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Exciton line shapes and migration with stochastic exciton 
lattice coupling8

) 
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Technology, Cambridge, Massachusetts 02139 
(Received 23 June 1978) 

In a recent article, Sumi [J. Chern. Phys. 67, 2943 (1977)] has discussed the optical line shape of an 
exciton interacting with phonons using a Gaussian Markov process for this interaction. By assuming that 
the correlation time of the process is nonzero, he was able to explore various limits of (motional) 
narrowing of the line. His analysis used a dynamic coherent potential approximation (CPA) in order to 
calculate the line shape. In the present paper, we derive these results in closed analytic form, without the 
CPA, by using standard analysis. Since our results agree with Sumi very closely, the present approach 
provides a simple way of understanding the underlying physics. In addition, we show how the exciton 
density of states enters in a simple way, and compare the hemicircular and the Lorentzian forms for this 
density of states. 

I. INTRODUCTION 

One of the most readily available means of gaining 
experimental evidence about the microscopic interac­
tions in a system consists in analyzing its optical line 
shape. 1 However, since the information that line shapes 
provide is not very detailed, it is important to be able 
to interpret it in terms of theoretical models that are 
realistic, i. e., include other available information 
about the system. Thus, one is led to consider moder­
ately complex models; these models should not be too 
simple since they must be able to mimic the behavior 
of the investigated materials; nor should they be com­
plex, since one must be able to determine unambiguous­
ly for each particular substance, from the calculated 
and the measured line shapes, the parameters of the 
model. 

A physical problem in which the study of the optical 
line shapes has received much attention and proven to 
be particularly fruitful is the exciton problem. Excitons 
in molecular crystals have been investigated extensive­
ly by light absorption. 2 Since their properties, de­
pending on the material and on the experimentally im­
posed conditions, vary widely, one obtained classes of 
excitonic line shapes that show considerable differences. 

A classical phenomenologic approach to the excitonic 
line shape is due to Haken and Strobl. 3 In their case, 
the Hamiltonian is assumed to have the form 

(1.1) 

Here, a; and a. are the creation and annihilation oper­
ators of an exciton with momentum k and energy E., 
respectively, while a~ and a" correspond to the exciton 
localized at the nth site of the lattice. The terms v" ... (t) 
represent stochastie fluctuations in the energy (n =m) 
and interaction (n* m) of localized excitons. These 

a) SUpported in part by the National Science Foundation. 
b)On leave from the Technische Universitiit M"linchen; work 
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fluctuations are due to the scattering of the excitons by 
lattice vibrations. 

Haken and Strobl's assumption about V" ... (t) is that 

(V .... (t)) =0 (1. 2) 

and that 

(V"".(t)V".".. (t') = r 1"_,,.III(t - t')[II"".II".".. + 11_.11".".(1 -11"".)] • 

(1. 3) 

< ) denotes the statistical ensemble average. Relation 
(1. 3) implies that fluctuations at different times are un­
correlated and corresponds to the shortest correlation 
time limit of a Gaussian-Markov process. It relies on 
the assumption that the phase randomization of the nor­
mal mode lattice components is very fast compared to 
the exciton dynamics. 

Sumi's approach1 following Toyozawa4 consists of re­
laxing this constraint; he assumes that the time depen­
dence of Eq. (1. 3) is given by an exponentially decaying 
function, i. e., is a Gaussian Markov process with a 
specified rate y = l/T o' Since this renders the problem 
more complex, one is led to consider first only the 
fluctuations in site energy and to set 

(1. 4) 

It is this Hamiltonian that we will consider in the follow­
ing. Note that y will be a measure of the phonon band­
width or dispersion. 

What remains to complete the characterization of the 
Hamiltonian (1.1) is now only to specify Ell as the func­
tion of k, i. e., the excitonic density of states. To 
simulate the density of states, one may use different 
shapes, the most usual being Lorentzians, Gaussians, 
or the hemicircular shapes of Hubbard. 5 It is the last 
one that Sumi used in determining by an iterative nu­
merical method the line shape of Eq. (1.1) in the con­
text of his dynamical coherent potential approximation, 

In this paper, we show that many results for the line 
shape may be obtained analytically for the excitonic 
densities of state mentioned above (including the hemi­
circular form), by making use of a Kubo-type cumulant 
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3590 A. Blumen and R. Silbey: Exciton line shapes and migration 

expansion. 6
-

8 We recover the results of Ref. 1 for both 
the fast and the slow modulation limit; they fOllow in­
deed only from the assumed form of the Hamiltonian 
and are not due to the dynamical coherent potential ap­
proximation used by Sumi. 1 

The paper is structured as follows: In Sec. II, we 
give the formula for the line shape and present the 
master equation that the exciton density matrix obeys. 
In Sec. III, we evaluate the line shape formula for dif­
ferent densities of state and present the explicit analytic 
solutions obtained; we also provide a comparison to the 
numerical results of Sumi. 1 In Sec. IV, we discuss the 
coherent versus incoherent exciton motion for different 
parameters of the model. Our summary and conclusions 
are found in Sec. V. 

II. THE LINE SHAPE 

The generalized cumulant expansion of Kubos is a 
particularly suitable procedure for deriving line shape 
formulas when the fluctuating potentials are Gaussian 
random processes, since a local time description re­
sults. The general formula for the line shape I(W) is9 

I(w)=!Re (+'" dteiwt(O 1 (!1 (t)!1 (0) 10) , (2.1) 
rr Jo 

where I 0) is the ground state of the system and we have 
assumed that the exciton energy is much larger than 
k B T • Also, we have averaged over the lattice fluctua­
tions: (J1 (t)) is the average over the lattice fluctuations 
of jJ.(t), where jJ.(t) is the dipole moment operator in the 
Heisenberg representation. The dipole moment operator 
ator can be written as 

so that 

For excitons, J-L. is nonzero only for k:= 0 [actually 
k:= 1O-3(rr!a), where a is a lattice'distance]. 

(2.2) 

(2.3) 

The time dependence of (a.(t» may be found from the 
Heisenberg equations of motion [H(t) is defined in Eq. 
(1. 1)] 

(2.4) 

where the superscript X is defined by Eq. (2.4). By 
transforming to the interaction representation and as­
suming that V nn(t) is a Gaussian-Markov process obey­
ing Eqs. (1. 2) and (1. 4), we find in Appendix A that 

(2.5) 

where 

g,,(T) = 1. L e-I<E.1-E k)T =elE"T f dwg(w)e-1WT (2.6) 
N kl 

and g(w) is the normalized density of exciton states. 
These are the formulas we will use to calculate the line 
shape. 

In order to discuss exciton diffUSion, we will need the 
equation of motion of the exciton density matrix.lo,n 
The full density matrix of the system obeys the equation 

(2.7) 

and we want the equation of motion of the exciton density 
matrix a(t): 

a(t) '" (p(t)) • (2.8) 

Using the fact that V(t) is a Gaussian-Markov process 
(see Appendix B) and transforming a(t) to the interaction 
representation a(t) as 

a(t) =eiH~t a(t) , (2.9) 

we find for the diagonal elements 

:to'U=-aU(t)[Re f dT2D2
e-YT gk (T)1 

+ ~ L:ak1"1(t)[lf dT2D 2 e-'YT COS(Ek-E"I)T] , 
"1 u 

(2.10) 
where Re means real part. Note that the multiplying 
factor of au in Eq. (2.10) is related to the exponent in 
Eq. (2.5). 

III. EXCITON DENSITIES OF STATES AND OPTICAL 
LINE SHAPES 

A. Densities of states 

In the previous section, we pointed out that the exci­
ton density of states g(w) enters the line shape formula 
(2.5) through gk(t) of Eq. (2.6), which is the Fourier 
transform of g(w) evaluated from E k • In order to eval­
uate the line shape, we must specify g(w), which in 
general is a rather complicated function of w. We ex­
pect, however, that the gross features of the line shape 
will not depend on the fine structure of g(w). We there­
fore use relatively simple expressions for g(w) or gk(t) 
while keeping a form which will resemble that of a real 
crystal. 

The exciton band is assumed to have a width 2B, with 
a mean energy E III' The k = 0 state usually lies at the 
bottom of the band (Eo=E", -B), or at the top of the band 
(Eo=E",+B); in rare cases, the k=O state may lie in the 
center of the band. We will consider only bands sym­
metric around Ell' 

The simplest g(w} which we will treat is the Lorentz­
ian 

(3.1) 

with 

(3.2) 
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A. Blumen and R. Silbey: Exciton line shapes and migration 3591 

This density of states allows us to evaluate most of the 
necessary formulas directly and is therefore extremely 
useful. However, because it does not vanish outside a 
finite width and has a very long taU, its use can lead to 
incorrect results if proper care is not taken. 

The density of states close to that of a three-dimen­
sional exciton band and yet still manageable analytically 
is the hemicircular shapes 

=0, 

with 

{
W>EM+B 

for w<EM -B ' (3.3) 

(3.4) 

where J 1(z) is the ordinary Bessel function of order one. 
This density of states mimi(!s the square root depen­
dence at the band edges and so is expected to give a 
good description of line shapes. 

Other possible densities of states are Gaussian 

with 

gk(t) =e+i (Ek·EMlt e-SZtZ/4 (3.6) 

or the triangular or rectangular shapes. We will not 
discuss these less interesting forms, but note that they 
all lead to slight variations to the final results. 

In the following discussion of line shapes, we will 
discuss only the Lorentzian and the hemicircular densi­
ties. 

B. Line shapes 

We are now in a position to evaluate line shapes by 
use of the above densities of states and Eq. (2.5). Let 
us define 

(3.7) 

which can also be written 

Ik(t) =exp[ _Dzit dT1(t - T1) e-l"'lgk(T1)] (3 • .8) 

or 

Ik(t) = exp(_D2 e- yt a~ eyt f g~(T1)e-l"'ldT1]' (3.9) 

In the line shape formula, there are three energy 
parameters: B, the exciton bandwidth; D, the exciton 
phonon coupling strength; and y, the inverse correlation 
time of the fluctuations (which should be related to the 
phonon dispersion). The line shape and position depend 
on the relative values of these parameters. 1 

1. D» B or 'Y: Gaussian limit 

In the limit that D is much larger than B or y [the 

exact inequality will depend slightly on the assumed 
form for gk(t)], the integral in the exponent of Eq. (3.7) 
or (3.8) for times t < liD will be t2/2, i. e., for t< liD, 
then t «B-1 or y-1, so that gk(T 1) e-l"'l "" 1. Thus, 

I(w) =!. Re (~ dtel(w-Ek>t e-DZt2/z 
IT Jo 

(3.10) 

Thus, in this limit, the line shape is Gaussian with a 
width proportional to D [full width at half-maximum 
= 2(21n2)1/2 D], independent of the explicit form of g(w). 

2. D« B or 'Y: Lorentzian limit 

In the limit in which D is much smaller than B or y, 
a different limiting form occurs. To study this case in 
its simplest guise, consider the Lorentzian density of 
exciton states [Eq. (3.1)]. Then, 

It(t) =exp[ _D2 f dT(t - T) e-
yT e+iEkT e-STJ ' (3.11) 

where we have put EM =0 for convenience. Then, 

I (t)=exp{- D2. [_l+(Y+B_iE)t+e-(Y+S-iE~t]} 
t (Y+B -tEk )2 k 

and (3.12) 

(3.13) 

At short times [t < (B + yt1
], the exponent in Eq. (3.12) 

is D2tY2<D2(B +ytZ «1; at longer times [t~(Y+Bt1], 
the exponent can be approximated as 

DZ 

-( B ·E)2[(Y+B-iEk)t]. y+ -t k 
(3.14) 

Thus, in the limit that (B +y)>> D, the line shape is 
given by 

( ) _ r lilT 
I w - (w _ E k _ r Z)2 + r~ , (3.15) 

i. e., a Lorentzian with width r 1 given by 

r _ D2(B +y) 
1- (B+y)2+E: ' 

(3.16) 

and shift r 2 given by 

r _ +D2 E_ 
2 - (B +y)2+E: • (3.17) 

If we had considered the hemicircular density of 
states [Eq. (3.3»), then we find, instead of Eq. (3.11), 

(3.18) 

Repeating the arguments below Eq. (3.13), we find that, 
in the limit D« (B2 +y2)1/2 and y> 0, the line is again 
approximately Lorentzian of width 

2D2 
r 1 = Jir({[y2~ + t(y2 +B2 _ E~)2)1/2 

+i(y2+B2 _~W/2 _ y) (3.19) 

J. Chern. Phys., Vol. 69, No.8, 15 October 1978 
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and shift 

2D2 
r 2 =+ F ({ [y2E:+Hy2+B2 _E=)2)1/2 

- Hy2 +B2 - E~W/2 (- signEk) + Ek). (3.20) 

T his is rather complicated, but in the simple case Ek = 0 
i. e., at the center of the band), then 

2D2 
r l (Ek=0)=j32[(B2+ y2)1/2_ y ] , (3.21) 

(3.22) 

so that, forB»y, r l ""2D2/BandforB<"y, r l ""D2/y. 
These are the familiar motional narrowing results of 
Kubo,9 Anderson,12 and Sumi, I and agree with the re­
sults of Eqs. (3.16) and (3.17). If we interpret 'I as a 
measure of the phonon bandwidth (or dispersion), then 
the simple golden rule formula for r I gives D2/ aE, 
where D2 is the square of the perturbation matrix ele­
ment and (aE)-1 is the relevant density of states aEaB 
if the exciton bandwidth is larger than the phonon band­
width, and aEay in the opposite case. 

For Ek""±B (top or bottom of the band), we have to 
be careful of Eqs. (3.19) and (3.20), because the ap­
proximation leading from Eq. (3.18) may break down 
when y/B is small; moreover, the exciton denSity of 
states is so small near Ek =±B that we must not trust 
the results obtained using the Lorentzian density of 
states (which has the incorrect form at the band edge). 
On the other hand, for (y/B) »1, we can trust Eqs. 
(3.19), (3.20), (3.16), and (3.17) near Ek=±B, where 
they lead to Lorentzian lines with 

rl(Ek =±B) ""D2/y (Y/B» 1) , 

r 2(Ek=±B) =D2 E/y2 (Y/B » 1) • 

(3.23) 

(3.24) 

In the limit that (y/B) < 1, but 1'> 0, we use Eqs. 
(3.19) and (3.20) (i. e., the hemicircular density of ex­
citon states) in the form 

rl(Ek =±B) ~ ~:y ({[(B/y)2+H/2+W/2 -1) , (3.25) 

r2(Ek=±B)~ 'f 2D2 {[(y2/B2 + y4/4B4)1/2 
B 

(3.26) 

These results will be examined and compared to Sumi's 
below. 

3. Static fluctuations: 'Y=O, .E k = ± B 

In the case that y =0, the static fluctuation case, for 
Ek = -B (the bottom of the band), we find, in the case of 
a hemicircular density of states, 

Ik(t) =exp LD21t dTI f
T

I dT2 2J1(BT2) e-UTlI ]. 
l 0)0 BTa 

(3.27) 
The integrations can be performed exactly in this case 
(see Appendix C) and we find 

2DlI 
Ik(t) = eXPBI" {iBt - i2Bt e-1Bt [Jo(Bt) +iJl (Bt)] 

+ 1 - e-1Bt Jo(Bt)} • (3.28) 

If D «B, then only the long time limit of I k(t) is impor­
tant in determining the integral (tB» 1) so that 

2D2 [ 2tl/2 Bt/2 ] 
Ik(t) - exp BI" - 7T1f2 (1 + i) + itB • (3.29) 

The line shape is then non-Lorentzian 

(3.30) 

In Appendix C. this integral is written in terms of ex­
ponentials and we find the full width at hali-maximum 
to be proportional to D 4/B 3, in agreement with Sumi. 
At this level of approximation, the line falls off more 
quickly on the low energy side of the peak than on the 
high energy side. 

C. Comparison to earlier results 

In order to compare our results to those of Sumi (for 
the same model Hamiltonian), we define the line nar­
rowing factor 

FWHM FWHM 
1) == 2v'2ln2D2 == (2. 36D) . 

(3.31) 

This is the ratio of the full width at hali-maximum of 
the absorption line for a particular set of B, D, and I' 
values to that for the Gaussian line (DlI»B2+y). 
Sumi1 plots 1) for various values of B/y as a function of 
D/(B2+y2)1/2. To facilitate a comparison, we give for­
mulas for 1/ at the band edge in the case D2 «B2 + 1'2 

for various values of B/y using the hemicircular densi­
ty of states [cf. Eq. (3.19)] 

B/Y=O, 

B/y=l, 

1) =0. 85D/(B2+ y2)1/2 , 

1/ = 0. 65D/(B2 + y2)1/2 , 

B/y=10, 1/=0. 38D/(B2+y2)1/2 , 

B/y=100, 1) =0. 15D/(BlI+yll)1/2 • 

(3.32) 

As shown in Table I, these results agree quantitatively 
with Sumi. 1 

In the static case, in which I' =0, we find a very 
asymmetric line (see Appendix C) whose upper hali­
width is 3. 67D 4/B 3 (Sumi reports 3.18D 4/B 3) and whose 

TABLE 1. Line narrowing factor for a hemicircular density of 
exciton states as a function of DiY and BlY [D2« (B2+y2)1. 

DIY BIY log Tj(Ek=O) log Tj(Ek=±B) log Tj(E,,= _B)a 

0.1 0 -1.07 -1.07 -1.08 
1 -1.15 -1.34 -1.35 
10 -1. 81 -2.42 -2.40 
100 -2.70 -3.81 -3.77 

0.01 0 -2.07 -2.07 _2.08b 

1 -2.15 -2.34 -2.35 
10 -2.81 -3.42 -3.40 
100 -3.70 -4.81 -4.77 

aFrom SUmi. (t) 
~xtrapolated from Fig. 2 of SUmi. (1) 
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lower half-width is 0.97D41B3 (Sumi reports 0.61D 4IB 3
). 

In addition, we find the peak position shifted by 2D21B 
to the red, again in agreement with Sumi. As re­
marked above, the line is very asymmetric, falling 
very slowly on the blue end of the peak. 

IV. EXCITON DYNAMICS 

The nature of exciton motion will be characterized by 
whether the mean free path of the exciton in a k state 
l(k) is greater or less than a lattice constant I al. If 
l(k) > I a I, we will call it band motion and if l(k) < I a I , 
we will call it hopping motion. 

As we saw in Sec. II, the factor relating dU_/dt to 
ii is related to the real part of the factor in the expo-

--nent of I (t) [compare Eqs. (2.5) and (2.10)]. For long 
times, t~s factor is the inverse of the scattering time 
out of the state with wave vector k (i. e., for long times, 
da __ Idt = - au T;;I). Thus, 

r -1 2D2 R r~ dT e->~ g.(T) 
_k = Tk = e J

o 
K 

(4.1) 

and 

A I I v(k) ~ B 
l(k) =l(k)1 a = r-I al = r ' 

kk k_ 

(4.2) 

where we have set the velocity of the exciton v(k) ap­
proximately equal to half the bandwidth multiplied by the 
lattice constant. This is valid near the band center 
E."'O. 

For E_ = 0 and a Lorentzian density of exciton states, 

r __ =2D2/(B+y) , (4.3a) 

I(k) =iB(B +y)ID2 , (4.3b) 

so that, for B/Y« 1, l(k)>> 1 if B »D2 Iy and l(k) «1 if 
B «D2/y. This represents the Haken-Strobl3 limit, be­
cause, for Bly« 1, 

(4.4) 

in agreement with their assumptions. Physically, this 
corresponds to the limit in which the phonon bandwidth 
(-y) is much larger than the exciton bandwidth (- B). 
In this limit, the transport is bandlike if B »D2/y and 
hoppinglike if B «D2/y. 

In the case of general Bly, we find f(k) » 1 whenever 

(4.5) 

(for E_ =0 and a Lorentzian density of states). Thus, 
foryID=O, (BID»..[2 and for y/D=l, BID> 1. From 
Sumi's analysis,l he finds, for ylD =0, (BID) ~O. 95 
and for ylD = 1, BID ~ O. 7. Thus, the Lorentzian den­
sity of states gives good agreement with these results. 
The slight difference between Sumi's results and ours is 
that his criterion for the change from band to hopping 
is r .. = 2B. ThUS, his results for the limiting values 
of (BIn) are approximately a factor of 2-1/2 those of 
ours. For E. = 0 and a hemicircular density of states, 
we find 

(4.6a) 

A B3 1 
l(k) = 4D2 [(B2+i)i72 _y] (4.6b) 

so that, fory/D=O, l(k» 1forBID>2andforyID=1, 
t(k» 1 for BID ~ 1.1. Thus, these results are again in 
good agreement with those of Sumi. 

The mean free path depends on E_ in a rather compli­
cated manner; however, for E,. near the band edges, the 
critical value of Bin decreases slightly. This decrease 
is small enough so that for qualitative results it is un­
important. 

V. SUMMARY AND CONCLUSIONS 

The analYSis presented in this paper is a straight­
forward application of the usual theories of line shapes 
and exciton dynamics. We have, following Sumi1 and 
Toyozawa, 4 introduced three energy parameters in the 
Hamiltonian: (1) the decay rate of the exciton phonon 
fluctuations y which can be taken to be a measure of the 
phonon bandwidth; (2) the exciton bandwidth 2B; and (3) 
the amplitude of the exciton phonon fluctuations D. 
Assuming that the exciton phonon coupling is a Gauss­
ian-Markov process (with correlation time y-1) leads 
to an integral expression for the line shape and to a 
stochastic Liouville equation for the exciton density 
matrix. 

In the limit D2 » B2 +y2, a Gaussian optical line re­
sults with half-width v'2ln2D. In the opposite limit, 
the optical line width becomes narrower (motional nar­
rowing) and the peak shifts. As Y/D- 00, the exciton 
phonon correlation function becomes a delta function of 
height D2/y and the optical line becomes a Lorentzian 
of the half-width D2/y. In the limit that BID gets very 
large (but y* 0), the line becomes Lorentzian (of half­
width 2D21B for the band center). 

As pointed out by Toyozawa and Sumi, 1 the ylD- 00 

limit is that treated by Haken and Strob13 and Haken and 
co-workers. 3 In the limit B - 0, the present theory re­
duces to that of Kubo. 6 

The ilnalysis presented here does not rely on the dy­
namical coherent potential approximation of sumi, 1 but 
instead on various approximations to the integrals ap­
pearing in the line shape function. This shows the 
general behavior which comes out of this model without 
much computation. 

The present analysis can be extended and improved 
in a number of ways. First, the nondiagonal fluctua­
tions can be treated [i. e., (Vn",(t) V"".) ] in the same man­
ner. Although this is straightforward, it is tedious and 
introduces some complications. It is best left to anoth­
er note. Secondly, the Urbach rule, which comes out 
of Sumi's analysiS, can be retrieved by our analysis 
only with more computation, which we felt would ob­
scure the general pOint of this paper. 

APPENDIX A: OPTICAL LINE SHAPE FORMULAS 

We begin with Eq. (2.4): 

(AI) 
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In the interaction representation defined as 

ii~(t) =e-iH~t ak(t) =e-iHot ak(t) e+iHot , 

we find 

where 

V(t) =e-iHotV(t) eiHot • 

Thus, 

iik(t)=eXPT[i f VX(T)dT]ak(O) , 

(A2) 

(A3) 

(A4) 

(A5) 

where the subscript refers to the usual time ordered 
exponential. We may then write 

(A6) 

The usual definition of the moments Mn(t) and the cumu­
lants Kn (t) is6• 8 

lexpT[i f VX(T)dT1) = t Mn(t) = eXPT[ t Kn(t)]. (A7) 
'\ 0 J n =0 n=1 

NOW, consider the time dependence of (01 (ak(t» a;1 0) in 
order to find Ik(W): 

d~ (OI(ak(t»a:IO) '" :t [e+iEkt(OI (ak(t»a;1 O)J 

=(01 [Ka(t)(ak(t»Ja;1 0) , (Al4) 

with 

(Al5) 

Since (0 I a;, vanishes for any k', we find 

:t(O 1 (ak(t)) a;1 0) = _~2 f dTe-Tlt-TI 

xL ei<Ek-Ekl)(t-T)(ol (iik(t»'a:1 0) • 

kt (Al6) 

Integrating Eqs. (Al6), we find 

(0 I ( ak(t» a: 10) = exp[ _D2 f dT iT dTI e-TTIgk(TI)] , 

(Al7) 
where gk(T) is given by Eq. (2.6). Thus, 

(0 I (iik(t» a; I 0) 

=e-1Ekt exp[ _Dzlt dT i TI 
dTI e-Yfl gk(TI)] (AlB) 

and lk(w) is given by 

I 

For a Gaussian process, only the first two cumulants 
are nonzero: 

(AS) 

K2(t) =M2(t) - iT [MI (t)J2 

=_1
t 
dTlfl dT2[(VX(TI)VX(T2»-(VX(TI»(VX(T2»J· 

o 0 

(A9) 
We now use the explicit potential form of Eqs. (1. 2) 

and (1. 4). In the momentum representation, 

v(t) = L Vnn(t) a; ~ = L V kkl (t) a; akl • (AlO) 
n UI 

Thus 

(All) 

and, from E_q. (1. 2), (Vkkl(t» =0; thus MI(t) =KI(t) =0. 
Evaluating K 2(t), we need 

(Al2) 

and therefore 

(Al3) 

APPENDIX B: EXCITON DENSITY MATRIX EQUATIONS 
OF MOTION 

Starting from the equation of motion of the density 
matrix 

and the definition of the interaction representation 

p(t)=eiH~tp(t)=ejHotp(t)e-lHot, (B2) 

we find 

where 

V(t) =eIH~t V(t) • (B4) 

Thus 

5-(t) =(p(t)) = (expT[-i f VX(T)])O'(O). (B5) 

Using the Gaussian nature of V(t) and Eq. (1. 2), we find 
that only the second cumulant is nonzero, so that 

(B6) 
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with 

(B7) 

Thus, we find, using the generalized cumulant of Freed7 

and Kubo, 6 

!!. UIIk(t) = _It dT (0 I a_ [( VX(t)VX(T) ~(t)] a; 10) 
dt 0 

(B8) 

The diagonal elements in the k representation, which 
diagonalizes Ho, are then given by [using Eq. (A13)] 

= - (I dT D2 e-yl 
t-TI z= 6k1+kS.k2 '"'4 exp[i(Ek1 - E kz) t+ i (Ek - E k4)T] (0 I ak[a; ak ,[a; ak4' &(t)]] a; I 0), (B9) 

)0 N k1k2k3k4 3 1 Z 3 

where we have assumed that (V(T1)V(T2) =(V(Tz)V(Tl». 
Evaluating the matrix elements in Eq. (B9), we find 

:t ~kk(t)=-~kk(t)[lt dT2Dze-yr ~ Re z= el (Ek-Ek1 )T] 
o kl 

+ "& (t)lt dT 2DZe-YT ..!. Re(el(Ek-Ekl)T) LJ klkl N ' k1 0 
(BIO) 

which is equivalent to Eq. (2.10). We note that the fac­
tor in front of ~kk(t) on the right-hand side of Eq. (BIO) 
is twice the real part of the factor in front of 
(01 (ak(t» a;1 0) on the right-hand side of Eq. (A16). 

APPENDIX C: LINE SHAPE CALCULATIONS 

In Sec. III, in the discussion of the limiting case 
D <<.B or 1', we found Lorentzian line shapes. Using 

which is Eq. (3.15) et seq. 

In the case that we use a hemicircular form for the 
density of exciton states, we find [Eq. (3.18)] 

Ik(t)=exp [ _D2 f d-r(t-T)e-yrelEkT 2J1(BT)/BT]. (C4) 

In the case that D2 <<. B2 + 1'2, we again may use the long 
time limit in Ik(t) forI(w) when Iw-Ekl$(B2+y)1/2, so 
that 

Ik(t)~ exp-[DZt fa" dTe-yr eIEkT2J~~T)] (C5) 

as long as I' > O. If 1'/ B is small, then 

can become very large as E k- ±B; in fact, for Ek =±B, 
it diverges as 1'- O. Therefore, great care must be 
taken for 1'- 0 and E_ =±B. In any other case, the ap­
proximations leading to Eq. (C5) are valid and I(w) is 

a density of exciton states which is of Lorentzian form, 
we found [see Eq. (3.12)] that 

I (t)=exp{ _D2. [_l+(Y+B_iE)t+e-(?,+B-iEkH]l 
k (B+y-tEk)Z k f 

(Cl) 
and 

(C2) 

For times short compared to (B +1')-1, the exponent in 
Eq. (C1) is of order D 2t2 <<.1 [in the case D« (B +1')] so 
thatIk(t)::::l for t«B+y)"l. Fort>(B+y)-I, the expo­
nent is 

- D2(B + I' +iEk)t/[(B + 1')2 + E~] • 

For Iw-Ekl«B+y), we can use the longtime form of 
I_(t) in Eq. (C2), so that 

(C3) 

the Lorentzian with half-width given by Eq. (3.19) and 
shift given by Eq. (3.20). 

In the case 1'=0, Ek=±B (the static, band edge limit), 
we find 

I_(t) =exP[-Dzl ' dTI ('1 dTze- iBTz 2J1(BTZ)] (C6) 
o Jo BTz 

I
t 2 

=exp_Dz 
0 dT1:B{-i-e-IBT1[Jl(BT1)-iJo(BTt)]} , 

where we have used formula (11. 3.10) of Abramowitz 
and Stegun. 13 Thus, 

Ik(t) =exp{-:t [- iBt - IaBt 
dz e-h [J1(z) - iJo(Z)]]}. 

(C7) 
Using formulas (11.3.9) and (11.3.4) of Abramowitz 
and Stegun, t3 we find 

1 _(t) =exp(~ {iBt - 2iBt e-IB1 [Jo(Bt) +iJ1(BT)] 

+ 1 - e-IB1 Jo(Bt)} ) , (C8) 

which is identical to Eq. (3.28). For 1 w - E,tl <B and 
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D 2 <'B2
, we need only the long time form of Eq. (CB) for 

I(w). Using the asymptotic behavior of In(z). 13 

(C9) 

and 

I(w) = ;Re f'" dte l(w+B+2D
2
IBlt exp[ _¥j:-(~tr/2 (1 +0]. 

(C10) 
DefiningX=w+B+2D2IB andK=4D2/(B 311)1/2, we sub­
stitute 

z =(1+i)tI/2 , for X<O, 

so that 

(Cll) 

Closing the contour by going from (1 +OR to R and from 
R to 0, we find (since for R large the contribution van­
ishes from the line integral from (1 + OR to R] 

I(w) =! Reioo dz~ ex .r
2
/2 e-K.r=0, for X<O • 

11 0 t 
(C12) 

For x> 0, substitute z = (1- i)tl/2 and 

1 JI1
-

llR 
2 I(W) =-Re lim iz dz e-x.r 12 e -IK.r • 

11 R-oo (l-ll0 
(C13) 

Closing the contour by going from (1-0R to R and from 
R to 0, we find (again noting that the contribution van­
ishes along the line (1 - i)R to R] 

I(w) - ! roo dz z sinKz e-x.r2/2 _ K e-K2/2X 
- 11 Jo - (211X3) 11 Z • (C14) 

Thus, the optical line is very unsymmetric, vanishing 
below w = -B - 2D2IB, with a peak at w ~ -B - (2D2IB) 
+ 16(D4/(311B 3)] and falling off very slowly to the blue. 
Using Eq. (C14), we can find the upper half-width (i. e., 

the frequency above the peak at which the intensity is 
half the peak height) and the lower half-width. Writing 
these frequencies as wh =K2 a, we find 

a3/2 e l/2"': 2 e3/2/33/2 , 

so that a'" 0.15 and a'" 1. 05. Since the peak is at 
a: 0.33, we find that the upper half-width Wt is O. 72~ 
~ 3. 67D 41B3 and the lower half-width W2 is 0.19K2 

=0. 97D 4/B 3
• 
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