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A model is developed for calculating the asymptotic trapping rate, by a sink, of an excitation migrating 
in a quasi-one-dimensional dilute system. The asymptotic behavior for the dilute limit differs considerably 
from that corresponding to a concentrated system. The migration is assumed to be incoherent and is 
described within the continuous time random walk approach. The competing roles of short range 
exchange coupling and of long range dipole-<lipole coupling is also discussed using time scaling 
arguments. 

I. INTRODUCTION 

There has been growing interest in the problem of the 
quenching of excitation migrating in condensed media by 
a low lying trap or supertrap.1-5 This problem overlaps 
strongly with the wide field of dynamical recombination 
controlled by random migration of the initially prepared 
species. 6 

Most of the works on excitation's trapping studied 
trapping rates of electronic excitation by x traps, 1 
dimers,2 or guest supertraps, 3 trapping of vibrational 
energy which relaxes to a dimer,4 and also quenching 
of migrating spins by rapidly relaxing centers. 5 The 
studies on electronic excitation transfer and trapping 
have been devoted either to the problem of localization 
at the low concentration limit? or to incoherent migra
tion at the high concentration limit·. 1 In the cases of 
vibrational energy and spin relaxation a constant diffu
sion coefficient has been proposed8

,9 in the usual diffu
sion controlled framework or using the "hopping" mod
el. 10,11 

"In previous work,12 we have formulated the problem 
of excitation transfer in disordered crystals in the in
coherent limit (strong scattering regime). We studied 
the long .time behavior of the mean square displacement 
of the excitation and the long time evolution of the prob
ability that the excitation remains at its origin. How
ever, in many real systems the long time behavior may 
be dominated by migration to a sink, thereby masking 
the predicted12 long time spectral and spatial diffusion. 

In this article we develop a simple model for trapping 
of an electronic excitation which migrates incoherently 
in one dimension in the dilute limit. The model is easi
ly extended to higher dimensionalities and is of course 
applicable to migrating species other than electronic 
excitations. In some sense our note describes the elec
tronic excitation analogy of the recent theory by Theo
dorou and Cohen (TC) for random one-dimensional mag
netic systems. 13 

The model is based on the first passage time version 
of the continuous time random walk (CTRW) by Montroll 
and Weiss14 (MW). The assumptions of the model pre
sented here are as follows: 

(a) Migration takes place on a lattice of impurities 
having a probability distribution labelled pew) of nearest 
neighbor hopping rates, w, at each site. 

(b) The concentration of sinks, C s, is much smaller 
than the concentration of impurities, C, over which the 
excitation migrates (Cs/C« 1). 

(c) The energy level of the sinks is much below the 
impurities' excitation energy, and hence no detrapping 
is possible. 

(d) We restrict the model to a strictly one-dimension
al case. 

(e) Only the asymptotic long time trapping rate is con
sidered here. 

Assumptions (b)-(d) are based on experimentally studied 
molecular crystals systems, especially concerning the 
EET problem. 1-3 Both 1, 4-dibromonaphthalene (DBN) 
and 1,2,4, 5-tetrachlorobenzen (TCB) may be considered 
as one dimensional1,2 and Cs , at least in the case of the 
supertrap, is adjustable and usually very small. 3 The 
"depth" of sink is defined relative to the temperature 
needed for de trapping. 2,3 

II. TRAPPING RATE 

We are interested in the asymptotic trapping rate of 
an electronic excitation under the "diffusion" controlled 
assumption: random walk of the excitation towards the 
sink, which differs from the "hopping" or homogeneous 
quenching approach. 11 In what follows we adopt the MW14 

first passage time problem in the framework of the 
CTRW. 

We assume a lattice of impurities, where the excita
tion on each site has a distribution of hopping times >I'(t) 
[which will later be connected with the distribution of 
hopping rates pew)]. .p(t) contains the information about 
disorder in the system. The sinks, having very low 
concentration,1-3 Cs , where Cs/C<1O-3, are assumed 
to be randomly distributed over the lattice - each lattice 
site is occupied with a sink with equal probability Cs • 

We follow MW14 closely and define F(s, t) as the prob
ability density of an excitation starting from s = 0 to 
reach site s at time t for the first time. We then as
sume that the trapping rate is given by 

k(t)- Li(s, t) , (1) 
s~o 

which in the terminology of the regular diffusion theory 
means that the effective, or reaction, radius is an inter
impurity distance. Defining the set {lJrn( t}} by 
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lJio(t) = o(t) , 

lJi n(t) = it lJi( r)lJin_1(t-r)dr: n ~ 1 , 
o 

(2a) 

(2b) 

where lJi n(t) is the probability density for the occurrence 
the n step at time t, it can be shown14 that {lJi n(t)} have 
the property 

(3) 

where 

(4) 

F n(s) is defined as the probability that the excitation 
reaches site s for the first time at step n. The gener
ating function of Fn(s) is 

F(s,z) = f' Fn(s)zn . 
~ 

In terms of Fn(s) and of Eq. (5), :F(s, t) is given by 
00 

(5) 

:F(s,t)=LFn(s)lJin(t) , (6) 
,..0 

with the Laplace transform 

:F(s, u) = L Fn(s)[ ~(u»)n (7) 
n.O 

The Laplace transform of the trapping rate is then 

k(u) = L F(s, ~(u» . (8) 
8#0 

The generating function F(s, z) is given in the terms of 
the random walk generating function R(s, z), 14 

F(s, z) = [R(s, z) -lis, OJ/R(O, z) 

Using the relation14 

LR(s,z)=(1- zt 1
, 

• 
we obtain 

~F(S,Z) (1_Z)~{O,z)-1 
or 

- 1 k(u) = -1 
[1 - W(u»)R(O, ~(u» 

(9) 

(10) 

(11) 

(12) 

and k(t) is its inverse Laplace transform. The trapping 
rate k(t) depends of course on -ii(u) [or -ii(t»), which re
flects the nature of migration over the impurity sites, 
and on R(O, -ii(u» , which has a typical behavior depending 
on dimensionality. The known1,14 results for the long 
time dependence of the trapping rates in an ordered sys
tem with low sink concentration can be recovered. 

In an ordered system1,15 

>ii(u) = >../(X + u) 

and 

(13) 

(14) 

-( ) _ >.. + u -1 
k u - uR(O, X/x +u) 

For ID, 

R(O,z)=(I-z~)l/~ , 

and therefore 

k(t)- ·"l/~r1l2 t- 00 or t>X-1 • 

For 2D, 

R(0,Z)=-7T,11g(1-z) , 

and 

k(t)-l/lgxt t-oO. 

For 3D, 

R(O,z)-const asz-l, 

and 

(15) 

(16a) 

(16b) 

(17a) 

(17b) 

(18a) 

(18b) 

The above conclusions are not changed even when lJi(t) 
is different from Eq. (13), provided that it has at least 
first moment 

T = jtlJi(t) dt • (19) 

T is the average hopping time (for instance multipolar 
interaction in aU dimensions). 

In the above framework we also understand the k(t) 
discussed by Wieting et al. lb in the case of a concentrat
ed TeB system, where lJi(t) is given by Eq. (13) (or at 
least has a first moment). The same approach should 
be used for electronic energy transfer in the highly con
centrated naphthalene systems studied by Argyrakis et 
al. 3 if the situation is that of incoherent migration. 

III. THE aUASI·ONE·DIMENSIONAL SYSTEM 

We now turn to one-dimensional (1D) molecular crys
tals, which have been the subject of some recent stud
ies. 1,2,16 For the triplet excitations of these crystals, 
the intermolecular interactions are dominated by ex
change or superexchange,17 and we have for the transfer 
rate 

(20) 

Taking the concentration of the impurities as C, two 
lengths can be defined in the problem, 13 

(21) 

The mean separation between impurities and the range 
of interaction, respectively. When d and R are both 
large, and this is the limit we are interested in, then m 
and therefore w can be treated as continuous variables. 
The probability distribution of w is then13 

p(w)= L(Wo)l-~_w'a O<w<wo, (22) 
Wo W 

p(w) = 0 otherwise, 

where 

O!=I-y (23) 

and 
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y';Ec/K • (24) 

In Ref. 12 we analyzed the properties of pew) depending 
on the value of a; 

(i) a> 0 (low concentration limit); 

(ii) a = 0 (crossover); 

(iii) a < 0 (high concentration limit). 

A transition from low concentration pew) (a> 0), and 
therefore a corresponding transition in certain proper
ties of the system, have been predicted by TC13 for di
lute random magnets in one dimensio.n. In studying the 
incoherent electronic energy transfer among the mono
mer impurities in TCB1 or in DBN, 16 both quasi ID, it 
will be reasonable to restrict the model to case (i), 
namely, the low concentration limit. At higher concen
trations impurity clusters must be considered, and it is 
not clear if p(w) in Eq. (22) has the same concentration 
dependence at these higher C values. 

Restricting our discussion to Q> 0 we now apply our 
results in Ref. 12 to derive k(t) from Eq. (22): 

and 

>It(t) = f"" we-wtp(w)dw , 
o 

-$(u) = I'" wp(w) dw 
o w+u 

(25) 

(26) 

the asymptotic limit of >It(t) is found by taking the u - 0 
limit of -.ti(u), 

4i(u)-l_Au U-a) , (27) 

where A is independent of u. Using the formulas for 
k(t) with this form of >ii(u), we find 

k(t)- r u + a)/2 = t<-2 + y)/2 , t- 00 • (28) 

Equation (28) demonstrates the fast decay of the trapping 
rate in the low concentration limit, in comparison with 
the ordered or high concentration limit, Eq. (16b). 

We shall now present the asymptotic form of k(t) for 
Q = 0 and Q < 0, although they are not directly related to 
the problem of electronic energy trapping in the dilute 
casel8

: 

Q=O: 

4i(u) according to Eq. (26) is given by 

-$(u)-l+ulnu, u-O 

and 

- 1 
k(u)- u1t2 ln1l2(l/u) 

k(t)-1/[tlnt)1/2 ,1- 00 

This interesting behavior is closer to the "ordered" 

(29) 

(30) 

(31) 

k(t) and is definedlS as a crossover between the highly 
disordered limit (low concentration) and the ordered be
havior (high concentration). 

Q<O: 

In this case 

4i(u)-l-w;~tU, u-O 

W;~t =(l/w) , 

so that the trapping rate is 

(32) 

(33) 

k(t)- rI/2w~~~ , t- 00 • (34) 

Equation (34) represents the asymptotic trapping rate 
for all p(w) having a W;~t. 

The form of pew), Eq. (22), is derived for purely ex
change (or superexchange) interactions in the dilute lim
it; however, the exchange interaction falls off quickly 
with distance, and if there is any small component of 
dipole-dipole interaction in the matrix element govern
ing transfer, then there will be a distance beyond which 
the intermolecular interaction (and the migration) will 
be dominated by the dipolar (or multipolar in the general 
case) interaction. 13 Assume that the distance at which 
this crossover occurs is equivalent to an intermolecular 
interaction wIt, then the correct distribution of interac
tions is given by 

(35) 

where D is a constant independent of w. Using this p(w), 
we can see the effect of this crossover by the following 
argument. For t< Wil, the system will behave as if the 
w's smaller than wIt are unimportant; hence the trapping 
rate will be given by Eq. (28), 

(36) 

On the other hand, for t> W;I, the system will behave as 
if all the w's are important. Since w;lt exists for the 
pew) given by Eq. (35), we have for a one-dimensional 
system 

(37) 

This argument can be made more carefully by intro
ducing a cutoff WI in the p(w) near w- O. We may then 
calculate weU for the cutoff distribution and use the 
scaling argument that t- wi1 to find the temporal behav
ior of k(t). When one introduces the cutoff in the ex
change dominated p(w), it is easily shown12 that W;~f 
=<w-1>=wia

• UsingEq. (32), we get in the cutoff dis
tribution for WI> wIt, 12 

i(u) -1 - wjQu = 1 - W;~fU , 

so that 

(38) 

k(t)- w~~~ r1/2 = wf/2r1/2 = r(1 + a)/2 (39) 

as in Eq. (36). Since this result is valid for WI> wIt, 
then t< W;I, making it identical to Eq. (36). 

For WI < wIt, weu can be calculated approximately and 
wefi~ . 

",1/3 
-1 ~ -a f . ..3 -lad wett - wIt + :re x, 

-1/3 w" 
(40) 

SO that, for WI < WIt, or t> W;I, k(t) - w; I2rl/2 for a s triet
ly one-dimensional system. 

Finally, it should be noted that since the dipolar inter
action is less "directional" than the exchange or super
change interactions in the quasi-one-dimensional sys-
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tems (e. g., DBN or TCB), it is possible that at the 
crossover point t- w;;t the system becomes two, or three 
dimensional in character. The k(t) would be given for 
Eq. (17b) or (18b) for t> W;I. The long time trapping 
rate is characterized by two regimes-a disordered re
gime, where k(t) depends on t through Eq. (28), and an 
"ordered" regime, where k(t) is independent of t, having 
the usual ordered case form. 1 

The rate at which the initial number of excited impuri
ties decays to sinks is given by 

It k( T)dT • 
o 

(41) 

In one-dimensional systems we find, using Eqs. (28) 
and (37), the interesting relation 

It k( T)dT _ < 1:,2> 1/2 , 
o 

(42) 

where (1;2) is the excitation's mean square displacement. 12 

Due to the one dimensional relation12 between (1:,2)112 and 
<Po(t», the excitation probability to remain in the ori
gin, we find that 

l' k(T)dT =< Po(t) >-1 , 
o 

(43) 

which may be related to the system density of states 
D(€) at low energies via 

< Po(!» = 1"" e-' tD(€)d€ 
o 

IV. SUMMARY 

(44) 

In the present note, we have formulated a theory of 
the trapping rate of excitations by sinks in the first pas
sage time and continuous time random walk models. 
This has allowed a discussion of trapping (in the long 
time limit) for a variety of models of intermolecular 
interactions. In particular, the theory, when applied to 
quasi-one-dimensional systems like TCB or DBN pre
diets that a change in the rate of trapping (as a function 
of time) occurs at time t - W;I, where Wd is the value of 
the transition rate at which the exchange interaction be-

comes smaller than the dipolar (or multipolar) interac
tion. A scaling argument is used which allows a smooth 
transition from the exchange dominated behavior to the 
dipolar dominated behavior. 
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