal elements H~n) often are close to the ex­
act eigenvalues in region II (for small J, g); however, 
the exact eigenfunctions (and hence optical properties) 
are not given as accurately by this approximation as 
by the procedure of Sec. IIC. 

B. Case II 

Here, we need to compute approximate solutions for 
both region I and region II states. The region II states 
are found as in case I, while the region I states are de­
termined from second order perturbation theory applied 
to the matrix of Eq. (12), i. e. , 

_ (gvn+T) 
Cn.! - - 1 ± 2J 

(40) 

When case II is valid [i. e., an nT given by Eq. (9) 
can be defined} these perturbation expressions give a 
reasonable approximation to the displaced oscillator 
transformation, as g..;n must be small in region I. One 
could alternately start from Eq. (6) and perform a per­
turbative calculation (indeed, this would give better re­
sults when J is small relative to g and n is close to n T ) 

but this is complicated by the infinite set of off -diagonal 
elements in this basis. 

In this paper we shall not be interested in the detailed 
form of the region I states as J, g, and n are varied, 
and we thus will not investigate this question further. 
For the two points in (J,g) space presented in Table II; 

Capp Disp. 

n + 1 Exact App. Region 

-0.167 -0.134 -0.133 
-0.289 -0.1 -0.1 
-0.373 -0.08 -0.07 I 
- 0.441 -0.06 - O. 034 I 
-0.5 -0.04 - 0.026 
- O. 552 -0.03 +0.033 
- O. 361 -l.1 -l. 0 II 

+l.0 + 1.12 II 
-0.410 -1.1 -1.22 II 
-0.423 -l. 1 -l.28 II 

-0,0625 - O. 306 - O. 306 
- O. 612 +0.2 0.18 
- 0,190 -0,17 - 0.11 
-l.0 +0,10 +0.01 
-0.286 - 0.10 +0.07 
-l. 25 0 - 0.17 
-1.39 0 +0.25 I 

l.0 l.11 II 
-0,302 - 1. 0 -l.05 II 

l.0 l.0 II 
-0.327 -1.1 -l.05 II 

agreement is reasonable for both the region I and re­
gion II states for both energies and coefficients. For 
the region I states we compute both cn.! and cn_! as these 
are both subject to approximation, while for the region 
II states we continue to compute only one or the other as 
in case I. 

The displacement of the energy from the unperturbed 
oscillator value n - E is a more sensitive indicator of 
the adequacy of the model than the energy itself. There­
fore, in Table II we calculate the exact and approxi­
mate displacements for both region I and region II 
states. We note that (1) as n - nT' agreement for the 
region I states becomes worse; here use of the zeroth 
order displacement of the displaced oscillator [Eq. (6)} 
basis D= -tt±J(cp~lcp~K) would be more accurate. 
Agreement is good for small n. (2) At n = nT there is 
a large discontinuous jump in the dis placement. (3) The 
magnitude of the displacement is predicted accurately 
for the region II states. 

Table III lists the exact and approximate values of nT 
for a region of (J, g) space which falls into case II 
(J = O. 1 - O. 5, g = O. 1 - O. 3). The approximate values 
are found from Eq. (36). 

TABLE III. nr as a function of J and g (exact/approximate). a 

J 
g 0.1 0.2 0.3 0.4 0.5 

0,1 47/64 40/36 32/16 16/4 ... / ... 
0.2 12/16 10/9 8/4 4/1 ... / ... 
0.3 3/4 3/2 2/1 1/·· • . .. / ... 
aApproximate from n T = (I - 25)2/ i . 
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TABLE IV. Sample exact eigenstate for J=O. 1, g/.[2 =0.5; E =45.73. 

n ph 37 38 39 40 41 42 43 44 45 4G 47 48 

en -0.08 -0.17 -0.18 -0.38 -0.26 -0.065 0.32 -0.18 0.36 -0.34 0.23 -0.132 

The g dependence is predicted very accurately (n T 

a:. 1/1') but the J dependence is somewhat worse. This 
reflects the fact that Eq. (36) is only an approximate 
criterion. 

C. Case III 

The results for this case are quite complicated and 
we have not sorted out the details. However, the gen­
eral qualitative behavior can be discussed. We expect 
that initially each n will yield a region I or region II 
state. Then, if a region I and region II state are close 
in energy, configuration interaction between these states 
(mixed by (lPrIHllPn») would be expected. For a given 
energy E a typical wave function in this region (we chose 
g 112 = O. 5, J = O. 1) has intensity both near n = E (from 
the region I state) and near n=E±[J2+ (l12)(2n+ 1))1/2 
(from the region II state). Table IV presents a sample 
exact eigenstate from the diagonalization of H for gl 
Y2 =0.5, J=O. 1. 

We analyze this state as follows: 

(1) The amplitude of lP near nph = 45 is contributed by 
a region I state lPr of energy E "" nph "" 45. 

(2) The amplitude near nph = 40 is contributed by a re­
gion II state lPu of energy E::::nph + {J 2 + (i'12)[2(nph 
+ 1)P/2::::44. 7. 

(3) The wave function is thus approximately 

1 
lPcr= Y2 (lPr+ lPu) 

and the energy 

E::::i(EI +E2)+A, 

where 

D. Phenomenological characterization of the wave 
function in regions I and II 

In a qualitative examination of the localized and de­
localized wave functions, we note two major differences: 

(1) In region I the energy is ""n-tl±J(cp~lcp;"); in 
region II it is displaced by [J 2 + 1'12(2n + 1)]112. 

(2) In region I the coefficients Cnol and Cn-l of lPn are 
of approximately equal magnitude and opposite sign for 
small gv'n[this can trivially be derived from Eq. (5)]; 
increasing J relative tog perturbs the ratio Icnolil 
I cn_ti away from:::: 1. In the de localized state I cnoll I 
I cn_11 is again:::: 1 but the signs are now the same, and 
the opposite of cn• Here, increasing J causes I cnoll I 
I cn_11 to approach 1 more closely. 

E. Analysis of the energy eigenvalues 

We need to discuss the approximation made in Eq. 
(15) to obtain the approximate energy [Eq. (25 )). A 
rigorous justification of this step could be made only 
from a detailed analytical determination of the transi­
tion criteria, which, as mentioned above, we do not in­
tend to undertake here. (It is plausible purely on the 
basis of the size of the terms involved.) Instead, we 
appeal to the excellent quantitative agreement of the 
energy as given bv Eq. (25) with the exact numerical re­
sults in region Il of (g, J, n) space. In all cases the dis­
placements are given to ± 10% (in most cases more ac­
curately), whereas perturbation theory from the ma­
trices defined by either Eq. (7) or (12) would err by or­
ders of magnitude of this region. 

The reader may have some question as to whether Eq. 
(20) can be valid when n - J - E ± 1 is small. However, 
as long as we are in region II, this will never be the 
case. Specifically, we really need to evaluate 

gv'n 
n-J-E±1 . 

Taking E=n+[J 2 +1'(2n+1»)1I2, we have 

glv'n 

[ 
tI ~172 

-J- J 2 +'2(2n+1)J ±1 

If J>O. 5, 

1_ J - [J 2 +; (2n + 1)] 1/2 ± 11 > [; (2n + 1)] 1/2 , 

so that 

glv'n 

F. Exciton-phonon correlation function 

In Fig. 1, we plot the exciton-phonon correlation 
function 0 [Eq. (2)] as a function of J for a given value 
of (Np ) (i. e., the state containing -(Np ) phonons is 
"followed" across regions I and II). It is apparent that 
the behavior of the ground state is quite different from 
the remaining states. For the ground state, 0 is a 
smooth function of J, 'reaching a maximum of -1 at J 
= 0 and tending to 0 as J - 00. For all other levels, how­
ever, 0 reaches a maximum at some intermediate value 
of J and discontinuously changes sign in this region, al­
though the limiting values of - 1 at g = 0 and 0 at J = 00 

are still preserved. 

This behavior can be understood by considering the 
nature of the transition between regions I and II. The 
correlation function 0 can be shown to be given by 
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FIG. 1. Exciton-phonon correlation function {j as a function of 
J for g /,[2 = 0.2 plotted for three values of (nph)' J Is in units 
of the vibrational frequency while {j is a unitless quantity. 

a=!.. aE . 
g ag 

Thus, atJ=O, E=n-~, so {l/g)(aE/ag)=-l and as 
J_oo, E-n±J, so {l/g){aE/ag)-O. 

For region II we have E"'n±[J2 + {1/2){2n+ 1)]1/2, 
so 

!.. 8E ±(2n + 1)[J2 + 1 {2n + 1)1-
1/2 

g ag 2 2 IJ 
For 1 (2n + 1)>> J this reduces to 

6'" ± (2n + 1 )1/2/ g{2 . 

(41) 

(42) 

For In> g we thus obtain I a I> 1; in fact, correlations 
orders of magnitude larger than that for J = 0 are often 
found. 

The ground state fails to exhibit the above behavior 
because of the following: 

(i) The displacement is always negative (- - ~I 
-J( ¢!I ¢~'») for region I, - - [J 2 + (1/2)]1 12 for region 
II, so there is no change of sign. 

(ii) The correlation function for region II is - [J 2 

+ <1/2)]·1/2 but this formula is valid only if [J 2 

+ <1/2)]1.2> 1. Thus, when Eq. (42) is applicable it 
always yields 161 < 1/ J < 1. Therefore, 161 will always 
be between 0 and 1 for the ground state. 

The behavior of 6 in region I close to the transition 
will depend on terms like (d/dg) (¢!I ¢~'). The com­
plexity of this term and the existence of the infinite 
number of off-diagonal elements in the perturbation 
series make it difficult to pursue this calculation 
analytically; we merely note the dependences given in 
Fig. 1 and see that it confirms our qualitative picture, 
i. e., as J - J Traus, 161 becomes larger and changes 
sign sharply somewhere in the transition region. 

We are therefore led, for n> 0, to define three re-

gions of (J,g) space with regard to the exciton-phonon 
correlation. The first region. of low correlation, cor­
responds to J»..fn so that 1n/[J2 + <t/2)(2n+ 1)]1/2 
«1 is a subset of region II. The second, of high cor­
relation, is a subset of region I in which a - -1. The 
third region is some neighborhood of the transition re­
gion and contains pOints in both regions I and II; we call 
this the region of anomalous correlation where, typical­
ly, 161» 1. 

The physical interpretation of these regions is as fol­
lows: 

(1) We write the vibronic wave function as 

(43) 

and 6 as 

(44) 

This is easily understood as the difference in the aver­
age position of Q. for the configurations ¢!¢~ and ¢~¢2' 

(2) In the region of low correlation, (Q.)1 "'(Q.)2, 
i. e., the average position of Q. is nearly equal whether 
molecule 1 or molecule 2 is excited. 

(3) In the region of high correlation, the average val­
ue of Q. on site 1 is close to - g/2, while on site 2 it is 
close to +g/2; thus, a "'1/g{-g/2 -g/2)"'-1. 

(4) In the region of anomalous correlation, (Q.)! 
",±..fn/2 while (Q.)2"''f1n/2; thus, 6",In/g. 

Thus, in the anomalous region extraordinarily large 
displacements of the coordinate may result. The pre­
cise physical reason for this and its consequences for 
other calculations (e. g., electron transfer) need to be 
in ve stiga ted. 

G. Localization and delocalization 

We showed earlier that for the Hamiltonian (1) all 
eigenstates are rigorously de localized, i. e., PI = P 2• 

This result has been known for some time, of course, 
and is a consequence of the symmetry of the Hamilton­
ian. What has normally been meant bv localization for 
such a Hamiltonian is an instability with respect to 
breaking this symmetry, i. e., for certain states the 
addition of a small perturbation of the appropriate sym­
metry to the Hamiltonian will convert this state to a 
truly localized one (i. e., IX1(Q)21» IX2(Q)1 2). 

For example, suppose J is very small compared to 
g; the solutions of Eq. (1) are then If!n - 11 )¢! ± 12 )¢~'. 
However, a small diagonal site perturbation [i. e.. a 
term like A(AfA1-AlA2)] will, if IAI >IJI, produce 
eigenstates If!n'" 11)¢! or If!n'" 12)¢~6. which are quite 
localized. 

It is tempting to identify our regions I and II as quasi· 
localized and quasidelocalized, respectively, the idea 
being that states in region I are unstable as described 
above, while those in region II are not. However, there 
is no need to do this speculatively; the effect of pertur-
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bations described above can be examined analytically 
using the methods developed in this paper. Weplantodo 
this in our next publication, where we shall delineate the 
precise criteria for the actual degree oflocalization as a 
function of the symmetry-breaking perturbation to, J, 
and g. For the moment, we'introduce these terms as 
having less explicit meaning, i. e., they categorize 
states only as belonging to region I or region II. 

Finally, we note that as n - 00 we will rea ch a point in 
n (or energy) where all states become quasidelocalized 
(region II states) regardless of the value of g and J. 
Thus, for any two-level system represented by Eq. (1), 
the Born-Oppenheimer approximation will eventually 
fail, no matter how small the exciton-phonon coupling. 
This result is consistent with nonadiabatic theories of 
radiationless transition which rely on a similar mecha­
nism to generate relaxation (5). In addition, this means 
that the standard theories of weak and strong vibronic 
coupling (6) apply only to certain values of n. 

IV. CONCLUSION 

The method which we have used to obtain the region 
II states is quite unusual and needs to be further 
characterized. It may also prove to be applicable to 
other types of problems. 

The analytical theory presented here spans the entire 
range of parameters g, J, and n; it thus suffices for 
calculation of optical properties. We plan to pursue 
these calculations in future publications, where quanti­
tative discussions of dimer line shape as a function of 
homogeneous (g, J) and inhomogeneous parameters will 
be given. One pOint can be made immediately, however. 
It seems clear that knowledge of g and w is critical to 
interpreting the apparent exciton splitting in a dimer ab­
sorption band. If one is in region II, the displacement 
of energy is [J 2 + CI/2)(2n + 1)]1/2 rather than J. Thus, 
if large n states contribute substantially to the spec­
trum, J can be relatively small and one can still ob­
serve a large splitting in the dimer. To estimate J 
directly from the apparent splitting is therefore an un­
acceptable procedure. 

The theory presented here can be extended to more 
complicated dimer Hamiltonians: different diagonal 
site energies, coupling of phonons to the exchange 
and site energies, additional molecular and/or lat­
tice vibrations, etc. Some of these Hamiltonians can 

be solved analytically to the same level of approxima­
tion as the problem treated here, while others require 
additional approximations. All solutions are elegant, 
compact, and easily evaluated relative to the difficulty 
of the problem. These results will appear in forthcom­
ing publications in this series. 

Thus, our initial effort to solve Hamiltonian (1) has 
led to a generalized procedure for attacking vibronic 
coupling problems. Many Jahn-Teller problems, for 
example, are isomorphic to the problems listed above 
and so can be solved at once. Application of our tech­
nique to polymers and crystals is also a promising pos­
sibility. Finally, the ability to analytically transform 
a wide variety of exciton-phonon coupled Hamiltonian 
to a nearly diagonal basis should have important conse­
quencies for calculation of dynamical properties (e. g. , 
energy transfer, charge transfer). 
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BThis approximation may be derived in another way beginning 

from Eqs. (16). Multiply the second of Eqs. (16) by 
(h -J _Er1, solve for X2(Q), and substitute into the first 
equation to get 

[(h+J-E)-g2Q(h-J-Er1Q]Xl=0. 

This corresponds to Eq. (19). The approximate result [Eq. 
(21)] corresponds to the neglect of the commutator 
[Q, (h -J -Erl] and then multiplying through by (h -J -E). 
The approximation in operator form is that I (h -J -€) 
x Q(h -J - d-1 - Q I is small in the sense that its matrix ele­
ments divided by energy differences is much less than 1. 
Equivalently, it corresponds to replacing the exact energy 
dependent "potential" by a simple approximate form. In re­
gion II, where the shift of the energies from n "'J is large com­
pared to I, this is a good approximation correct to the inverse 
of the square of that shift. 
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