
Vibronic Interactions in Doubly Degenerate Electronic States
C. S. Sloane and R. Silbey 
 
Citation: J. Chem. Phys. 56, 6031 (1972); doi: 10.1063/1.1677152 
View online: http://dx.doi.org/10.1063/1.1677152 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v56/i12 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 21 Oct 2012 to 18.189.110.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=C. S. Sloane&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=R. Silbey&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1677152?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v56/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS VOLUME 56, NUMBER 12 15 JUNE 1972 

Vibronic Interactions in Doubly Degenerate Electronic States 

C. S. SLOANE AND R. SILBEY 

Department of Chemistry and Center for Material Science and Engineering, M assachuselts Institute of Technology, 
Cambridge, M assacltusetts 02139 

(Received 2 February 1972) 

The effect of more than one pair of degenerate vibrational modes on the energy levels and spectrum 
of a doubly degenerate electronic state is discussed. The dynamic Jahn-Teller effect for this case is treated 
by exact numerical methods and by approximation schemes. The e~ect .of quadrat!c term~ in the 
vibrational coordinates is also treated by these methods. The use of adiabatic surfaces m treatmg these 
problems is critically examined. 

I. INTRODUCTION 

Interest in the dynamical aspects of the Jahn-Teller 
phenomenonl originated in attempts to understand the 
vibronic structure of degenerate electronic states in 
molecules. In 1937, Jahn and Teller showed that de­
generate electronic states of nonlinear molecules are 
unstable with respect to certain asymmetric displace­
ments of the nuclei because there can exist a nonzero 
matrix element between these states which splits the 
degeneracy in first order. If the coupling between the 
electrons and nuclear displacements is sufficiently 
strong relative to the zero-point energy of the associated 
vibration, the molecule undergoes a static distortion to 
a lower symmetry configuration.2- 4 If the coupling is 
weaker, or if the zero-point vibrational energy is com­
parable with the energy barrier separating equivalent 
configurations, no static distortion occurs and the 
molecule exhibits a coupled motion of the electrons and 
vibrational modes.5- 7 This latter situation, the dynami­
cal J ahn-Teller effect, has been the subject of numerous 
studies8 wherein a single interaction mode is considered 
and is shown to give rise to unusual spectral features. 

While frequently one vibrational mode dominates 
the vibronic coupling, most physical systems of experi­
mental interest show comparable or at least non­
negligible coupling through a second vibrational mode. 
The effect of this is largely unresolved to date and 
usually interpreted to mean "more or the same" or an 
enhancement of the features evidenced by coupling 
through a single mode. Using both numerical methods 
and a perturbation scheme, we report in this paper 
investigations on intervibrational interactions using a 
Jahn-Teller model based on two degenerate electronic 
states and the harmonic approximation. The spectral 
pattern predicted by a single vibrational mode is found 
to be markedly distorted. Both absorption and emission 
spectra are considered. Similarly, the effect of quadratic 
coupling which gives rise to Duchinsky effects and 

Teller coupling from spectroscopic data. Three experi­
mental observations of asymmetric progressions are 
well known. These appear in the Rydberg states of 
benzene, in CHaI and in CFaJ.9 

The appearance of the 0-1 band corresponding to an 
asymmetric vibration in the second excited states of 
CHaI and CFaI and the splitting of the hot band in the 
spectrum of CFaI provide evidence for Jahn-Teller 
interactions in doubly degenerate states. Moreover, the 
1-1 hot band is red shifted by 42 cm-l and is split into 
two components separated by 7.5 cm-I • This small 
splitting indicates that the linear coupling parameter 
must be relatively small. Changes in the force constant 
are responsible for the red shift of both components. 
Finally, in benzene the 690 cm-l progression in the 
Rydberg states might be assigned to a Vl8 (e2u) progres­
sion giving evidence of vibronic interactions. 

These systems are characterized by the coupling of 
doubly degenerate electronic states through doubly 
degenerate vibrational modes. Consequently our model 
calculations involve only this symmetry. The energies 
of practical interest are those of the split first excited 
vibrational states relative to each other and to the 
ground vibrational state. 

The paper is set out as follows: in Sec. II, the Hamil­
tonian is presented, in Sec. III, this Hamiltonian is 
diagonalized for ~he problem of two sets of degenerate 
modes interacting with a degenerate pair of electronic 
states through linear terms, and also for the problem of 
a degenerate mode interacting with the electronic states 
through linear and quadratic terms. In Sec. IV, simple 
approximation schemes for these problems are discussed 
and compared to the exact results. In Sec. V, a dis­
cussion of the results is presented with emphasis on the 
use of adiabatic surfaces for predicting the spectra of 
such systems. 

II. THE HAMILTONIAN 

frequency shifts is investigated with special interest in We wish to describe a system with doubly degenerate 
its relevance to criteria for stable distortions previously2 excited electronic states (at some symmetric inter­
considered to require anharmonic coupling. nuclear separation) and doubly degenerate vibrational 

Considerable difficulties are encountered in the un- modes. We will assume the ground electronic state to be 
ambiguous identification of Jahn-Teller interactions; nondegenerate. The Hamiltonian will describe inter­
thus, our investigations undertake to determine in- actions between the electronic states through linear 
formation on energy "shifts" needed to confirm Jahn- and quadratic vibrational coupling. We will use the 
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6032 C. S. SLOANE AND R. SILBEY 

TABLE I. First energy spacing in a doubly degenerate electronic state coupled by two degenerate modes. 

Mode one (exact) Mode two (exact) 

Ra K12 K22 EO-l (T) !Wl EO-I/Wl EO_1(S)!Wl EO-l (T)!W2 EO_1!W2 EO-l (S) !W2 

1.5 0.25 0.25 1.18 1.12 1.17 1.16 1.09 1.17 

0.25 0.50 1.12 1.01 1.17 1.24 1.10 1.24 

0.50 0.25 1.22 1.14 1.24 1.09 1.06 1.17 

0.75 0.25 1.19 1.14 1.26 1.05 1.05 1.17 

1.0 0.25 1. 12 1.12 1. 26 1.03 1.04 1.17 

2.6 0.125 0.22 1.08 1.11 1.13 1.16 

0.25 0.25 1.15 1.13 1.17 1.15 1.15 1.17 

0.56 0.25 1.17 1.16 1.25 1.10 1.08 1.17 

1. 33 0.125 0.22 1.10 1.16 1.10 1.11 

0.125 0.90 1.05 1.11 1.19 1.26 

0.50 0.22 1.19 1. 24 1.05 1.11 

• R =wI/w2, Eo-I/wa = energy spacing of ground vibronic state and first vibrational state of mode a in units Wa. T -transformation 
method, S-energy spacing for a single coupling mode. 

harmonic approximation throughout by expanding all 
matrix elements about the ground state equilibrium 
position and keeping terms up to and including those 
quadratic in nuclear displacement. By this procedure, 
the Hamiltonian is invariant under the appropriate 
molecular symmetry group. For convenience, we will 
express the Hamiltonian in second quantized form (all 
electronic energies are measured relative to the ground 
state) 

JC = L EaC, +C,,+ L (bli+bli+t) liwi 
l,i 

a,l,i 

a,l,i 

a,l,i 

where C", (C,,+) destroys (creates) an electronic excita­
tion of symmetry 01., bli (b li+) destroys (creates) a 
vibrational quantum of the component of the ith 
vibrational species which has symmetry t. By the nature 
of the symmetry group under consideration, these are 
the only terms present. K",li, the linear coupling param­
eter, represents the usual Jahn-Teller interaction, here 
extended to include more than one mode. The term 
fa/i represents the change in vibrational force constant 
in a given electronic state upon excitation, and Dali 
represents quadratic interaction between electronic 
states: 

K.,l,i= (1/2mlwNi)1/2[V'I,i(a+ll V(q, Q) I a)JQo, 

f",l,i= (1/2mlw?) 

X {V'I,iV'_l,i[(al V(q, Q)I 01.)- Vgg(Q)J}Qo, 

D",I,i= (l/mlw?)[Vl,iV'l,i(a+21 I V(q, Q)I a)JQo' (2) 

Quadratic coupling by modes of different frequencies is 
neglected. The same molecular symmetry labels are 
appropriate for both nuclear and electronic symmetries. 
These indices are formulated modm for molecules 
having an m-fold axis of rotation. 

The vibrational spacings for the vibrations active in 
the coupling scheme can be estimated from reference 
state empirical data. !iWi(Ja,I,i+1) might be approxi­
mated by the vibrational energy in an adequate non­
degenerate excited state since for large molecules (e.g. 
benzene), empirical evidence indicates very slight 
mixing of modes in excited states. 

The parameter Kali is easily shown to be the ratio of 
the static a-electronic distortion energy to a quantum 
of vibrational energy of the coupling mode (li). In 
the linear form of this Hamiltonian, the vibronic 
"angular momentum,"6,IO with respect to the symmetry 
axis, 2A=a+l, is conserved and results in accidental 
degeneracies which are removed by quadratic interac­
tion terms. In what follows, A always refers to this 
pseudoangular momentum and is given by the eigen­
value of the operator10 

~=t[Ca+Ca-C/l+CIlJ+[L (bl/bli-b_li+Lli) J (3) 
i 

III. NUMERICAL CALCULATIONS 

A. Linear Coupling of E States Through Two 
Degenerate Modes 

The effect of an additional coupling mode on the 
energy spacing in the linear Jahn-Teller problem is 
investigated using an exact numerical calculation for 
model (1) where. Kali=O (i~il, i2), fau=O=Dali 
(all i), and Kali= K illi. Since the two electronic states 
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ex and (3 which have different electronic angular momen­
tum, are mixed by the Hamiltonian, the vibronic wave­
functions will be of the form 

'l'p}.(q, Q) =if;a(q)xaP}.(Q)+if;(3(q)x(3P}.(Q). (4) 

The nuclear functions Xa(Q) are expanded in the (two 
dimensional) isotropic harmonic oscillator functions 
Xn1(Qi) i= 1, 2 where n= 1,2",· the principal quan­
tum number and l=n-1,n-3,"', -n-1, (the 
"angular momentum" or symmetry index).l0 

These are the natural basis for the second quan­
tized Hamiltonian. Thus, 

XaPA(Q) = [alpIAlx(Ql) l+l,l+ a3p l}.lx(Ql) 1+3,1+'·'] 

X [blpIAIX( Q2) l+1.I+b3pIAIX( Q2) 1+3,1+· •• ], 

X(3PA(Q) = [ll2pl}.I X( Ql) /+2,1+1+ a4p I}. IX ( Ql) /+4,1+1+' •• ] 

X [b2p l}.l x ( Q2) l+2,I+l+b4pIAIX( Q2) /+4,1+1+' •• ]. (5) 

Vibrational wavefunctions for the uncoupled modes 
have been factored out. Expansion indices are appro­
priate for El electronic states coupled by e2 vibrational 
modes. 

The coefficients a and b were determined by diag­
onalizing the Hamiltonian operator in a basis of 95 
vibronic states designated 1 ex, nlll, ~12) and 1 (3, nih, n2~) 
which includes all coupled states having nl+n2=2, 
3"",10. The nonzero matrix elements are: 

ft-I (x, nlll, ~12 1 H 1 x, nih, ~~) 

ft-I(ex, nlll, ~~ 1 H 1 (3, nl'll', ~'l/) 
2 

(x=ex or (3), (6a) 

= L: On,' ,n,+lOI,, ,1,+lOnj' ,njOl;' ,1,KiWi[ (n/+l/ -1) /2J/2, 

ft-I «(3, nlll, n2~ 1 H 1 ex, nl'll" ~'~') 
2 

(6b) 

= L: On,' ,n.+lOl" ,1,-lOnj' ,njOl;' ,ljKiWi[(n;' -1/ -1) /2J/2. 
i.i-l 

(6c) 

1. Eigenenergies 

As expected, the energy levels decrease further in the 
presence of a second mode giving smaller allowed (0-0) 
and hot band (1-1) transition energies than predicted 
from uncoupled Jahn-Teller interactions. However, 
the increase in the first energy spacing (EO-I) predicted 
by a single coupling mode is now decreased for the vibra­
tion of lower energy and also, in most cases, for the 
vibration of higher energy (see Fig. 1 and Table I). 

The splitting of the two components of the first hot 
band is less than expected from one coupled mode, but 
as before it increases with stronger coupling. The separa­
tion of the 1-1 and 2-2 hot bands decreases for the less 
energetic vibration and increases for the other in most 
instances. 

1.25 

1.0 

0.75 

0.50 

0.25 

o 0.25 0.50 0.75 

k2 
I 

1.0 

FIG. 1. The energy separation between the 0-1 and 0-0 line 
in the absorption spectrum at 0 K, and the intensity ratio of 
those lines for k22=0.25 and WdW2=1.5. The open circles are 
for one coupling mode and the shaded circles for two. 

These features indicate that the structure of an 
uncoupled asymmetric progression may be obscured 
by the irregular spacing of the absorption and emission 
lines caused by the interference of another active mode. 
This interference increases as the coupling parameters 
increase and as the frequency ratio goes to one. 

2. Zero Temperature Spectra 

By an allowed transition we shall mean that the 
electronic transition moment is nonzero in the reference 
configuration of the molecule, Qo. The intensity with 
which the Anlllon2Iz-tEp}. absorption lines appears is 
therefore proportional to 

1 a"l-ll,pl}.lbnz-lz,pIAI 12. 

The most important zero temperature absorption lines 
are the first three allowed transitions 10- 0, 10- 1 (mode 1) , 
10- 1 (mode 2). 1 an ,l11/2/al ,l11/21 12 describes the relative 
intensity of emission to the nth vibrational level of 
mode 1 in the ground electronic state. 

10-0 and 10- 1 for the energetic vibration are decreased 
slightly with the addition of a less energetic, weakly 
coupled mode. However, the intensity 10- 1 for this 
second mode is very sensitive to the presence of the 
more energetic mode. When the coupling of both modes 
is small (K2<0.25) , the vibronic states having an 
appreciable component of the first vibrational state of 
the lower energy mode lose intensity to those involving 
the more energetic mode, so 10- 1 (mode 2) decreases 
and 10- 1 (mode 1) increases relative to the uncoupled 
value. For larger couplings, 10- 1 decreases for both 
modes via borrowing by the higher vibronic states 
(see Fig. 1 and Table II). 
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3. Hot Band Spectra 

The splitting of the 1-1 hot band provides an alter­
native method for the identification of Jahn-Teller 
coupling.9 Therefore, we first evaluated the relative 
absorption intensities III the single coupling mode 
model. Subsequently, we investigated the modification 
of our results in the presence of a second coupling mode. 

When a single vibration induces the a-fJ electronic 
interaction, the lowest vibronic level is not split, but 
the higher levels are separated. Though only a single 
0-1 zero temperature transition appears, two distinct 
1-1 hot band transitions are allowed. These are pro­
portional to 1 a2,2 11/2 1 12 and 1 a1,113/21 12. The intensity 
ratio of these components denoted /1 1/2 1// 13/2 1=/+//­
is presented in Table III and pictured as a function of K2 
superimposed on a graph of the 1-1 energy splitting E±, 
in Fig. 2. The ratio decreases with increasing K while 
the energy separation increases. It is the zero tempera­
ture 0-1 allowed, upper component whose absorption 
intensity in the hot band is diminished relative to that 
of the lower component. 

The hot band intensities are further decreased in the 
presence of a second mode, the lower component being 
slightly more sensitive to the added coupling (see Figs. 
2, 3). The experimental identification of Jahn-Teller 
coupling in molecules by their hot band spectra will 
therefore be more difficult for systems characterized by 
moderate vibronic interactions. In the case of weak 
coupling, the energy spacings III the hot band will 
require high resolution. 

B. Linear and Quadratic Coupling 

Discussions of adiabatic potential surfaces in the 
literature2,Il,l2 give evidence that the modification of 

1.0 

0.75 

0.50 

0.25 

o 0.25 0.50 

k2 
I 

0.75 1.0 

FIG. 2. Energy splittings for the 1-1 hot band (of mode 1) 
E± and intensity ratios [+ /[- for k22=O.25 and W,jW2= 1.5. The 
open circles are for one coupling mode and the shaded circles 
are for two. 
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TABLE III. First hot band energy splittings and intensity ratios in a doubly degenerate state coupled by two modes.· 

Mode one Mode two Mode one Mode 
two 

K,2 K22 E±(T)/w, E±/w, E±(S)/w, E±(T)/W2 E±/W2 E±(S)/W2 1+/1- 1+/1(8) 1+/1-

0.25 0.25 0.303 0.221 0.338 0.303 0.270 0.338 0.507 0.759 0.881 
0.50 0.25 0.472 0.308 0.503 0.236 0.265 0.338 0.250 0.443 1.04 
0.75 0.25 0.552 0.346 0.592 0.184 0.280 0.338 0.118 0.230 1.25 
1.0 0.25 0.573 0.360 0.644 0.143 0.303 0.338 0.052 0.106 1.51 

• E±/w. = energy splitting of hot band components of mode a in units Wa. 1+/I-=intensity ratio of upper hot band component to 
the lower. T=transformation method, S=single mode coupling. 

linear coupling by terms quadratic in the displacement 
coordinates has definite and sometimes significant ob­
servable consequences. Two parameters describe the 
vibronic coupling in the Hamiltonian attributed to 
quadratic terms. The isotropic force constants are 
given by 1 and the Duchinsky terms by D. 

As before, eigenfunctions in the a, {3 subspace are 
written as in (4). The Hamiltonian is diagonalized in a 
basis of 110 complex vibronic states (n= 1,2"",10) 
where the nonzero matrix elements, in units of hw, are 
given by: 

(a, nil H I a', n'I')=o",,,.On,n,Ol,l.(1+1)n 

+O",,'On' .n+201' ,1(J /2) [(n'-I'-1) (n'+I'-1) J1/2, (7a) 

({3, nil H I a, n'I')=On',n_201',1+2(D/2) 

X[ (n'-l' +3) (n'-l' + 1) JI/2+ 0n, ,n+201' ,1+2(D/2) 

X[(n'+I'-3) (n'+I'-1) J/2+0n',n_l01' ,1-IK 

X[(n' +1' + 1) /2JI/2+ 0n· ,n+l01' ,1_IK[(n'-l' -1) /2J/2 

+On',nol'.I+2D[(n'+I'-1) (n'-I'+1)JI/2. (7b) 

1. Eigenenergies and Spectral Intensities 

The vibronic energies calculated for a range of real­
istic parameters are displayed in Table IV. The 
energies increase with increasing J and decreasing D, 
which correspond to vibrational frequencies w' in the 
excited electronic state which are greater than w, the 
vibrational frequency in the ground electronic state. 
This change in the effective frequencies of the coupling 
modes from w to [1+2J+2DJ/2W and [1+21-2DJI/2W 

is responsible for a number of differences seen with the 
addition of quadratic coupling. With w'>w, the effective 
linear coupling constant is decreased and one expects 
to find a number of the observables plotted in Figs. 1-3 
effectively represented by a smaller K value under 
quadratic coupling (J ~O). In many respects, where the 
I >- I = 3/2 states are not involved in the observation, 
this is the case. For example, the EO-I separation for 
K=0.5, 1=0.5 in units w' is at most 1.08w (any D), 
yet for K=0.5, 1=0, the separation is 1.17w. Since the 
separation decreases with decreasing K, the effective 

coupling constant has been lowered. Similarly, the 
relative absorption and emission intensities, I O-la / I ~ 
and I0-1e/Io---{) reflect the reduced effective K by de­
creasing under quadratic (1)0) coupling, (see Table 
V). 

The lower component of the first vibrational level is 
altered in a more dramatic manner. The accidental 
degeneracy of these I 2>- I = 3 states in a D6- symmetry 
is resolved by the quadratics. These states are split for 
small D, both lying below the doublet. However, for 
greater Duchinsky mixing, one of these nondegenerate 
levels rises above the doublet, giving an orbital singlet­
doublet-singlet set of vibronic states. As expected, 
after the resolution of the lower doublet, the strongest 
hot band absorption line of the three belongs to the 
remaining doublet, whereas this pair represents the 
weaker line under linear coupling, or small D. 

2. Possible Threefold Degeneracy 

The maximum barrier to a rotation of the e2 displace­
ment around the principal symmetry axis arises on the 

1.0 

0.75 

0.50 

0.25 

o 0.25 0.50 

k2 
I 

0.75 

FIG. 3. The intensity of the upper (+) and lower (-) com­
ponent of the 1-1 hot band relative to the 0--0 line multiplied 
by the appropriate Boltzmann factor. k22=0.25, W,/W2= 1.5 and 
the open and shaded circles have the same meaning as Fig. 2. 
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TABLE IV. Eigenenergies for a doubly degenerate state coupled 
by linear and quadratic modes (units w)." 

K J D Eo E,B E,d 

0.5 0.0 0.0 0.774 1.608 1.947 
0.5 0.1 0.1 0.891 2.002 2.117 

1.665 
0.5 0.1 0.2 0.853 2.112 1.987 

1.444 
0.5 0.25 0.1 1.060 2.305 2.405 

2.001 
0.5 0.2 0.2 0.980 2.325 2.227 

1. 701 
0.5 0.25 0.5 0.793 2.096 1.600 

1.040 
0.5 0.5 0.0 1.294 2.604 2.818 
0.5 0.5 0.125 1.287 2.762 2.794 

2.428 
0.5 0.5 0.2 1.276 2.847 2.764 

2.312 
0.5 0.5 0.5 1.116 1. 758 2.417 

2.941 
0.5 0.5 0.7 0.971 2.389 1.865 

1.242 
0.5 -0.5 0.0 -1.159 -1.034 -0.809 
0.866 0.5 0.0 1.077 2.247 2.744 
0.866 0.5 0.2 1.052 1.953 2.652 

2.471 
0.866 0.5 0.5 0.890 1.350 2.092 

2.607 

" Eo = energy of ground vibronic state, E,d=energy of un­
resolved doublet with one vibrational excitation; E,B=energy 
of resolvable singlets with one vibrational excitation. 

adiabatic potential surface when D= (21+1)/2 in the 
harmonic approximation. This suggests that the 
lowest vibronic state may be triply degenerate in this 
limit if 

[k2w/2(21+ 1) JI1 +[2D/ (21+ 1) Jl»w. (8) 
We have investigated this limit numerically and 

found that a much larger basis is required to describe 
the ground state. Convergence for the ground state 
wavefunction and energy was obtained with 110 states 

for sets of parameters as follows 

(
K) (0.5) (0.5) (1.0) (1.0) 1 0.25, 0.1 , 1.0 , 2.0 . 
D 0.5 0.1 1.0 2.0 

All gave a lowest doublet state. However, for the 
choices: 

(
K) (1.0) (0.5) (0.5) (0.1) 1 2.0, 1.0 , 0.1 , 0.25 , 
D 2.4 1.4 0.55 0.7 

all close to the limit D= (21+1)/2 convergence for 
neither the lowest state energy nor the wavefunction 
was obtained with the largest basis (380 states) con­
sidered. This indicates a special and substantial recom­
bination of the original basis in the formation of the 
stationary states, as would be expected in the construc­
tion of triplet wavefunctions describing a rigid tetrag­
onal distortion using a basis of the isotropic harmonic 
oscillator functions having a natural doublet ground 
state. 

More interesting and perhaps more significant is the 
fact that a near-triplet degeneracy resulted for the 
ground state regardless of the number of configurations 
used, and each successive recalculation of the ground 
state energy was in the direction of a triplet. Surpris­
ingly, the near-triplets occurred even where the limit 
[K2W/2(21+ 1) JI1+[2D/(21+1) Jl >w was violated. 
The usefulness of this intuitive requirement for a 
triplet was further reduced by the fact that the ground 
state energy calculated for the set of parameters (0.5, 0.1, 0.55) using the 380 basis was below the 
adiabatic well depth. 

The information attained in the limit D"-'(21+1)/2 
provides a good indication that the adiabatic potential 
models do not provide a sensitive description of the 
coupling phenomena. It also suggests strongly that the 
limit of the harmonic approximation may constitute a 
mathematical source of the accidental triplet degen­
eracy. 

Thus, criteria for a triply degenerate ground state 
should be considered using the full quadratic Hamil-

TABLE V. Absorption and emission intensities for linear and quadratic coupling." 

K J D 10_1"/10_0 10-1·/10-0 1,_1-/10_0 l,_,+ /lo-o 1,_ld/10_0 

0.5 0.0 0.0 0.195 0.205 0.920 0.698 
0.5 0.5 0.0 0.053 0.080 0.930 0.894 
0.5 0.5 0.2 0.057 0.082 0.489 0.434 0.866 

" l,_,-/lo--<> = relative absorption intensity of the lower resolvable singlet in the first hot band to the 0--0 line X exp (w/kT) ; l,_,+/lo--<> = 
relative intensity of the upper resolvable singlet hot band; l,_,d/lo_o=relative intensity of the doublet hot band time. 
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TABLE VI. First vibrational state energies." 

(exact) (exact) ( exact) 

I A I K2 t::..E(T) t::..E EO_I(T) EO-l EI_I(T) El_l 

! 0.25 -0.409 -0.392 0.389 0.339 

! 0.25 -0.020 -0.053 1.203 1.173 

! 0.50 -0.720 -0.684 0.606 0.503 

! 0.50 -0.114 -0.181 1.294 1.241 
.I 0.75 -0.986 -0.933 0.709 0.592 2 

! 0.75 -0.277 -0.341 1.292 1.259 
.I 1.00 -1.12 -1.16 0.645 0.644 2 

! 1.00 -0.476 -0.512 1.240 1.255 

"T=approximate method, t::..E=energy shift under linear coupling, EO-l = energy splitting of lowest allowed states, El_l=energy 
splitting of first hot band lines. 

tonian with the addition of anharmonicities. Tunneling 
calculations using adiabatic surfaces are not sufficiently 
sensitive to the vibronic mixing to give quantitative 
results. A full quantum mechanical approach without 
the use of adiabatic models is necessary. 

IV. APPROXIMATION SCHEME 

Numerical calculations are of necessity long and in­
volved and require an entirely new calculation for each 
molecule, i.e., for each set of values for the coupling 
constants. These features are shared by approximate 
schemes which have been suggested.13 Recently, in a 
new approach Alper and SilbeyI4 (AS) overcame these 
difficulties by performing a canonical transformation 
and subsequent second-order perturbation calculation. 
They found the ground state energy "shift" as a func-

tion of K in good agreement with exact values for the 
linear model of doubly degenerate electronic states 
coupled through one degenerate vibrational mode. We 
extend this approach to deal with two modes and in 
conjunction with another transformation to deal with 
linear and quadratic interactions. The results of the 
previous calculations will be used to evaluate results 
of our approximate methods. 

A. First Vibrational State-One Mode 

Before proceeding to more difficult cases, the ability 
of the (AS) method to predict energy levels of excited 
vibrational states is assessed. The energy "shifts" of the 
first vibrational levels obtained ate listed in Table VI. 
They are in reasonable agreement with the exact 
calcula tions. 

B. Linear Coupling Through Two Degenerate Modes 

Again consider the model Hamiltonian where Kaz=O (lrf1l' 12), J aZ = 0= Daz (all 1) . We rewrite the Hamiltonian 
in termsofthereal orbitals and modescl = (ca+c,s) /V2", C2= (ca-c,s) /iV2", bli= (bZi+b_ Zi ) /V2" and b2i = (bli-b_li ) /V2"i: 

H = E(Cl+Cl+C2+C2) +nwi (b li+b1i+ b2i+b2i+ 1) + nwj(b1j+blj+b2/b2j+ 1) +nwi(Ki/V2") 

XI (b1i++b1i ) (Cl+CI- C2+C2) - (b2i++b2i ) (Cl+C2+C2+Cl) }+nwj(Kj/v'2) 

XI (blj++blj) (Cl+CI-C2+C2) - (b2j++b2j) (Cl+C2+C2+Cl) I. (9) 

The intraorbital coupling is removed by the unitary transformation JC= exp(-S')Hexp(+S') where S'= 

(K;/V2") (b1i-bli+) (Cl+CI-C2+C2) + (Kj/V2") (b1j-b1/) (Cl+CI-C2+C2) 

JC= E(Cl+Cl+C2+C2) +nwi(bli+bli+b2i+b2i+ 1) + nwj(b2/b2j+blj+blj+ 1) -tl nwiK i2+nwjKIII cl+cl+c2+c21 

-I (nwiK ;/V2") (b2i+b2i+) exp[ - (Ki2+ Kl) ] exp( -V2"K;bli+) exp(V2"Kib1i) exp( -V2"Kjb1/) 

X exp(V2"Kjb1j)C2+Cl+ (nwjK j/V2") (b2j+b2j+) exp- (Ki2+KI) exp( -v'2Kibli+) exp(v'2Kibli ) exp( -V2"Kjb1j+) 

X exp(V2"Kjblj)C2+cI!-C.c. (10) 

For real values of the coupling constants (as occur for benzene), the smallness parameter K2 exp( - K2) IS 

generally appropriate for a perturbation calculation. 

Downloaded 21 Oct 2012 to 18.189.110.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



6038 C. S. SLOANE AND R. SILBEY 

To second order, the energy of the ground states is given by 
<Xl 

EO=E+/iwi+/iwj+ (ii/2) [WiK i2+ WjKlJ- exp[ -2(Ki2+KI) J[liwiK i/2J2 L (2K;2)n(2K j2)m 
n,m=O 

X {n!m![mliw;+(n+1)liwiJ}-L exp[ -2(Ki2+KI)J[/iw;Ki/2J2 f (2Ki2)n(2KI)g (11) 
n.m=O n!m![(n+1)/iw;+n/iwiJ 

These summations converge rapidly, often giving three significant figures if only three terms in each double sum are 
considered. Table VII gives ~Eo as a function of K i, K;, and R=Wi/W;; exact values are included for comparison. 
Energies of the first excited vibrational levels of each mode characterized by I A I = 3/2 and 1/2 were calculated in 
the same manner and are again expressed in terms of simple sums. These results are included in Table VII; exact 
energies are added for comparison. 

The salient features of the energy "shifts" and spacings are correctly described by the transformation-perturba­
tion scheme. The energies decrease with the addition of another coupling mode and the energy spacing EO-l is 
less than described by a single coupling mode, especially for the most energetic vibration. The hot band splittings 
are also shown to be decreased. However, this approximate method consistently underestimates the absolute 
energy "shifts" and overestimates the energy spacings. Both methods show the interaction between the two 
vibrations increases as their coupling parameters increase and as the frequency ratio goes to one. 

C. Linear and Quadratic Coupling by a Degenerate Vibration 

The appropriate electron-phonon Hamiltonian written in real coordinates is: 

H = E(Cl+Cl+C2+C2) +liw (b1+b1+ b2+b2+ 1) + (liKw/."fl) [(Cl+Cl- C2+C2) (b1+b1+) - (Cl+C2-C2+Cl) (b2+b2+) J 
+ (J +D/2)liw[(bl+bl+)2C1+Cl+ (b2+b2+)2C2+C2J+ (J - D/2)liw[ (bl+bl+)2C2+C2+ (b2+b2+)2Cl+CIJ 

+Dliw(b1+b1+) (b2+b2+) [Cl+C2+C2+C1J (12) 

in the subspace of two electronic states and a degenerate vibrational mode. 
The isotropic contributions to the force constants simply shift the frequency of the active mode in the excited 

states from the ground electronic state value. These uninteresting couplings are diagonalized to expose the Duchin­
sky and Jahn-Teller interactions. This is accomplished by the transformation: fi = exp(S)H exp( - S) where S= 
jlCl+Cl(b1b1- b1+b1+) +hC2+C2(blbl-bl+bl+) +j2Cl+Cl(b2b2-b2+b2+) +jlC2+C2(b2b2-b2+b2+) where ft = -lln( 1 + 21 +2D) 
andh= -lln(1+21-2D), a Bogoliubov u-v transformation in phonon space. The limit I D I <1+1/2 adds no 
restriction to the calculation; it corresponds to the limit of validity of the harmonic approximation. Writing 
fi =fio+fil+fi2' we find 

fio= E(Cl+Cl+C2-+C2) +w(b1+b1+b2+b2+ 1) + Cl+Cl(b1+b1+! ) [WI- WJ+C2+C2(b2+b2+!) [WI-WJ 

+Cl+Cl(b2+b2+ !) [W2-WJ+C2+C2(b1+b1+!) [W2- WJ, 

fi1= (Kw/."fl) exp(2ft) (b1+b1+)Cl+Cl- (Kw/."fl) exp(2h) (b1+b1+)C2+C2, 

H2= - (Kw/."fl) exp(2jl)(b2+b2+) C2+Cl exp[ - P( 1,2) J- (Kw/."fl) exp(2h)(b2+b2+) Cl+C2 exp[ - P(l, 2) J 

where 

and 

+Dw exp[2(ft+j2)J(b1+b1+) (b2+b2+) (C2+Cl exp[ -P(l, 2)J+Cl+C2 exp[P(l, 2)Jj, (13) 

P(l, 2) = (ft-h) (b1b1-b1+b1+) - (ft-ft) (M2-b2+b2+) , 

Wl= [1+21+2DJ/2w, 

W2= [1+21-2DJ/2w. 

The frequency of mode 1 in the potential of electronic state I is given by il 0 as WI. 
As in the past, the linear terms severely limit the utility of perturbation expansion since often K",l. In the 

spirit of the Alper and Silbey method, the intraorbital coupling is diagonalized and the interorbital coefficient 
substantially reduced by the transformation: H' = exp(S)il exp( -S) where S= - gaCl+Cl(bl-bl+)+gbC2+C2(bl-bl+) 
with the result 

H' = e(cl+cl+C2+C2) +w(b1+b1+b2+b2+ 1) + Cl+Cl(b1+b1+!) [WI-WJ+C2+C2(b2+b2+!) [WI-W], 

+Cl+Cl(b2+b2+!) [W2-WJ+C2+C2(b1-+ b1+!) [W2-WJ+ga2Cl+CIW+ gb2C2+C2W- 2Kwga exp(2ft) Cl+Cl- 2Kwgb 

X exp(2j2) C2+C2- gaWIC1+Cl(bl+bl+) +gbW2C2+C2(bl+bl+) 

+ (Kw/."fl) exp(2jl) C1+C1 (b1+ b1+) - (Kw/."fl) exp(2j2) (b1+b1+)C2+C2+X2/. (14) 
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The choice of ga and gb deserves some discussion. Linear coupling terms vanish for the choice: 

ga=(K/V'l) exp(6/I) and gb=(K/V'l) exp(6h). 

6039 

(15) 

However, the resultant Hamiltonian is no longer invariant under the appropriate point group term by term. Ho' 
predicts a lower symmetry than the true vibronic symmetry, so the perturbation will have to restore the proper 
degeneracies. A different transformation which retains at least the molecular symmetry in Ho', leaving the per­
turbation expansion to break any accidental zeroth order degeneracies is given by: 

(16) 

This choice, however, voids the purpose of a second transformation since linear coupling remains. A compromise 
in which the intraorbital coupling of at least one electronic state disappears and the molecular symmetry is retained 
in Ho' suggests itself. Then, we would require 

ga= (K/V'l) exp(6/I) and gb= (K/V'l) exp(6h) [1+2D exp4/I]. (17) 

This leaves linear coupling in C2+C2 space having a smallness parameter KV'lD exp(4/I+2h). A second-order per­
turbation expansion will be useful only if v'1D exp(4jl+2j2)«1. Realistically, !<w'/w< 2, w' being the frequency 
of a normal vibration in an excited state, and DI/2'-""0.3. Therefore, at worst, the coefficient is 1.2K and, at best, 
0.15K. Most commonly, (w'/w)'-""1 and the coefficient becomes ,-...,0.4K. Proceeding with this transformation, 
however, the symmetry is again totally destroyed by the first order correction. Therefore, with a second-order 
perturbation expansion in mind, choice (15) is employed as the best of the alternatives. With this choice, 

H' = e(cI+cI+C2+C2) +w(bl+bl+b2+b2+ 1) - (K2w/2) [(cI+cI/1 +2J+2D) + (c2+c2/1+2J - 2D) J 
+cI+cI[(bl+bl+!) (WI-W) + (b2+b2+!) (W2-W) J+C2+C2[ (bl+bl+!) (W2-W) + (b2+b2+!) (WI-W) J 

+w{ cI+c2(K/V'l) exp(2/I) [2D exp(Sh) -1J exp( - R2/2) (b2+b2+) exp(Rbl+) exp( - Rbi) exp[ - P(l, 2) J+c.c.} 

+w{ C2+CID exp[2(JI+fz) J exp( - R2/2) (bl+bl+) (b2+b2+) exp(Rbl+) exp( - Rbi) exp[ - P(1, 2) J+c.c.}, (1S) 

where 
R=-{[1+(2Md)J(K/2) exp(6/I) + (K/2) exp(6j2)}, 

fl= (/l-h)' 

d= 1-fl+ (fl2/3) + (fl3/6). (19) 

The factorization of the exponential operators and evaluation of the matrix elements of H'- Ho' are presented in 
the appendix. These matrix elements are written: (II, ms I H'-Ho' I I, pt) where m and s are the quantum numbers 
of components 1 and 2 of the coupling mode, I and II refer to the electronic states such that 

(II, ms I H'-Ho I I, pt)= L Q"illnS", (20) 
,,=0 

where 

n R2q+m-n(-)qmlnl [ m-n+q R(m+l)] 
Qn= L A+B +B , 

q=oql(m-n+q) l(n-q) 1 R (m-n+q+l) 
(21a) 

_ nor p (lower) [n Ip 1 2a ]1/2 
illn - L (Jzibn-iCp-i ---- , 

i=O or 1 2n+p 1 +a2 
(21b) 

(8-1) or t (lower) I I ,[ (s- 1) !t 1 2a ]1/2 
S,,= . L a2j b8 - 1- i Ct-i 2

8
- 1+1 1+ 2 (S)1I2 

1=0 or 1 a 

(8+1) or t (lower) I I I [( s+ 1) It 1 2a ]1/2 
+ . L (Jzi b8+1-j Ct-i 2&+1+1 1+. (S+1)1/2, 

1==0 or 1 c::r 
(21e) 

(Jzj, bn-h Cp_j are Hutchisson'sl5 functions for a= 
[(1+2J+2D)/(1+2J-2D)J1I2 (see Appendix for A 
and B). Primed functions are defined for a-I. 

The energy "shifts" of the ground and first vibra­
tional states are presented as functions of K, J, and D 

in Table VIII. Notice that the proper symmetry is not 
restored to either vibrational level. In general, the 
improper splitting in the ground vibrational state is 
negligible and the energies are reasonably increased by 
the positive changes in the potential slopes considered. 
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The negative Jahn-Teller energy shifts are diminished 
(D>J) and become positive (J> D) with decreasing D 
and increasing J, as the sum of the frequencies WI and Wz 

increases, thereby diminishing or offsetting the linear 
effect. The first vibrational levels appear to be greatly 
distorted by the misleading symmetry of the low order 
Hamiltonian. The energy shifts predicted for small 
nonzero values of D are unrealistically large. Where 
D= 0, degenerate perturbation theory gives reasonable 
energy shifts having the proper degeneracies. 

v. DISCUSSION 

Jahn-Teller behavior within a doubly degenerate 
electronic state has been ascribed to a number of 
observations where the "characteristic" double peaked 
absorption pattern occurs. However, unambiguous iden­
tification of this interaction is difficult because the 
"characteristic" spectrum has not been observed in gas 
phase molecules where K2;::;' 1. In solids, where stronger 
coupling occurs, other contributing effects such as 
crystal stress and imperfections cannot be eliminated. 

In gas phase studies, criteria for the J ahn-Teller 
phenomena must include energy spacings in a progres­
sion attributed to an asymmetric vibration, as well as 
the hot band splittings and relative intensities. Our 
investigations show that in the majority of systems, 
those which exhibit comparable or at least non-neg­
ligible coupling through a second vibration, the struc­
ture of the progression of the dominant active mode may 
be obscured by irregular energy spacings and lessened 
intensity due to the interference of a less energetic 
vibration. The hot band splitting and intensities are 
also reduced, thereby necessitating higher resolution 
experimental study. 

When two degenerate vibrations both interact weakly 
(K2< 0.25) with the electronic motion, intensity 
borrowing by the more energetic progression occurs, 
however, this detailed interaction between the two 
vibrations IS masked when the coupling of either 
increases and both lose intensity to higher vibrational 
states. 

In these investigations, the linear coupling constants 
K were taken as parameters because a quantitative 
evaluation is generally approximate. In considering 
the benzene anion where the degenerate electronic 
states are labeled fL, n+, and the symmetry coor­
dinates Sm are related to the normal modes of sym­
metry m defined as eigenfunctions of C6 by Sm= 
LgSgm'Qgm', we found 

(n_1 Helec 1 n+)= (t)112,B' L S/-2)'Q/-2) 
g 

n,m,/,o 

m+n-2,4 

where {3 is the resonance integral and derivatives are 
taken with respect to internuclear separation. The Sgm 
are numerically equivalent to Whiffen's16 Sml, consistent 
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TABLE VIII. Absolute energy shifts (units w) for linear and quadratic coupling. a 

(exact) (exact) 
K J D l!!.Eo(T) !lEo !lE,(S) l!!.E,(T) !lE, !lE,(S) 

0.50 0 0 -0.223 -0.226 -0.226 -0.385 -0.392 -0.391 
-0.233 -0.385 

-0.004 -0.053 -0.053 
-0.004 

0.50 0.2 0.0 +0.017 +0.15 -0.226 +0.078 +0.64 
+0.017 +0.078 

+0.385 +0.306 
+0.385 

0.50 0.2 0.2 -0.036 -0.020 -0.226 -1.41 -0.299 
-0.031 +1.31 +0.227 

+2.19 +0.227 
+3.26 +0.325 

0.50 0.5 0 +0.294 +0.294 -0.226 +0.620 +0.604 
+0.294 +0.620 

+0.849 +0.819 
+0.849 

0.50 0.5 0.2 +0.267 +0.276 -0.226 -1.53 +0.312 
+0.268 +1.01 +0.764 

+2.59 +0.764 
+5.81 +0.847 

0.50 0.5 0.7 -0.009 -0.029 -0.226 -0.827 -0.758 
-0.086 -0.982 -0.135 

+0.148 -0.135 
+1.95 +0.389 

• ,lEo = energy shift of ground vibronic state, l!!.E,=energy shift of first vibrational state, T=transformation method, S=linear 
coupling. 

with the normalization of the Q's and the constants 
in K. We find K12=0.384 for the 1595 cm-1 vibration 
and K 22=0.449 for the 606 cm-I mode. 

Hobey13 has simplified this calculation by using the 
vibrational F and G matricesl7 to approximate the 
transformation from symmetry coordinates to normal 
modes. His approximations diagonalizing the F and G 
matrices are not valid for the C-C-C bending mode 
(606 cm-I ) , however. Off-diagonal terms in the F 
matrix are not negligible in the bending modes; the 
magnitude of these terms is 30% of the diagonal term 
compared with 3% for stretch modes. The high-low 
frequency separation for the G matrixl8 is much less 
accurate for bending modes and yields GI/2=4.69X 
1011 gl/2, while the value obtained from (F) and Whiffen's 
data is 0.84X 1011 gl/2. Hobey's procedure for evaluating 
K is adequate for the C-C stretch, but inadequate for 
the C-C-C bending mode. 

When quadratic coupling is added, the spectral 
pattern predicted by a simple vibration is altered in two 
ways. The vibrational frequency change reduces the 
effective linear interaction. Secondly, accidental vi­
bronic degeneracies in the hot band are resolved if 
Duchinsky mixing is nonzero. The position of the hot 

band doublet relative to the resolved orbital singlets 
depends on the magnitude of this mixing, as do the 
relative spectral intensities. 

Transformation-perturbation schemes have been 
suggested as alternatives to numerical calculations for 
linear coupling through two degenerate vibrations and 
for the linear and quadratic couplings of a single mode. 
Using the first, the modification of the energy spacing 
seen with the addition of a second vibration were reason­
ably predicted by the transformation scheme: the EO_l 

energy spacing is decreased as are the hot band split­
tings and all absolute energies. However, this perturba­
tion method overestimates the energy spacings. 

The second transformation scheme which dealt with 
linear and quadratic interactions, provides a useful 
qualitative description of energy separations in the 
absence of Duchinsky mixing. However, when this 
mixing is nonzero the zeroth-order Hamiltonian has 
lower symmetry than the full Hamiltonian, and the 
proper degeneracies must be restored by the perturba­
tion expansion; a second-order treatment is inadequate. 
In fact, for small D, a perturbation approach is not 
warranted because of the near-degeneracy of the initial 
states. 
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A final comment is in order concerning the frequent 
use2.11 .12 of the adiabatic potential surfaces to predict 
spectral patterns and criteria for stable and semis table 
nuclear distortions. The degeneracy of the lowest 
vibronic states is a function of the Duchinsky param­
eter, D, for the triple degeneracy can be described on 
the adiabatic surface using the Hamiltonian complete 
in linear and quadratic terms and without the an­
harmonics previously2·11·12 required to destroy the 
adiabatic potential's cylindrical symmetry under linear 
coupling. Our criterion for a triply degenerate state, 
D~ (21 + 1) /2, is supported by our exact quantum 
mechanical calculations. Since this criterion corresponds 
to the harmonic limit, a full and proper treatment 
should include all anharmonicities as well. Previous 
workers neglected the Duchinsky quadratics and the 
anharmonic interaction in the complex representation. 

We also conclude that studies of the adiabatic sur­
faces do not yield quantitative vibronic results. The 
exact wavefunctions are not accurately described by 
either conic surface nor by a superposition of the wave­
functions on each surface at the appropriate energy 
level, except for the lowest states for large K. For 
example, when K2= 10, the wavefunction at the second 
"characteristic" J ahn-Teller absorption peak is very 

localized, supporting the notion of a superposition of 
the ground state nuclear function on the upper surface 
and appropriate functions for the lower surface. How­
ever, the corresponding eigenvalue is ""Sw above the 
cusp, a fact in contradiction to the adiabatic prediction. 
In addition, the energy separation of the absorption 
peaks is less than that explained by adiabatic models, 
in fact, for K2 < 5 the adiabatic model still predicts an 
absorption peak separation. 

This brief discussion suggests strongly that the use of 
adiabatic surfaces to construct wave functions and 
thereby describe optical spectra is not valid in the 
energy region where the characteristic J ahn-Teller 
structure occurs. 
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APPENDIX 

Using Hamiltonian (18) where V is the nondiagonal part, matrix elements of the form 

(m I exp(Rb1+) exp(-Rb1) exp[.:l(b1b1-b1+b1+)] I p) 
and 

(s I (b2+b2+) exp[ -.:l(bzb2-b2+b2+)] I t) 

need to be evaluated. Suppressing subscripts, we have 

(m I exp(Rb+) exp(-Rb) exp[.:l(bb-b+b+)] I p)= L (m I exp(Rb+) exp(-Rb) I n)(n I exp.:l(bb-b+b+) I p) 
n=O 

(A1) 

(A2) 

X(n I exp[.:l(bb-b+b+)] I p). 

We can use the calculations of Hutchisson15 to calculate (n I p')= (n I exp[.:l(bb-b+b+)] I p) because I p') differs 
from I p) in a frequency shift only. Hutchisson's parameters dx and ey are zero here, so 

(n I exp[.:l(bb-b+b+)] I p)=O, n+p odd, 

:;e:o, n+p even. 

Hutchisson's Ca can be evaluated using McCoy's theoreml8 

expZ= exp[.:l(bb-b+b+)]=N[expW], 

where N is the "normal ordering" operator which moves all creation operators to the left of annihilation operators 
and where 

and 
A=[tanh2.:l]/2= -B, 

F= -[In cosh2.:l]/2, 

G= [cosh2.:l]-1-1, 
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therefore, 
OX> OX> OX> An-l-mBmGl 

expZ= expF L: L: L: (b+)2m+l(b)2n-2m-l. 
n-O I=Om=o(n-l-m) !m!l! 

Now consider the diagonal elements 
(t I expZ I t)= (t II t), 

where we must require n~t and l=n-2m. Using the expression for expZ above, one finds: 

Thus 

t n/2 or (n-l)/2 t![ -~ tanh22AJm[cosh-12A-IJn-2m 
(tlexpZlt)=[cosh2AJ-1/2L: L: 2(_ )1 1 I( -2 )1 

n=O m=0 t n .m.m. n m. 

(0 II 0)= [2/a(a2+ 1) J1I2a , 

(1 111)= [2a/ (a2+ 1) Ja/2, 

a = (Wi / w ) 1/2 

(2 II 2) = [2a/ (a2+ 1) J1I2 {[2a/ (1 +a2) J2_! tanh2 ( -1: lna4) I. 
Comparison with Hutchisson's results shows his parameter Ca is given by 

Ca= [2a/ (a2+ 1) J/2. 
Therefore, 

n or p (lower) 

(n I expA(bb-b+b+) I p)= L: a2Ibn_ICp_l[n!p!j2n+pJ1I2[2a/(1+a2)JI/2, 
l=x 

where for: nand p odd, X= 1 and 1 is odd only; 
nand p even, x=o and 1 is even only; 

and where, 

Insertion of these results into 
OX> 

a21= (l/l!) (4a/1+a2) , 

bn- 1= {l/[Hn-l) J!I [( 1-a2) / (1 +a2) J(n-l)/2, 

Cp-l= 11/[Hp-l)J!I[ - (1-a2)/(1+a2)J(p-l){2. 

L: (m I exp(Rb+) exp(-Rb) I n)(n I exp[A(bb-b+b+)J I p) 
n=O 

and the use of the same techniques to evaluate Expression (A2) leads to the result (18). 
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